Ardupilot2/libraries/AP_InertialSensor/examples/INS_generic/INS_generic.cpp

176 lines
4.8 KiB
C++
Raw Normal View History

//
// Simple test for the AP_InertialSensor driver.
//
#include <AP_HAL/AP_HAL.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
const AP_HAL::HAL &hal = AP_HAL::get_HAL();
static AP_InertialSensor ins;
2015-06-01 04:35:15 -03:00
static void display_offsets_and_scaling();
static void run_test();
// board specific config
static AP_BoardConfig BoardConfig;
void setup(void);
void loop(void);
void setup(void)
{
// setup any board specific drivers
BoardConfig.init();
hal.console->printf("AP_InertialSensor startup...\n");
2015-12-26 14:22:29 -04:00
ins.init(100);
// display initial values
display_offsets_and_scaling();
// display number of detected accels/gyros
hal.console->printf("\n");
hal.console->printf("Number of detected accels : %u\n", ins.get_accel_count());
hal.console->printf("Number of detected gyros : %u\n\n", ins.get_gyro_count());
hal.console->printf("Complete. Reading:\n");
}
void loop(void)
{
int16_t user_input;
hal.console->printf("\n");
hal.console->printf("%s\n",
"Menu:\n"
" d) display offsets and scaling\n"
" l) level (capture offsets from level)\n"
" t) test\n"
" r) reboot");
// wait for user input
while (!hal.console->available()) {
hal.scheduler->delay(20);
}
// read in user input
while (hal.console->available()) {
user_input = hal.console->read();
if (user_input == 'd' || user_input == 'D') {
display_offsets_and_scaling();
}
if (user_input == 't' || user_input == 'T') {
run_test();
}
if (user_input == 'r' || user_input == 'R') {
hal.scheduler->reboot(false);
}
}
}
2015-06-01 04:35:15 -03:00
static void display_offsets_and_scaling()
{
const Vector3f &accel_offsets = ins.get_accel_offsets();
const Vector3f &accel_scale = ins.get_accel_scale();
const Vector3f &gyro_offsets = ins.get_gyro_offsets();
// display results
hal.console->printf("\nAccel Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
(double)accel_offsets.x,
(double)accel_offsets.y,
(double)accel_offsets.z);
hal.console->printf("Accel Scale X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
(double)accel_scale.x,
(double)accel_scale.y,
(double)accel_scale.z);
hal.console->printf("Gyro Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
(double)gyro_offsets.x,
(double)gyro_offsets.y,
(double)gyro_offsets.z);
}
2015-06-01 04:35:15 -03:00
static void run_test()
{
Vector3f accel;
Vector3f gyro;
uint8_t counter = 0;
static uint8_t accel_count = ins.get_accel_count();
static uint8_t gyro_count = ins.get_gyro_count();
static uint8_t ins_count = MAX(accel_count, gyro_count);
// flush any user input
while (hal.console->available()) {
hal.console->read();
}
// clear out any existing samples from ins
ins.update();
// loop as long as user does not press a key
while (!hal.console->available()) {
// wait until we have a sample
2014-10-15 22:55:01 -03:00
ins.wait_for_sample();
// read samples from ins
ins.update();
// print each accel/gyro result every 50 cycles
if (counter++ % 50 != 0) {
continue;
}
// loop and print each sensor
for (uint8_t ii = 0; ii < ins_count; ii++) {
char state;
if (ii > accel_count - 1) {
// No accel present
state = '-';
} else if (ins.get_accel_health(ii)) {
// Healthy accel
state = 'h';
} else {
// Accel present but not healthy
state = 'u';
}
accel = ins.get_accel(ii);
hal.console->printf("%u - Accel (%c) : X:%6.2f Y:%6.2f Z:%6.2f norm:%5.2f",
ii, state, (double)accel.x, (double)accel.y, (double)accel.z,
(double)accel.length());
gyro = ins.get_gyro(ii);
if (ii > gyro_count - 1) {
// No gyro present
state = '-';
} else if (ins.get_gyro_health(ii)) {
// Healthy gyro
state = 'h';
} else {
// Gyro present but not healthy
state = 'u';
}
hal.console->printf(" Gyro (%c) : X:%6.2f Y:%6.2f Z:%6.2f\n",
state, (double)gyro.x, (double)gyro.y, (double)gyro.z);
auto temp = ins.get_temperature(ii);
hal.console->printf(" t:%6.2f\n", (double)temp);
}
}
// clear user input
while (hal.console->available()) {
hal.console->read();
}
}
AP_HAL_MAIN();