Ardupilot2/libraries/AP_InertialSensor/examples/INS_generic/INS_generic.cpp

171 lines
4.4 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//
// Simple test for the AP_InertialSensor driver.
//
#include <AP_ADC/AP_ADC.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_InertialSensor/AP_InertialSensor.h>
#include <AP_Math/AP_Math.h>
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
2014-10-15 22:55:01 -03:00
AP_InertialSensor ins;
2015-06-01 04:35:15 -03:00
static void display_offsets_and_scaling();
static void run_test();
void setup(void)
{
hal.console->println("AP_InertialSensor startup...");
2015-12-26 14:22:29 -04:00
ins.init(100);
// display initial values
display_offsets_and_scaling();
// display number of detected accels/gyros
hal.console->printf("\n");
hal.console->printf("Number of detected accels : %u\n", ins.get_accel_count());
hal.console->printf("Number of detected gyros : %u\n\n", ins.get_gyro_count());
hal.console->println("Complete. Reading:");
}
void loop(void)
{
int16_t user_input;
hal.console->println();
hal.console->println(
"Menu:\r\n"
" d) display offsets and scaling\r\n"
" l) level (capture offsets from level)\r\n"
" t) test\r\n"
" r) reboot");
// wait for user input
while( !hal.console->available() ) {
hal.scheduler->delay(20);
}
// read in user input
while( hal.console->available() ) {
user_input = hal.console->read();
if( user_input == 'd' || user_input == 'D' ) {
display_offsets_and_scaling();
}
if( user_input == 't' || user_input == 'T' ) {
run_test();
}
if( user_input == 'r' || user_input == 'R' ) {
hal.scheduler->reboot(false);
}
}
}
2015-06-01 04:35:15 -03:00
static void display_offsets_and_scaling()
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
Vector3f gyro_offsets = ins.get_gyro_offsets();
// display results
hal.console->printf(
"\nAccel Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
accel_offsets.x,
accel_offsets.y,
accel_offsets.z);
hal.console->printf(
"Accel Scale X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
accel_scale.x,
accel_scale.y,
accel_scale.z);
hal.console->printf(
"Gyro Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n",
gyro_offsets.x,
gyro_offsets.y,
gyro_offsets.z);
}
2015-06-01 04:35:15 -03:00
static void run_test()
{
Vector3f accel;
Vector3f gyro;
uint8_t counter = 0;
static uint8_t accel_count = ins.get_accel_count();
static uint8_t gyro_count = ins.get_gyro_count();
static uint8_t ins_count = MAX(accel_count, gyro_count);
// flush any user input
while( hal.console->available() ) {
hal.console->read();
}
// clear out any existing samples from ins
ins.update();
// loop as long as user does not press a key
while( !hal.console->available() ) {
// wait until we have a sample
2014-10-15 22:55:01 -03:00
ins.wait_for_sample();
// read samples from ins
ins.update();
// print each accel/gyro result every 50 cycles
if (counter++ % 50 != 0) {
continue;
}
// loop and print each sensor
for (uint8_t ii = 0; ii < ins_count; ii++) {
char state;
if (ii > accel_count - 1) {
// No accel present
state = '-';
} else if (ins.get_accel_health(ii)) {
// Healthy accel
state = 'h';
} else {
// Accel present but not healthy
state = 'u';
}
accel = ins.get_accel(ii);
hal.console->printf("%u - Accel (%c) : X:%6.2f Y:%6.2f Z:%6.2f norm:%5.2f",
ii, state, accel.x, accel.y, accel.z, accel.length());
gyro = ins.get_gyro(ii);
if (ii > gyro_count - 1) {
// No gyro present
state = '-';
} else if (ins.get_gyro_health(ii)) {
// Healthy gyro
state = 'h';
} else {
// Gyro present but not healthy
state = 'u';
}
hal.console->printf(" Gyro (%c) : X:%6.2f Y:%6.2f Z:%6.2f\n",
state, gyro.x, gyro.y, gyro.z);
}
}
// clear user input
while( hal.console->available() ) {
hal.console->read();
}
}
AP_HAL_MAIN();