/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "AR_WPNav.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif extern const AP_HAL::HAL& hal; #define AR_WPNAV_TIMEOUT_MS 100 #define AR_WPNAV_SPEED_DEFAULT 2.0f #define AR_WPNAV_RADIUS_DEFAULT 2.0f #define AR_WPNAV_PIVOT_ANGLE_DEFAULT 60 #define AR_WPNAV_PIVOT_ANGLE_ACCURACY 5 // vehicle will pivot to within this many degrees of destination #define AR_WPNAV_PIVOT_RATE_DEFAULT 90 const AP_Param::GroupInfo AR_WPNav::var_info[] = { // @Param: SPEED // @DisplayName: Waypoint speed default // @Description: Waypoint speed default // @Units: m/s // @Range: 0 100 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("SPEED", 1, AR_WPNav, _speed_max, AR_WPNAV_SPEED_DEFAULT), // @Param: RADIUS // @DisplayName: Waypoint radius // @Description: The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the vehicle will turn toward the next waypoint. // @Units: m // @Range: 0 100 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("RADIUS", 2, AR_WPNav, _radius, AR_WPNAV_RADIUS_DEFAULT), // 3 was OVERSHOOT // @Param: PIVOT_ANGLE // @DisplayName: Waypoint Pivot Angle // @Description: Pivot when the difference between the vehicle's heading and its target heading is more than this many degrees. Set to zero to disable pivot turns. Note: This parameter should be greater than 10 degrees for pivot turns to work. // @Units: deg // @Range: 0 360 // @Increment: 1 // @User: Standard AP_GROUPINFO("PIVOT_ANGLE", 4, AR_WPNav, _pivot_angle, AR_WPNAV_PIVOT_ANGLE_DEFAULT), // @Param: PIVOT_RATE // @DisplayName: Waypoint Pivot Turn Rate // @Description: Turn rate during pivot turns // @Units: deg/s // @Range: 0 360 // @Increment: 1 // @User: Standard AP_GROUPINFO("PIVOT_RATE", 5, AR_WPNav, _pivot_rate, AR_WPNAV_PIVOT_RATE_DEFAULT), // @Param: SPEED_MIN // @DisplayName: Waypoint speed minimum // @Description: Vehicle will not slow below this speed for corners. Should be set to boat's plane speed. Does not apply to pivot turns. // @Units: m/s // @Range: 0 100 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("SPEED_MIN", 6, AR_WPNav, _speed_min, 0), // @Param: PIVOT_DELAY // @DisplayName: Delay after pivot turn // @Description: Waiting time after pivot turn // @Units: s // @Range: 0 60 // @Increment: 0.1 // @User: Standard AP_GROUPINFO("PIVOT_DELAY", 7, AR_WPNav, _pivot_delay, 0), AP_GROUPEND }; AR_WPNav::AR_WPNav(AR_AttitudeControl& atc, AR_PosControl &pos_control) : _atc(atc), _pos_control(pos_control) { AP_Param::setup_object_defaults(this, var_info); } // initialise waypoint controller // speed_max should be the max speed (in m/s) the vehicle will travel to waypoint. Leave as zero to use the default speed // accel_max should be the max forward-back acceleration (in m/s/s). Leave as zero to use the attitude controller's default acceleration // lat_accel_max should be the max right-left acceleration (in m/s/s). Leave as zero to use the attitude controller's default acceleration // jerk_max should be the max forward-back and lateral jerk (in m/s/s/s). Leave as zero to use the attitude controller's default acceleration void AR_WPNav::init(float speed_max, float accel_max, float lat_accel_max, float jerk_max) { // default max speed and accel if (!is_positive(speed_max)) { speed_max = _speed_max; } if (!is_positive(accel_max)) { accel_max = _atc.get_accel_max(); } if (!is_positive(lat_accel_max)) { lat_accel_max = _atc.get_turn_lat_accel_max(); } if (!is_positive(jerk_max)) { jerk_max = _atc.get_accel_max(); } _scurve_jerk = jerk_max; // initialise position controller _pos_control.set_limits(speed_max, accel_max, lat_accel_max); _scurve_prev_leg.init(); _scurve_this_leg.init(); _scurve_next_leg.init(); _track_scalar_dt = 1.0f; // init some flags _reached_destination = false; _fast_waypoint = false; // initialise origin and destination to stopping point Location stopping_loc; if (get_stopping_location(stopping_loc)) { _origin = _destination = stopping_loc; } else { // handle not current location } } // update navigation void AR_WPNav::update(float dt) { // exit immediately if no current location, origin or destination Location current_loc; float speed; if (!hal.util->get_soft_armed() || !_orig_and_dest_valid || !AP::ahrs().get_location(current_loc) || !_atc.get_forward_speed(speed)) { _desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt); _desired_turn_rate_rads = 0.0f; return; } // if no recent calls initialise desired_speed_limited to current speed if (!is_active()) { _desired_speed_limited = speed; } _last_update_ms = AP_HAL::millis(); // run path planning around obstacles bool stop_vehicle = false; // true if OA has been recently active; bool _oa_was_active = _oa_active; AP_OAPathPlanner *oa = AP_OAPathPlanner::get_singleton(); if (oa != nullptr) { AP_OAPathPlanner::OAPathPlannerUsed path_planner_used; const AP_OAPathPlanner::OA_RetState oa_retstate = oa->mission_avoidance(current_loc, _origin, _destination, _oa_origin, _oa_destination, path_planner_used); switch (oa_retstate) { case AP_OAPathPlanner::OA_NOT_REQUIRED: _oa_active = false; break; case AP_OAPathPlanner::OA_PROCESSING: case AP_OAPathPlanner::OA_ERROR: // during processing or in case of error, slow vehicle to a stop stop_vehicle = true; _oa_active = false; break; case AP_OAPathPlanner::OA_SUCCESS: _oa_active = true; break; } } if (!_oa_active) { _oa_origin = _origin; _oa_destination = _destination; } update_distance_and_bearing_to_destination(); // if object avoidance is active check if vehicle should pivot towards destination if (_oa_active) { update_pivot_active_flag(); } // check if vehicle is in recovering state after switching off OA if (!_oa_active && _oa_was_active) { if (oa->get_options() & AP_OAPathPlanner::OA_OPTION_WP_RESET) { //reset wp origin to vehicles current location _origin = current_loc; } } advance_wp_target_along_track(current_loc, dt); // handle stopping vehicle if avoidance has failed if (stop_vehicle) { // decelerate to speed to zero and set turn rate to zero _desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt); _desired_lat_accel = 0.0f; _desired_turn_rate_rads = 0.0f; return; } // update_steering_and_speed update_steering_and_speed(current_loc, dt); } // set desired location and (optionally) next_destination // next_destination should be provided if known to allow smooth cornering bool AR_WPNav::set_desired_location(const struct Location& destination, Location next_destination) { // re-initialise if previous destination has been interrupted if (!is_active() || !_reached_destination) { init(0,0,0,0); } // shift this leg to previous leg _scurve_prev_leg = _scurve_this_leg; // initialise some variables _oa_origin = _origin = _destination; _oa_destination = _destination = destination; _orig_and_dest_valid = true; _reached_destination = false; // determine if we should pivot immediately update_distance_and_bearing_to_destination(); update_pivot_active_flag(); // convert origin and destination to offset from EKF origin Vector2f origin_NE; Vector2f destination_NE; if (!_origin.get_vector_xy_from_origin_NE(origin_NE) || !_destination.get_vector_xy_from_origin_NE(destination_NE)) { return false; } origin_NE *= 0.01f; destination_NE *= 0.01f; // calculate track to destination if (_fast_waypoint && !_scurve_next_leg.finished()) { // skip recalculating this leg by simply shifting next leg _scurve_this_leg = _scurve_next_leg; } else { _scurve_this_leg.calculate_track(Vector3f{origin_NE.x, origin_NE.y, 0.0f}, // origin Vector3f{destination_NE.x, destination_NE.y, 0.0f}, // destination _pos_control.get_speed_max(), _pos_control.get_speed_max(), // speed up (not used) _pos_control.get_speed_max(), // speed down (not used) MIN(_pos_control.get_accel_max(), _pos_control.get_lat_accel_max()), _pos_control.get_accel_max(), // vertical accel (not used) 1.0, // jerk time _scurve_jerk); } // handle next destination if (next_destination.initialised()) { // convert next_destination to offset from EKF origin Vector2f next_destination_NE; if (!next_destination.get_vector_xy_from_origin_NE(next_destination_NE)) { return false; } next_destination_NE *= 0.01f; _scurve_next_leg.calculate_track(Vector3f{destination_NE.x, destination_NE.y, 0.0f}, Vector3f{next_destination_NE.x, next_destination_NE.y, 0.0f}, _pos_control.get_speed_max(), _pos_control.get_speed_max(), // speed up (not used) _pos_control.get_speed_max(), // speed down (not used) _pos_control.get_accel_max(), _pos_control.get_accel_max(), // vertical accel (not used) 1.0, // jerk time _scurve_jerk); // next destination provided so fast waypoint _fast_waypoint = true; } else { _scurve_next_leg.init(); _fast_waypoint = false; } update_distance_and_bearing_to_destination(); return true; } // set desired location to a reasonable stopping point, return true on success bool AR_WPNav::set_desired_location_to_stopping_location() { Location stopping_loc; if (!get_stopping_location(stopping_loc)) { return false; } return set_desired_location(stopping_loc); } // set desired location as offset from the EKF origin, return true on success bool AR_WPNav::set_desired_location_NED(const Vector3f& destination) { // initialise destination to ekf origin Location destination_ned; if (!AP::ahrs().get_origin(destination_ned)) { return false; } // apply offset destination_ned.offset(destination.x, destination.y); return set_desired_location(destination_ned); } bool AR_WPNav::set_desired_location_NED(const Vector3f &destination, const Vector3f &next_destination) { // initialise destination to ekf origin Location dest_loc, next_dest_loc; if (!AP::ahrs().get_origin(dest_loc)) { return false; } next_dest_loc = dest_loc; // apply offsets dest_loc.offset(destination.x, destination.y); next_dest_loc.offset(next_destination.x, next_destination.y); return set_desired_location(dest_loc, next_dest_loc); } // calculate vehicle stopping point using current location, velocity and maximum acceleration bool AR_WPNav::get_stopping_location(Location& stopping_loc) { Location current_loc; if (!AP::ahrs().get_location(current_loc)) { return false; } // get current velocity vector and speed const Vector2f velocity = AP::ahrs().groundspeed_vector(); const float speed = velocity.length(); // avoid divide by zero if (!is_positive(speed)) { stopping_loc = current_loc; return true; } // get stopping distance in meters const float stopping_dist = _atc.get_stopping_distance(speed); // calculate stopping position from current location in meters const Vector2f stopping_offset = velocity.normalized() * stopping_dist; stopping_loc = current_loc; stopping_loc.offset(stopping_offset.x, stopping_offset.y); return true; } // returns true if vehicle should pivot turn at next waypoint bool AR_WPNav::use_pivot_steering_at_next_WP(float yaw_error_cd) const { // check cases where we clearly cannot use pivot steering if (!_pivot_possible || _pivot_angle <= AR_WPNAV_PIVOT_ANGLE_ACCURACY) { return false; } // if error is larger than _pivot_angle then use pivot steering at next WP if (fabsf(yaw_error_cd) * 0.01f > _pivot_angle) { return true; } return false; } // updates _pivot_active flag based on heading error to destination // relies on update_distance_and_bearing_to_destination having been called first // to update _oa_wp_bearing and _reversed variables void AR_WPNav::update_pivot_active_flag() { // check cases where we clearly cannot use pivot steering if (!_pivot_possible || (_pivot_angle <= AR_WPNAV_PIVOT_ANGLE_ACCURACY)) { _pivot_active = false; return; } // calc yaw error const float yaw_cd = _reversed ? wrap_360_cd(_oa_wp_bearing_cd + 18000) : _oa_wp_bearing_cd; const float yaw_error = fabsf(wrap_180_cd(yaw_cd - AP::ahrs().yaw_sensor)) * 0.01f; // if error is larger than _pivot_angle start pivot steering if (yaw_error > _pivot_angle) { _pivot_active = true; return; } uint32_t now = AP_HAL::millis(); // if within 5 degrees of the target heading, set start time of pivot steering if (_pivot_active && yaw_error < AR_WPNAV_PIVOT_ANGLE_ACCURACY && _pivot_start_ms == 0) { _pivot_start_ms = now; } // exit pivot steering after the time set by pivot_delay has elapsed if (_pivot_start_ms > 0 && now - _pivot_start_ms >= constrain_float(_pivot_delay.get(), 0.0f, 60.0f) * 1000.0f) { _pivot_active = false; _pivot_start_ms = 0; } } // true if update has been called recently bool AR_WPNav::is_active() const { return ((AP_HAL::millis() - _last_update_ms) < AR_WPNAV_TIMEOUT_MS); } // move target location along track from origin to destination void AR_WPNav::advance_wp_target_along_track(const Location ¤t_loc, float dt) { // exit immediately if no current location, destination or disarmed Vector2f curr_pos_NE; Vector3f curr_vel_NED; if (!AP::ahrs().get_relative_position_NE_origin(curr_pos_NE) || !AP::ahrs().get_velocity_NED(curr_vel_NED)) { return; } // exit immediately if we can't convert waypoint origin to offset from ekf origin Vector2f origin_NE; if (!_origin.get_vector_xy_from_origin_NE(origin_NE)) { return; } // convert from cm to meters origin_NE *= 0.01f; // use _track_scalar_dt to slow down S-Curve time to prevent target moving too far in front of vehicle Vector2f curr_target_vel = _pos_control.get_desired_velocity(); float track_scaler_dt = 1.0f; if (is_positive(curr_target_vel.length())) { Vector2f track_direction = curr_target_vel.normalized(); const float track_error = _pos_control.get_pos_error().tofloat().dot(track_direction); float track_velocity = curr_vel_NED.xy().dot(track_direction); // set time scaler to be consistent with the achievable vehicle speed with a 5% buffer for short term variation. track_scaler_dt = constrain_float(0.05f + (track_velocity - _pos_control.get_pos_p().kP() * track_error) / curr_target_vel.length(), 0.1f, 1.0f); } // change s-curve time speed with a time constant of maximum acceleration / maximum jerk float track_scaler_tc = 1.0f; if (is_positive(_scurve_jerk)) { track_scaler_tc = _pos_control.get_accel_max() / _scurve_jerk; } _track_scalar_dt += (track_scaler_dt - _track_scalar_dt) * (dt / track_scaler_tc); // target position, velocity and acceleration from straight line or spline calculators Vector3f target_pos_3d_ftype{origin_NE.x, origin_NE.y, 0.0f}; Vector3f target_vel, target_accel; // update target position, velocity and acceleration const float wp_radius = MAX(_radius, _turn_radius); bool s_finished = _scurve_this_leg.advance_target_along_track(_scurve_prev_leg, _scurve_next_leg, wp_radius, _fast_waypoint, _track_scalar_dt * dt, target_pos_3d_ftype, target_vel, target_accel); // pass new target to the position controller Vector2p target_pos_ptype{target_pos_3d_ftype.x, target_pos_3d_ftype.y}; _pos_control.set_pos_vel_accel_target(target_pos_ptype, target_vel.xy(), target_accel.xy()); // check if we've reached the waypoint if (!_reached_destination && s_finished) { // "fast" waypoints are complete once the intermediate point reaches the destination if (_fast_waypoint) { _reached_destination = true; } else { // regular waypoints also require the vehicle to be within the waypoint radius or past the "finish line" const bool near_wp = current_loc.get_distance(_destination) <= _radius; const bool past_wp = current_loc.past_interval_finish_line(_origin, _destination); _reached_destination = near_wp || past_wp; } } } // update distance from vehicle's current position to destination void AR_WPNav::update_distance_and_bearing_to_destination() { // if no current location leave distance unchanged Location current_loc; if (!_orig_and_dest_valid || !AP::ahrs().get_location(current_loc)) { _distance_to_destination = 0.0f; _wp_bearing_cd = 0.0f; // update OA adjusted values _oa_distance_to_destination = 0.0f; _oa_wp_bearing_cd = 0.0f; return; } _distance_to_destination = current_loc.get_distance(_destination); _wp_bearing_cd = current_loc.get_bearing_to(_destination); // update OA adjusted values if (_oa_active) { _oa_distance_to_destination = current_loc.get_distance(_oa_destination); _oa_wp_bearing_cd = current_loc.get_bearing_to(_oa_destination); } else { _oa_distance_to_destination = _distance_to_destination; _oa_wp_bearing_cd = _wp_bearing_cd; } } // calculate steering and speed to drive along line from origin to destination waypoint void AR_WPNav::update_steering_and_speed(const Location ¤t_loc, float dt) { // handle pivot turns if (_pivot_active) { _cross_track_error = calc_crosstrack_error(current_loc); _desired_heading_cd = _reversed ? wrap_360_cd(_oa_wp_bearing_cd + 18000) : _oa_wp_bearing_cd;; _desired_lat_accel = 0.0f; _desired_turn_rate_rads = _atc.get_turn_rate_from_heading(radians(_desired_heading_cd * 0.01f), radians(_pivot_rate)); // decelerate to zero _desired_speed_limited = _atc.get_desired_speed_accel_limited(0.0f, dt); // update flag so that it can be cleared update_pivot_active_flag(); return; } _pos_control.set_reversed(_reversed); _pos_control.update(dt); _desired_speed_limited = _pos_control.get_desired_speed(); _desired_turn_rate_rads = _pos_control.get_desired_turn_rate_rads(); _desired_lat_accel = _pos_control.get_desired_lat_accel(); _cross_track_error = _pos_control.get_crosstrack_error(); } // settor to allow vehicle code to provide turn related param values to this library (should be updated regularly) void AR_WPNav::set_turn_params(float turn_radius, bool pivot_possible) { _turn_radius = pivot_possible ? 0.0 : turn_radius; _pivot_possible = pivot_possible; } // adjust speed to ensure it does not fall below value held in SPEED_MIN // desired_speed should always be positive (or zero) void AR_WPNav::apply_speed_min(float &desired_speed) const { if (!is_positive(_speed_min) || (_speed_min > _speed_max)) { return; } // ensure speed does not fall below minimum desired_speed = MAX(desired_speed, _speed_min); } // calculate the crosstrack error (does not rely on L1 controller) float AR_WPNav::calc_crosstrack_error(const Location& current_loc) const { if (!_orig_and_dest_valid) { return 0.0f; } // calculate the NE position of destination relative to origin Vector2f dest_from_origin = _oa_origin.get_distance_NE(_oa_destination); // return distance to origin if length of track is very small if (dest_from_origin.length() < 1.0e-6f) { return current_loc.get_distance_NE(_oa_destination).length(); } // convert to a vector indicating direction only dest_from_origin.normalize(); // calculate the NE position of the vehicle relative to origin const Vector2f veh_from_origin = _oa_origin.get_distance_NE(current_loc); // calculate distance to target track, for reporting return fabsf(veh_from_origin % dest_from_origin); }