Ardupilot2/libraries/AR_WPNav/AR_WPNav.cpp
2022-03-30 15:34:14 +09:00

583 lines
22 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include "AR_WPNav.h"
#include <GCS_MAVLink/GCS.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <stdio.h>
#endif
extern const AP_HAL::HAL& hal;
#define AR_WPNAV_TIMEOUT_MS 100
#define AR_WPNAV_SPEED_DEFAULT 2.0f
#define AR_WPNAV_RADIUS_DEFAULT 2.0f
#define AR_WPNAV_PIVOT_ANGLE_DEFAULT 60
#define AR_WPNAV_PIVOT_ANGLE_ACCURACY 5 // vehicle will pivot to within this many degrees of destination
#define AR_WPNAV_PIVOT_RATE_DEFAULT 90
const AP_Param::GroupInfo AR_WPNav::var_info[] = {
// @Param: SPEED
// @DisplayName: Waypoint speed default
// @Description: Waypoint speed default
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("SPEED", 1, AR_WPNav, _speed_max, AR_WPNAV_SPEED_DEFAULT),
// @Param: RADIUS
// @DisplayName: Waypoint radius
// @Description: The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the vehicle will turn toward the next waypoint.
// @Units: m
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("RADIUS", 2, AR_WPNav, _radius, AR_WPNAV_RADIUS_DEFAULT),
// 3 was OVERSHOOT
// @Param: PIVOT_ANGLE
// @DisplayName: Waypoint Pivot Angle
// @Description: Pivot when the difference between the vehicle's heading and its target heading is more than this many degrees. Set to zero to disable pivot turns. Note: This parameter should be greater than 10 degrees for pivot turns to work.
// @Units: deg
// @Range: 0 360
// @Increment: 1
// @User: Standard
AP_GROUPINFO("PIVOT_ANGLE", 4, AR_WPNav, _pivot_angle, AR_WPNAV_PIVOT_ANGLE_DEFAULT),
// @Param: PIVOT_RATE
// @DisplayName: Waypoint Pivot Turn Rate
// @Description: Turn rate during pivot turns
// @Units: deg/s
// @Range: 0 360
// @Increment: 1
// @User: Standard
AP_GROUPINFO("PIVOT_RATE", 5, AR_WPNav, _pivot_rate, AR_WPNAV_PIVOT_RATE_DEFAULT),
// @Param: SPEED_MIN
// @DisplayName: Waypoint speed minimum
// @Description: Vehicle will not slow below this speed for corners. Should be set to boat's plane speed. Does not apply to pivot turns.
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("SPEED_MIN", 6, AR_WPNav, _speed_min, 0),
// @Param: PIVOT_DELAY
// @DisplayName: Delay after pivot turn
// @Description: Waiting time after pivot turn
// @Units: s
// @Range: 0 60
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("PIVOT_DELAY", 7, AR_WPNav, _pivot_delay, 0),
AP_GROUPEND
};
AR_WPNav::AR_WPNav(AR_AttitudeControl& atc, AR_PosControl &pos_control) :
_atc(atc),
_pos_control(pos_control)
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise waypoint controller
// speed_max should be the max speed (in m/s) the vehicle will travel to waypoint. Leave as zero to use the default speed
// accel_max should be the max forward-back acceleration (in m/s/s). Leave as zero to use the attitude controller's default acceleration
// lat_accel_max should be the max right-left acceleration (in m/s/s). Leave as zero to use the attitude controller's default acceleration
// jerk_max should be the max forward-back and lateral jerk (in m/s/s/s). Leave as zero to use the attitude controller's default acceleration
void AR_WPNav::init(float speed_max, float accel_max, float lat_accel_max, float jerk_max)
{
// default max speed and accel
if (!is_positive(speed_max)) {
speed_max = _speed_max;
}
if (!is_positive(accel_max)) {
accel_max = _atc.get_accel_max();
}
if (!is_positive(lat_accel_max)) {
lat_accel_max = _atc.get_turn_lat_accel_max();
}
if (!is_positive(jerk_max)) {
jerk_max = _atc.get_accel_max();
}
_scurve_jerk = jerk_max;
// initialise position controller
_pos_control.set_limits(speed_max, accel_max, lat_accel_max);
_scurve_prev_leg.init();
_scurve_this_leg.init();
_scurve_next_leg.init();
_track_scalar_dt = 1.0f;
// init some flags
_reached_destination = false;
_fast_waypoint = false;
// initialise origin and destination to stopping point
Location stopping_loc;
if (get_stopping_location(stopping_loc)) {
_origin = _destination = stopping_loc;
} else {
// handle not current location
}
}
// update navigation
void AR_WPNav::update(float dt)
{
// exit immediately if no current location, origin or destination
Location current_loc;
float speed;
if (!hal.util->get_soft_armed() || !_orig_and_dest_valid || !AP::ahrs().get_location(current_loc) || !_atc.get_forward_speed(speed)) {
_desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt);
_desired_turn_rate_rads = 0.0f;
return;
}
// if no recent calls initialise desired_speed_limited to current speed
if (!is_active()) {
_desired_speed_limited = speed;
}
_last_update_ms = AP_HAL::millis();
// run path planning around obstacles
bool stop_vehicle = false;
// true if OA has been recently active;
bool _oa_was_active = _oa_active;
AP_OAPathPlanner *oa = AP_OAPathPlanner::get_singleton();
if (oa != nullptr) {
AP_OAPathPlanner::OAPathPlannerUsed path_planner_used;
const AP_OAPathPlanner::OA_RetState oa_retstate = oa->mission_avoidance(current_loc, _origin, _destination, _oa_origin, _oa_destination, path_planner_used);
switch (oa_retstate) {
case AP_OAPathPlanner::OA_NOT_REQUIRED:
_oa_active = false;
break;
case AP_OAPathPlanner::OA_PROCESSING:
case AP_OAPathPlanner::OA_ERROR:
// during processing or in case of error, slow vehicle to a stop
stop_vehicle = true;
_oa_active = false;
break;
case AP_OAPathPlanner::OA_SUCCESS:
_oa_active = true;
break;
}
}
if (!_oa_active) {
_oa_origin = _origin;
_oa_destination = _destination;
}
update_distance_and_bearing_to_destination();
// if object avoidance is active check if vehicle should pivot towards destination
if (_oa_active) {
update_pivot_active_flag();
}
// check if vehicle is in recovering state after switching off OA
if (!_oa_active && _oa_was_active) {
if (oa->get_options() & AP_OAPathPlanner::OA_OPTION_WP_RESET) {
//reset wp origin to vehicles current location
_origin = current_loc;
}
}
advance_wp_target_along_track(current_loc, dt);
// handle stopping vehicle if avoidance has failed
if (stop_vehicle) {
// decelerate to speed to zero and set turn rate to zero
_desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt);
_desired_lat_accel = 0.0f;
_desired_turn_rate_rads = 0.0f;
return;
}
// update_steering_and_speed
update_steering_and_speed(current_loc, dt);
}
// set desired location and (optionally) next_destination
// next_destination should be provided if known to allow smooth cornering
bool AR_WPNav::set_desired_location(const struct Location& destination, Location next_destination)
{
// re-initialise if previous destination has been interrupted
if (!is_active() || !_reached_destination) {
init(0,0,0,0);
}
// shift this leg to previous leg
_scurve_prev_leg = _scurve_this_leg;
// initialise some variables
_oa_origin = _origin = _destination;
_oa_destination = _destination = destination;
_orig_and_dest_valid = true;
_reached_destination = false;
// determine if we should pivot immediately
update_distance_and_bearing_to_destination();
update_pivot_active_flag();
// convert origin and destination to offset from EKF origin
Vector2f origin_NE;
Vector2f destination_NE;
if (!_origin.get_vector_xy_from_origin_NE(origin_NE) ||
!_destination.get_vector_xy_from_origin_NE(destination_NE)) {
return false;
}
origin_NE *= 0.01f;
destination_NE *= 0.01f;
// calculate track to destination
if (_fast_waypoint && !_scurve_next_leg.finished()) {
// skip recalculating this leg by simply shifting next leg
_scurve_this_leg = _scurve_next_leg;
} else {
_scurve_this_leg.calculate_track(Vector3f{origin_NE.x, origin_NE.y, 0.0f}, // origin
Vector3f{destination_NE.x, destination_NE.y, 0.0f}, // destination
_pos_control.get_speed_max(),
_pos_control.get_speed_max(), // speed up (not used)
_pos_control.get_speed_max(), // speed down (not used)
MIN(_pos_control.get_accel_max(), _pos_control.get_lat_accel_max()),
_pos_control.get_accel_max(), // vertical accel (not used)
1.0, // jerk time
_scurve_jerk);
}
// handle next destination
if (next_destination.initialised()) {
// convert next_destination to offset from EKF origin
Vector2f next_destination_NE;
if (!next_destination.get_vector_xy_from_origin_NE(next_destination_NE)) {
return false;
}
next_destination_NE *= 0.01f;
_scurve_next_leg.calculate_track(Vector3f{destination_NE.x, destination_NE.y, 0.0f},
Vector3f{next_destination_NE.x, next_destination_NE.y, 0.0f},
_pos_control.get_speed_max(),
_pos_control.get_speed_max(), // speed up (not used)
_pos_control.get_speed_max(), // speed down (not used)
_pos_control.get_accel_max(),
_pos_control.get_accel_max(), // vertical accel (not used)
1.0, // jerk time
_scurve_jerk);
// next destination provided so fast waypoint
_fast_waypoint = true;
} else {
_scurve_next_leg.init();
_fast_waypoint = false;
}
update_distance_and_bearing_to_destination();
return true;
}
// set desired location to a reasonable stopping point, return true on success
bool AR_WPNav::set_desired_location_to_stopping_location()
{
Location stopping_loc;
if (!get_stopping_location(stopping_loc)) {
return false;
}
return set_desired_location(stopping_loc);
}
// set desired location as offset from the EKF origin, return true on success
bool AR_WPNav::set_desired_location_NED(const Vector3f& destination)
{
// initialise destination to ekf origin
Location destination_ned;
if (!AP::ahrs().get_origin(destination_ned)) {
return false;
}
// apply offset
destination_ned.offset(destination.x, destination.y);
return set_desired_location(destination_ned);
}
bool AR_WPNav::set_desired_location_NED(const Vector3f &destination, const Vector3f &next_destination)
{
// initialise destination to ekf origin
Location dest_loc, next_dest_loc;
if (!AP::ahrs().get_origin(dest_loc)) {
return false;
}
next_dest_loc = dest_loc;
// apply offsets
dest_loc.offset(destination.x, destination.y);
next_dest_loc.offset(next_destination.x, next_destination.y);
return set_desired_location(dest_loc, next_dest_loc);
}
// calculate vehicle stopping point using current location, velocity and maximum acceleration
bool AR_WPNav::get_stopping_location(Location& stopping_loc)
{
Location current_loc;
if (!AP::ahrs().get_location(current_loc)) {
return false;
}
// get current velocity vector and speed
const Vector2f velocity = AP::ahrs().groundspeed_vector();
const float speed = velocity.length();
// avoid divide by zero
if (!is_positive(speed)) {
stopping_loc = current_loc;
return true;
}
// get stopping distance in meters
const float stopping_dist = _atc.get_stopping_distance(speed);
// calculate stopping position from current location in meters
const Vector2f stopping_offset = velocity.normalized() * stopping_dist;
stopping_loc = current_loc;
stopping_loc.offset(stopping_offset.x, stopping_offset.y);
return true;
}
// returns true if vehicle should pivot turn at next waypoint
bool AR_WPNav::use_pivot_steering_at_next_WP(float yaw_error_cd) const
{
// check cases where we clearly cannot use pivot steering
if (!_pivot_possible || _pivot_angle <= AR_WPNAV_PIVOT_ANGLE_ACCURACY) {
return false;
}
// if error is larger than _pivot_angle then use pivot steering at next WP
if (fabsf(yaw_error_cd) * 0.01f > _pivot_angle) {
return true;
}
return false;
}
// updates _pivot_active flag based on heading error to destination
// relies on update_distance_and_bearing_to_destination having been called first
// to update _oa_wp_bearing and _reversed variables
void AR_WPNav::update_pivot_active_flag()
{
// check cases where we clearly cannot use pivot steering
if (!_pivot_possible || (_pivot_angle <= AR_WPNAV_PIVOT_ANGLE_ACCURACY)) {
_pivot_active = false;
return;
}
// calc yaw error
const float yaw_cd = _reversed ? wrap_360_cd(_oa_wp_bearing_cd + 18000) : _oa_wp_bearing_cd;
const float yaw_error = fabsf(wrap_180_cd(yaw_cd - AP::ahrs().yaw_sensor)) * 0.01f;
// if error is larger than _pivot_angle start pivot steering
if (yaw_error > _pivot_angle) {
_pivot_active = true;
return;
}
uint32_t now = AP_HAL::millis();
// if within 5 degrees of the target heading, set start time of pivot steering
if (_pivot_active && yaw_error < AR_WPNAV_PIVOT_ANGLE_ACCURACY && _pivot_start_ms == 0) {
_pivot_start_ms = now;
}
// exit pivot steering after the time set by pivot_delay has elapsed
if (_pivot_start_ms > 0 && now - _pivot_start_ms >= constrain_float(_pivot_delay.get(), 0.0f, 60.0f) * 1000.0f) {
_pivot_active = false;
_pivot_start_ms = 0;
}
}
// true if update has been called recently
bool AR_WPNav::is_active() const
{
return ((AP_HAL::millis() - _last_update_ms) < AR_WPNAV_TIMEOUT_MS);
}
// move target location along track from origin to destination
void AR_WPNav::advance_wp_target_along_track(const Location &current_loc, float dt)
{
// exit immediately if no current location, destination or disarmed
Vector2f curr_pos_NE;
Vector3f curr_vel_NED;
if (!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE) || !AP::ahrs().get_velocity_NED(curr_vel_NED)) {
return;
}
// exit immediately if we can't convert waypoint origin to offset from ekf origin
Vector2f origin_NE;
if (!_origin.get_vector_xy_from_origin_NE(origin_NE)) {
return;
}
// convert from cm to meters
origin_NE *= 0.01f;
// use _track_scalar_dt to slow down S-Curve time to prevent target moving too far in front of vehicle
Vector2f curr_target_vel = _pos_control.get_desired_velocity();
float track_scaler_dt = 1.0f;
if (is_positive(curr_target_vel.length())) {
Vector2f track_direction = curr_target_vel.normalized();
const float track_error = _pos_control.get_pos_error().tofloat().dot(track_direction);
float track_velocity = curr_vel_NED.xy().dot(track_direction);
// set time scaler to be consistent with the achievable vehicle speed with a 5% buffer for short term variation.
track_scaler_dt = constrain_float(0.05f + (track_velocity - _pos_control.get_pos_p().kP() * track_error) / curr_target_vel.length(), 0.1f, 1.0f);
}
// change s-curve time speed with a time constant of maximum acceleration / maximum jerk
float track_scaler_tc = 1.0f;
if (is_positive(_scurve_jerk)) {
track_scaler_tc = _pos_control.get_accel_max() / _scurve_jerk;
}
_track_scalar_dt += (track_scaler_dt - _track_scalar_dt) * (dt / track_scaler_tc);
// target position, velocity and acceleration from straight line or spline calculators
Vector3f target_pos_3d_ftype{origin_NE.x, origin_NE.y, 0.0f};
Vector3f target_vel, target_accel;
// update target position, velocity and acceleration
const float wp_radius = MAX(_radius, _turn_radius);
bool s_finished = _scurve_this_leg.advance_target_along_track(_scurve_prev_leg, _scurve_next_leg, wp_radius, _fast_waypoint, _track_scalar_dt * dt, target_pos_3d_ftype, target_vel, target_accel);
// pass new target to the position controller
Vector2p target_pos_ptype{target_pos_3d_ftype.x, target_pos_3d_ftype.y};
_pos_control.set_pos_vel_accel_target(target_pos_ptype, target_vel.xy(), target_accel.xy());
// check if we've reached the waypoint
if (!_reached_destination && s_finished) {
// "fast" waypoints are complete once the intermediate point reaches the destination
if (_fast_waypoint) {
_reached_destination = true;
} else {
// regular waypoints also require the vehicle to be within the waypoint radius or past the "finish line"
const bool near_wp = current_loc.get_distance(_destination) <= _radius;
const bool past_wp = current_loc.past_interval_finish_line(_origin, _destination);
_reached_destination = near_wp || past_wp;
}
}
}
// update distance from vehicle's current position to destination
void AR_WPNav::update_distance_and_bearing_to_destination()
{
// if no current location leave distance unchanged
Location current_loc;
if (!_orig_and_dest_valid || !AP::ahrs().get_location(current_loc)) {
_distance_to_destination = 0.0f;
_wp_bearing_cd = 0.0f;
// update OA adjusted values
_oa_distance_to_destination = 0.0f;
_oa_wp_bearing_cd = 0.0f;
return;
}
_distance_to_destination = current_loc.get_distance(_destination);
_wp_bearing_cd = current_loc.get_bearing_to(_destination);
// update OA adjusted values
if (_oa_active) {
_oa_distance_to_destination = current_loc.get_distance(_oa_destination);
_oa_wp_bearing_cd = current_loc.get_bearing_to(_oa_destination);
} else {
_oa_distance_to_destination = _distance_to_destination;
_oa_wp_bearing_cd = _wp_bearing_cd;
}
}
// calculate steering and speed to drive along line from origin to destination waypoint
void AR_WPNav::update_steering_and_speed(const Location &current_loc, float dt)
{
// handle pivot turns
if (_pivot_active) {
_cross_track_error = calc_crosstrack_error(current_loc);
_desired_heading_cd = _reversed ? wrap_360_cd(_oa_wp_bearing_cd + 18000) : _oa_wp_bearing_cd;;
_desired_lat_accel = 0.0f;
_desired_turn_rate_rads = _atc.get_turn_rate_from_heading(radians(_desired_heading_cd * 0.01f), radians(_pivot_rate));
// decelerate to zero
_desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt);
// update flag so that it can be cleared
update_pivot_active_flag();
return;
}
_pos_control.set_reversed(_reversed);
_pos_control.update(dt);
_desired_speed_limited = _pos_control.get_desired_speed();
_desired_turn_rate_rads = _pos_control.get_desired_turn_rate_rads();
_desired_lat_accel = _pos_control.get_desired_lat_accel();
_cross_track_error = _pos_control.get_crosstrack_error();
}
// settor to allow vehicle code to provide turn related param values to this library (should be updated regularly)
void AR_WPNav::set_turn_params(float turn_radius, bool pivot_possible)
{
_turn_radius = pivot_possible ? 0.0 : turn_radius;
_pivot_possible = pivot_possible;
}
// adjust speed to ensure it does not fall below value held in SPEED_MIN
// desired_speed should always be positive (or zero)
void AR_WPNav::apply_speed_min(float &desired_speed) const
{
if (!is_positive(_speed_min) || (_speed_min > _speed_max)) {
return;
}
// ensure speed does not fall below minimum
desired_speed = MAX(desired_speed, _speed_min);
}
// calculate the crosstrack error (does not rely on L1 controller)
float AR_WPNav::calc_crosstrack_error(const Location& current_loc) const
{
if (!_orig_and_dest_valid) {
return 0.0f;
}
// calculate the NE position of destination relative to origin
Vector2f dest_from_origin = _oa_origin.get_distance_NE(_oa_destination);
// return distance to origin if length of track is very small
if (dest_from_origin.length() < 1.0e-6f) {
return current_loc.get_distance_NE(_oa_destination).length();
}
// convert to a vector indicating direction only
dest_from_origin.normalize();
// calculate the NE position of the vehicle relative to origin
const Vector2f veh_from_origin = _oa_origin.get_distance_NE(current_loc);
// calculate distance to target track, for reporting
return fabsf(veh_from_origin % dest_from_origin);
}