px4-firmware/apps/multirotor_att_control/multirotor_attitude_control.c

315 lines
9.3 KiB
C
Raw Normal View History

/****************************************************************************
*
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved.
* Author: @author Thomas Gubler <thomasgubler@student.ethz.ch>
* @author Julian Oes <joes@student.ethz.ch>
* @author Laurens Mackay <mackayl@student.ethz.ch>
* @author Tobias Naegeli <naegelit@student.ethz.ch>
* @author Martin Rutschmann <rutmarti@student.ethz.ch>
* @author Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/*
* @file multirotor_attitude_control.c
* Implementation of attitude controller
*/
#include "multirotor_attitude_control.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <float.h>
#include <math.h>
#include <systemlib/pid/pid.h>
#include <systemlib/param/param.h>
#include <arch/board/up_hrt.h>
// PARAM_DEFINE_FLOAT(MC_YAWPOS_P, 0.3f);
// PARAM_DEFINE_FLOAT(MC_YAWPOS_I, 0.15f);
// PARAM_DEFINE_FLOAT(MC_YAWPOS_D, 0.0f);
// PARAM_DEFINE_FLOAT(MC_YAWPOS_AWU, 1.0f);
// PARAM_DEFINE_FLOAT(MC_YAWPOS_LIM, 3.0f);
PARAM_DEFINE_FLOAT(MC_YAWRATE_P, 0.1f); /* same on Flamewheel */
PARAM_DEFINE_FLOAT(MC_YAWRATE_I, 0.02f);
PARAM_DEFINE_FLOAT(MC_YAWRATE_D, 0.0f);
PARAM_DEFINE_FLOAT(MC_YAWRATE_AWU, 0.02f);
PARAM_DEFINE_FLOAT(MC_YAWRATE_LIM, 0.1f);
PARAM_DEFINE_FLOAT(MC_ATT_P, 0.3f); /* 0.15 F405 Flamewheel */
PARAM_DEFINE_FLOAT(MC_ATT_I, 0.0f);
PARAM_DEFINE_FLOAT(MC_ATT_D, 0.1f); /* 0.025 F405 Flamewheel */
PARAM_DEFINE_FLOAT(MC_ATT_AWU, 0.05f);
PARAM_DEFINE_FLOAT(MC_ATT_LIM, 0.3f);
PARAM_DEFINE_FLOAT(MC_ATT_XOFF, 0.0f);
PARAM_DEFINE_FLOAT(MC_ATT_YOFF, 0.0f);
struct mc_att_control_params {
// float yaw_p;
// float yaw_i;
// float yaw_d;
// float yaw_awu;
// float yaw_lim;
float yawrate_p;
float yawrate_i;
float yawrate_d;
float yawrate_awu;
float yawrate_lim;
float att_p;
float att_i;
float att_d;
float att_awu;
float att_lim;
float att_xoff;
float att_yoff;
};
struct mc_att_control_param_handles {
// param_t yaw_p;
// param_t yaw_i;
// param_t yaw_d;
// param_t yaw_awu;
// param_t yaw_lim;
param_t yawrate_p;
param_t yawrate_i;
param_t yawrate_d;
param_t yawrate_awu;
param_t yawrate_lim;
param_t att_p;
param_t att_i;
param_t att_d;
param_t att_awu;
param_t att_lim;
param_t att_xoff;
param_t att_yoff;
};
/**
* Initialize all parameter handles and values
*
*/
static int parameters_init(struct mc_att_control_param_handles *h);
/**
* Update all parameters
*
*/
static int parameters_update(const struct mc_att_control_param_handles *h, struct mc_att_control_params *p);
static int parameters_init(struct mc_att_control_param_handles *h)
{
/* PID parameters */
// h->yaw_p = param_find("MC_YAWPOS_P");
// h->yaw_i = param_find("MC_YAWPOS_I");
// h->yaw_d = param_find("MC_YAWPOS_D");
// h->yaw_awu = param_find("MC_YAWPOS_AWU");
// h->yaw_lim = param_find("MC_YAWPOS_LIM");
h->yawrate_p = param_find("MC_YAWRATE_P");
h->yawrate_i = param_find("MC_YAWRATE_I");
h->yawrate_d = param_find("MC_YAWRATE_D");
h->yawrate_awu = param_find("MC_YAWRATE_AWU");
h->yawrate_lim = param_find("MC_YAWRATE_LIM");
h->att_p = param_find("MC_ATT_P");
h->att_i = param_find("MC_ATT_I");
h->att_d = param_find("MC_ATT_D");
h->att_awu = param_find("MC_ATT_AWU");
h->att_lim = param_find("MC_ATT_LIM");
h->att_xoff = param_find("MC_ATT_XOFF");
h->att_yoff = param_find("MC_ATT_YOFF");
return OK;
}
static int parameters_update(const struct mc_att_control_param_handles *h, struct mc_att_control_params *p)
{
// param_get(h->yaw_p, &(p->yaw_p));
// param_get(h->yaw_i, &(p->yaw_i));
// param_get(h->yaw_d, &(p->yaw_d));
// param_get(h->yaw_awu, &(p->yaw_awu));
// param_get(h->yaw_lim, &(p->yaw_lim));
param_get(h->yawrate_p, &(p->yawrate_p));
param_get(h->yawrate_i, &(p->yawrate_i));
param_get(h->yawrate_d, &(p->yawrate_d));
param_get(h->yawrate_awu, &(p->yawrate_awu));
param_get(h->yawrate_lim, &(p->yawrate_lim));
param_get(h->att_p, &(p->att_p));
param_get(h->att_i, &(p->att_i));
param_get(h->att_d, &(p->att_d));
param_get(h->att_awu, &(p->att_awu));
param_get(h->att_lim, &(p->att_lim));
param_get(h->att_xoff, &(p->att_xoff));
param_get(h->att_yoff, &(p->att_yoff));
return OK;
}
void multirotor_control_attitude(const struct vehicle_attitude_setpoint_s *att_sp,
const struct vehicle_attitude_s *att, struct actuator_controls_s *actuators)
{
static uint64_t last_run = 0;
const float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
last_run = hrt_absolute_time();
static int motor_skip_counter = 0;
// static PID_t yaw_pos_controller;
static PID_t yaw_speed_controller;
static PID_t pitch_controller;
static PID_t roll_controller;
static struct mc_att_control_params p;
static struct mc_att_control_param_handles h;
static bool initialized = false;
/* initialize the pid controllers when the function is called for the first time */
if (initialized == false) {
parameters_init(&h);
parameters_update(&h, &p);
// pid_init(&yaw_pos_controller, p.yaw_p, p.yaw_i, p.yaw_d, p.yaw_awu,
// PID_MODE_DERIVATIV_SET, 154);
pid_init(&yaw_speed_controller, p.yawrate_p, p.yawrate_d, p.yawrate_i, p.yawrate_awu,
PID_MODE_DERIVATIV_SET, 155);
pid_init(&pitch_controller, p.att_p, p.att_i, p.att_d, p.att_awu,
PID_MODE_DERIVATIV_SET, 156);
pid_init(&roll_controller, p.att_p, p.att_i, p.att_d, p.att_awu,
PID_MODE_DERIVATIV_SET, 157);
initialized = true;
}
/* load new parameters with lower rate */
if (motor_skip_counter % 50 == 0) {
/* update parameters from storage */
parameters_update(&h, &p);
/* apply parameters */
// pid_set_parameters(&yaw_pos_controller, p.yaw_p, p.yaw_i, p.yaw_d, p.yaw_awu);
pid_set_parameters(&yaw_speed_controller, p.yawrate_p, p.yawrate_d, p.yawrate_i, p.yawrate_awu);
pid_set_parameters(&pitch_controller, p.att_p, p.att_i, p.att_d, p.att_awu);
pid_set_parameters(&roll_controller, p.att_p, p.att_i, p.att_d, p.att_awu);
}
/* calculate current control outputs */
/* control pitch (forward) output */
float pitch_control = pid_calculate(&pitch_controller, att_sp->pitch_body + p.att_xoff,
att->pitch, att->pitchspeed, deltaT);
/* control roll (left/right) output */
float roll_control = pid_calculate(&roll_controller, att_sp->roll_body + p.att_yoff,
att->roll, att->rollspeed, deltaT);
/* control yaw rate */
float yaw_rate_control = pid_calculate(&yaw_speed_controller, att_sp->yaw_rate_body, att->yawspeed, 0.0f, deltaT);
/*
* compensate the vertical loss of thrust
* when thrust plane has an angle.
* start with a factor of 1.0 (no change)
*/
float zcompensation = 1.0f;
if (fabsf(att->roll) > 0.3f) {
zcompensation *= 1.04675160154f;
} else {
zcompensation *= 1.0f / cosf(att->roll);
}
if (fabsf(att->pitch) > 0.3f) {
zcompensation *= 1.04675160154f;
} else {
zcompensation *= 1.0f / cosf(att->pitch);
}
float motor_thrust = 0.0f;
motor_thrust = att_sp->thrust;
/* compensate thrust vector for roll / pitch contributions */
motor_thrust *= zcompensation;
/* limit yaw rate output */
if (yaw_rate_control > p.yawrate_lim) {
yaw_rate_control = p.yawrate_lim;
yaw_speed_controller.saturated = 1;
}
if (yaw_rate_control < -p.yawrate_lim) {
yaw_rate_control = -p.yawrate_lim;
yaw_speed_controller.saturated = 1;
}
if (pitch_control > p.att_lim) {
pitch_control = p.att_lim;
pitch_controller.saturated = 1;
}
if (pitch_control < -p.att_lim) {
pitch_control = -p.att_lim;
pitch_controller.saturated = 1;
}
if (roll_control > p.att_lim) {
roll_control = p.att_lim;
roll_controller.saturated = 1;
}
if (roll_control < -p.att_lim) {
roll_control = -p.att_lim;
roll_controller.saturated = 1;
}
actuators->control[0] = roll_control;
actuators->control[1] = pitch_control;
actuators->control[2] = yaw_rate_control;
actuators->control[3] = motor_thrust;
motor_skip_counter++;
}