Ardupilot2/libraries/AP_RangeFinder/RangeFinder.cpp

905 lines
41 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "RangeFinder.h"
#include "AP_RangeFinder_analog.h"
#include "AP_RangeFinder_PulsedLightLRF.h"
#include "AP_RangeFinder_MaxsonarI2CXL.h"
#include "AP_RangeFinder_MaxsonarSerialLV.h"
#include "AP_RangeFinder_PX4_PWM.h"
#include "AP_RangeFinder_BBB_PRU.h"
#include "AP_RangeFinder_LightWareI2C.h"
#include "AP_RangeFinder_LightWareSerial.h"
#include "AP_RangeFinder_Bebop.h"
#include "AP_RangeFinder_MAVLink.h"
2016-09-13 00:24:41 -03:00
#include "AP_RangeFinder_LeddarOne.h"
#include "AP_RangeFinder_uLanding.h"
#include "AP_RangeFinder_trone.h"
#include "AP_RangeFinder_VL53L0X.h"
#include <AP_BoardConfig/AP_BoardConfig.h>
extern const AP_HAL::HAL &hal;
// table of user settable parameters
const AP_Param::GroupInfo RangeFinder::var_info[] = {
// @Param: _TYPE
// @DisplayName: Rangefinder type
// @Description: What type of rangefinder device that is connected
// @Values: 0:None,1:Analog,2:MaxbotixI2C,3:LidarLiteV2-I2C,5:PX4-PWM,6:BBB-PRU,7:LightWareI2C,8:LightWareSerial,9:Bebop,10:MAVLink,11:uLanding,12:LeddarOne,13:MaxbotixSerial,14:TrOneI2C,15:LidarLiteV3-I2C,16:VL53L0X
// @User: Standard
AP_GROUPINFO("_TYPE", 0, RangeFinder, _type[0], 0),
// @Param: _PIN
// @DisplayName: Rangefinder pin
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
// @Values: -1:Not Used, 0:APM2-A0, 1:APM2-A1, 2:APM2-A2, 3:APM2-A3, 4:APM2-A4, 5:APM2-A5, 6:APM2-A6, 7:APM2-A7, 8:APM2-A8, 9:APM2-A9, 11:PX4-airspeed port, 15:Pixhawk-airspeed port, 64:APM1-airspeed port
// @User: Standard
AP_GROUPINFO("_PIN", 1, RangeFinder, _pin[0], -1),
// @Param: _SCALING
// @DisplayName: Rangefinder scaling
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
// @Units: m/V
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("_SCALING", 2, RangeFinder, _scaling[0], 3.0f),
// @Param: _OFFSET
// @DisplayName: rangefinder offset
// @Description: Offset in volts for zero distance for analog rangefinders. Offset added to distance in centimeters for PWM and I2C Lidars
// @Units: V
// @Increment: 0.001
// @User: Standard
AP_GROUPINFO("_OFFSET", 3, RangeFinder, _offset[0], 0.0f),
// @Param: _FUNCTION
// @DisplayName: Rangefinder function
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
// @User: Standard
AP_GROUPINFO("_FUNCTION", 4, RangeFinder, _function[0], 0),
// @Param: _MIN_CM
// @DisplayName: Rangefinder minimum distance
// @Description: Minimum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_MIN_CM", 5, RangeFinder, _min_distance_cm[0], 20),
// @Param: _MAX_CM
// @DisplayName: Rangefinder maximum distance
// @Description: Maximum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_MAX_CM", 6, RangeFinder, _max_distance_cm[0], 700),
// @Param: _STOP_PIN
// @DisplayName: Rangefinder stop pin
// @Description: Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don't interfere with each other.
// @Values: -1:Not Used,50:Pixhawk AUXOUT1,51:Pixhawk AUXOUT2,52:Pixhawk AUXOUT3,53:Pixhawk AUXOUT4,54:Pixhawk AUXOUT5,55:Pixhawk AUXOUT6,111:PX4 FMU Relay1,112:PX4 FMU Relay2,113:PX4IO Relay1,114:PX4IO Relay2,115:PX4IO ACC1,116:PX4IO ACC2
// @User: Standard
AP_GROUPINFO("_STOP_PIN", 7, RangeFinder, _stop_pin[0], -1),
// @Param: _SETTLE
// @DisplayName: Rangefinder settle time
// @Description: The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
// @Units: ms
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_SETTLE", 8, RangeFinder, _settle_time_ms[0], 0),
// @Param: _RMETRIC
// @DisplayName: Ratiometric
// @Description: This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.
// @Values: 0:No,1:Yes
// @User: Standard
AP_GROUPINFO("_RMETRIC", 9, RangeFinder, _ratiometric[0], 1),
// @Param: _PWRRNG
// @DisplayName: Powersave range
// @Description: This parameter sets the estimated terrain distance in meters above which the sensor will be put into a power saving mode (if available). A value of zero means power saving is not enabled
// @Units: m
// @Range: 0 32767
// @User: Standard
AP_GROUPINFO("_PWRRNG", 10, RangeFinder, _powersave_range, 0),
// @Param: _GNDCLEAR
// @DisplayName: Distance (in cm) from the range finder to the ground
// @Description: This parameter sets the expected range measurement(in cm) that the range finder should return when the vehicle is on the ground.
// @Units: cm
// @Range: 5 127
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_GNDCLEAR", 11, RangeFinder, _ground_clearance_cm[0], RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT),
// @Param: _ADDR
// @DisplayName: Bus address of sensor
// @Description: This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.
// @Range: 0 127
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_ADDR", 23, RangeFinder, _address[0], 0),
// @Param: _POS_X
// @DisplayName: X position offset
// @Description: X position of the first rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: _POS_Y
// @DisplayName: Y position offset
// @Description: Y position of the first rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: _POS_Z
// @DisplayName: Z position offset
// @Description: Z position of the first rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
AP_GROUPINFO("_POS", 49, RangeFinder, _pos_offset[0], 0.0f),
// @Param: _ORIENT
// @DisplayName: Rangefinder orientation
// @Description: Orientation of rangefinder
// @Values: 0:Forward, 1:Forward-Right, 2:Right, 3:Back-Right, 4:Back, 5:Back-Left, 6:Left, 7:Forward-Left, 24:Up, 25:Down
// @User: Advanced
AP_GROUPINFO("_ORIENT", 53, RangeFinder, _orientation[0], ROTATION_PITCH_270),
#if RANGEFINDER_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second Rangefinder type
// @Description: What type of rangefinder device that is connected
// @Values: 0:None,1:Analog,2:MaxbotixI2C,3:LidarLiteV2-I2C,5:PX4-PWM,6:BBB-PRU,7:LightWareI2C,8:LightWareSerial,9:Bebop,10:MAVLink,11:uLanding,12:LeddarOne,13:MaxbotixSerial,14:TrOneI2C,15:LidarLiteV3-I2C,16:VL53L0X
// @User: Advanced
AP_GROUPINFO("2_TYPE", 12, RangeFinder, _type[1], 0),
// @Param: 2_PIN
// @DisplayName: Rangefinder pin
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
// @Values: -1:Not Used, 0:APM2-A0, 1:APM2-A1, 2:APM2-A2, 3:APM2-A3, 4:APM2-A4, 5:APM2-A5, 6:APM2-A6, 7:APM2-A7, 8:APM2-A8, 9:APM2-A9, 11:PX4-airspeed port, 15:Pixhawk-airspeed port, 64:APM1-airspeed port
// @User: Advanced
AP_GROUPINFO("2_PIN", 13, RangeFinder, _pin[1], -1),
// @Param: 2_SCALING
// @DisplayName: Rangefinder scaling
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
// @Units: m/V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("2_SCALING", 14, RangeFinder, _scaling[1], 3.0f),
// @Param: 2_OFFSET
// @DisplayName: rangefinder offset
// @Description: Offset in volts for zero distance
// @Units: V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("2_OFFSET", 15, RangeFinder, _offset[1], 0.0f),
// @Param: 2_FUNCTION
// @DisplayName: Rangefinder function
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
// @User: Advanced
AP_GROUPINFO("2_FUNCTION", 16, RangeFinder, _function[1], 0),
// @Param: 2_MIN_CM
// @DisplayName: Rangefinder minimum distance
// @Description: Minimum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2_MIN_CM", 17, RangeFinder, _min_distance_cm[1], 20),
// @Param: 2_MAX_CM
// @DisplayName: Rangefinder maximum distance
// @Description: Maximum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2_MAX_CM", 18, RangeFinder, _max_distance_cm[1], 700),
// @Param: 2_STOP_PIN
// @DisplayName: Rangefinder stop pin
// @Description: Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don't interfere with each other.
// @Values: -1:Not Used,50:Pixhawk AUXOUT1,51:Pixhawk AUXOUT2,52:Pixhawk AUXOUT3,53:Pixhawk AUXOUT4,54:Pixhawk AUXOUT5,55:Pixhawk AUXOUT6,111:PX4 FMU Relay1,112:PX4 FMU Relay2,113:PX4IO Relay1,114:PX4IO Relay2,115:PX4IO ACC1,116:PX4IO ACC2
// @User: Advanced
AP_GROUPINFO("2_STOP_PIN", 19, RangeFinder, _stop_pin[1], -1),
// @Param: 2_SETTLE
// @DisplayName: Sonar settle time
// @Description: The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
// @Units: ms
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2_SETTLE", 20, RangeFinder, _settle_time_ms[1], 0),
// @Param: 2_RMETRIC
// @DisplayName: Ratiometric
// @Description: This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.
// @Values: 0:No,1:Yes
// @User: Advanced
AP_GROUPINFO("2_RMETRIC", 21, RangeFinder, _ratiometric[1], 1),
// @Param: 2_GNDCLEAR
// @DisplayName: Distance (in cm) from the second range finder to the ground
// @Description: This parameter sets the expected range measurement(in cm) that the second range finder should return when the vehicle is on the ground.
// @Units: cm
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2_GNDCLEAR", 22, RangeFinder, _ground_clearance_cm[1], RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT),
// @Param: 2_ADDR
// @DisplayName: Bus address of second rangefinder
// @Description: This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("2_ADDR", 24, RangeFinder, _address[1], 0),
// @Param: 2_POS_X
// @DisplayName: X position offset
// @Description: X position of the second rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 2_POS_Y
// @DisplayName: Y position offset
// @Description: Y position of the second rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 2_POS_Z
// @DisplayName: Z position offset
// @Description: Z position of the second rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
AP_GROUPINFO("2_POS", 50, RangeFinder, _pos_offset[1], 0.0f),
// @Param: 2_ORIENT
// @DisplayName: Rangefinder 2 orientation
// @Description: Orientation of 2nd rangefinder
// @Values: 0:Forward, 1:Forward-Right, 2:Right, 3:Back-Right, 4:Back, 5:Back-Left, 6:Left, 7:Forward-Left, 24:Up, 25:Down
// @User: Advanced
AP_GROUPINFO("2_ORIENT", 54, RangeFinder, _orientation[1], ROTATION_PITCH_270),
#endif
#if RANGEFINDER_MAX_INSTANCES > 2
// @Param: 3_TYPE
// @DisplayName: Third Rangefinder type
// @Description: What type of rangefinder device that is connected
// @Values: 0:None,1:Analog,2:MaxbotixI2C,3:LidarLiteV2-I2C,5:PX4-PWM,6:BBB-PRU,7:LightWareI2C,8:LightWareSerial,9:Bebop,10:MAVLink,11:uLanding,12:LeddarOne,13:MaxbotixSerial,14:TrOneI2C,15:LidarLiteV3-I2C,16:VL53L0X
// @User: Advanced
AP_GROUPINFO("3_TYPE", 25, RangeFinder, _type[2], 0),
// @Param: 3_PIN
// @DisplayName: Rangefinder pin
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
// @Values: -1:Not Used, 0:APM2-A0, 1:APM2-A1, 2:APM2-A2, 3:APM2-A3, 4:APM2-A4, 5:APM2-A5, 6:APM2-A6, 7:APM2-A7, 8:APM2-A8, 9:APM2-A9, 11:PX4-airspeed port, 15:Pixhawk-airspeed port, 64:APM1-airspeed port
// @User: Advanced
AP_GROUPINFO("3_PIN", 26, RangeFinder, _pin[2], -1),
// @Param: 3_SCALING
// @DisplayName: Rangefinder scaling
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
// @Units: m/V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("3_SCALING", 27, RangeFinder, _scaling[2], 3.0f),
// @Param: 3_OFFSET
// @DisplayName: rangefinder offset
// @Description: Offset in volts for zero distance
// @Units: V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("3_OFFSET", 28, RangeFinder, _offset[2], 0.0f),
// @Param: 3_FUNCTION
// @DisplayName: Rangefinder function
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
// @User: Advanced
AP_GROUPINFO("3_FUNCTION", 29, RangeFinder, _function[2], 0),
// @Param: 3_MIN_CM
// @DisplayName: Rangefinder minimum distance
// @Description: Minimum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("3_MIN_CM", 30, RangeFinder, _min_distance_cm[2], 20),
// @Param: 3_MAX_CM
// @DisplayName: Rangefinder maximum distance
// @Description: Maximum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("3_MAX_CM", 31, RangeFinder, _max_distance_cm[2], 700),
// @Param: 3_STOP_PIN
// @DisplayName: Rangefinder stop pin
// @Description: Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don't interfere with each other.
// @Values: -1:Not Used,50:Pixhawk AUXOUT1,51:Pixhawk AUXOUT2,52:Pixhawk AUXOUT3,53:Pixhawk AUXOUT4,54:Pixhawk AUXOUT5,55:Pixhawk AUXOUT6,111:PX4 FMU Relay1,112:PX4 FMU Relay2,113:PX4IO Relay1,114:PX4IO Relay2,115:PX4IO ACC1,116:PX4IO ACC2
// @User: Advanced
AP_GROUPINFO("3_STOP_PIN", 32, RangeFinder, _stop_pin[2], -1),
// @Param: 3_SETTLE
// @DisplayName: Sonar settle time
// @Description: The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
// @Units: ms
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("3_SETTLE", 33, RangeFinder, _settle_time_ms[2], 0),
// @Param: 3_RMETRIC
// @DisplayName: Ratiometric
// @Description: This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.
// @Values: 0:No,1:Yes
// @User: Advanced
AP_GROUPINFO("3_RMETRIC", 34, RangeFinder, _ratiometric[2], 1),
// @Param: 3_GNDCLEAR
// @DisplayName: Distance (in cm) from the third range finder to the ground
// @Description: This parameter sets the expected range measurement(in cm) that the third range finder should return when the vehicle is on the ground.
// @Units: cm
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("3_GNDCLEAR", 35, RangeFinder, _ground_clearance_cm[2], RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT),
// @Param: 3_ADDR
// @DisplayName: Bus address of third rangefinder
// @Description: This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("3_ADDR", 36, RangeFinder, _address[2], 0),
// @Param: 3_POS_X
// @DisplayName: X position offset
// @Description: X position of the third rangefinder in body frame. Positive X is forward of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 3_POS_Y
// @DisplayName: Y position offset
// @Description: Y position of the third rangefinder in body frame. Positive Y is to the right of the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 3_POS_Z
// @DisplayName: Z position offset
// @Description: Z position of the third rangefinder in body frame. Positive Z is down from the origin. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
AP_GROUPINFO("3_POS", 51, RangeFinder, _pos_offset[2], 0.0f),
// @Param: 3_ORIENT
// @DisplayName: Rangefinder 3 orientation
// @Description: Orientation of 3rd rangefinder
// @Values: 0:Forward, 1:Forward-Right, 2:Right, 3:Back-Right, 4:Back, 5:Back-Left, 6:Left, 7:Forward-Left, 24:Up, 25:Down
// @User: Advanced
AP_GROUPINFO("3_ORIENT", 55, RangeFinder, _orientation[2], ROTATION_PITCH_270),
#endif
#if RANGEFINDER_MAX_INSTANCES > 3
// @Param: 4_TYPE
// @DisplayName: Fourth Rangefinder type
// @Description: What type of rangefinder device that is connected
// @Values: 0:None,1:Analog,2:MaxbotixI2C,3:LidarLiteV2-I2C,5:PX4-PWM,6:BBB-PRU,7:LightWareI2C,8:LightWareSerial,9:Bebop,10:MAVLink,11:uLanding,12:LeddarOne,13:MaxbotixSerial,14:TrOneI2C,15:LidarLiteV3-I2C,16:VL53L0X
// @User: Advanced
AP_GROUPINFO("4_TYPE", 37, RangeFinder, _type[3], 0),
// @Param: 4_PIN
// @DisplayName: Rangefinder pin
// @Description: Analog pin that rangefinder is connected to. Set this to 0..9 for the APM2 analog pins. Set to 64 on an APM1 for the dedicated 'airspeed' port on the end of the board. Set to 11 on PX4 for the analog 'airspeed' port. Set to 15 on the Pixhawk for the analog 'airspeed' port.
// @Values: -1:Not Used, 0:APM2-A0, 1:APM2-A1, 2:APM2-A2, 3:APM2-A3, 4:APM2-A4, 5:APM2-A5, 6:APM2-A6, 7:APM2-A7, 8:APM2-A8, 9:APM2-A9, 11:PX4-airspeed port, 15:Pixhawk-airspeed port, 64:APM1-airspeed port
// @User: Advanced
AP_GROUPINFO("4_PIN", 38, RangeFinder, _pin[3], -1),
// @Param: 4_SCALING
// @DisplayName: Rangefinder scaling
// @Description: Scaling factor between rangefinder reading and distance. For the linear and inverted functions this is in meters per volt. For the hyperbolic function the units are meterVolts.
// @Units: m/V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("4_SCALING", 39, RangeFinder, _scaling[3], 3.0f),
// @Param: 4_OFFSET
// @DisplayName: rangefinder offset
// @Description: Offset in volts for zero distance
// @Units: V
// @Increment: 0.001
// @User: Advanced
AP_GROUPINFO("4_OFFSET", 40, RangeFinder, _offset[3], 0.0f),
// @Param: 4_FUNCTION
// @DisplayName: Rangefinder function
// @Description: Control over what function is used to calculate distance. For a linear function, the distance is (voltage-offset)*scaling. For a inverted function the distance is (offset-voltage)*scaling. For a hyperbolic function the distance is scaling/(voltage-offset). The functions return the distance in meters.
// @Values: 0:Linear,1:Inverted,2:Hyperbolic
// @User: Advanced
AP_GROUPINFO("4_FUNCTION", 41, RangeFinder, _function[3], 0),
// @Param: 4_MIN_CM
// @DisplayName: Rangefinder minimum distance
// @Description: Minimum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("4_MIN_CM", 42, RangeFinder, _min_distance_cm[3], 20),
// @Param: 4_MAX_CM
// @DisplayName: Rangefinder maximum distance
// @Description: Maximum distance in centimeters that rangefinder can reliably read
// @Units: cm
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("4_MAX_CM", 43, RangeFinder, _max_distance_cm[3], 700),
// @Param: 4_STOP_PIN
// @DisplayName: Rangefinder stop pin
// @Description: Digital pin that enables/disables rangefinder measurement for an analog rangefinder. A value of -1 means no pin. If this is set, then the pin is set to 1 to enable the rangefinder and set to 0 to disable it. This can be used to ensure that multiple sonar rangefinders don't interfere with each other.
// @Values: -1:Not Used,50:Pixhawk AUXOUT1,51:Pixhawk AUXOUT2,52:Pixhawk AUXOUT3,53:Pixhawk AUXOUT4,54:Pixhawk AUXOUT5,55:Pixhawk AUXOUT6,111:PX4 FMU Relay1,112:PX4 FMU Relay2,113:PX4IO Relay1,114:PX4IO Relay2,115:PX4IO ACC1,116:PX4IO ACC2
// @User: Advanced
AP_GROUPINFO("4_STOP_PIN", 44, RangeFinder, _stop_pin[3], -1),
// @Param: 4_SETTLE
// @DisplayName: Sonar settle time
// @Description: The time in milliseconds that the rangefinder reading takes to settle. This is only used when a STOP_PIN is specified. It determines how long we have to wait for the rangefinder to give a reading after we set the STOP_PIN high. For a sonar rangefinder with a range of around 7m this would need to be around 50 milliseconds to allow for the sonar pulse to travel to the target and back again.
// @Units: ms
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("4_SETTLE", 45, RangeFinder, _settle_time_ms[3], 0),
// @Param: 4_RMETRIC
// @DisplayName: Ratiometric
// @Description: This parameter sets whether an analog rangefinder is ratiometric. Most analog rangefinders are ratiometric, meaning that their output voltage is influenced by the supply voltage. Some analog rangefinders (such as the SF/02) have their own internal voltage regulators so they are not ratiometric.
// @Values: 0:No,1:Yes
// @User: Advanced
AP_GROUPINFO("4_RMETRIC", 46, RangeFinder, _ratiometric[3], 1),
// @Param: 4_GNDCLEAR
// @DisplayName: Distance (in cm) from the fourth range finder to the ground
// @Description: This parameter sets the expected range measurement(in cm) that the fourth range finder should return when the vehicle is on the ground.
// @Units: cm
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("4_GNDCLEAR", 47, RangeFinder, _ground_clearance_cm[3], RANGEFINDER_GROUND_CLEARANCE_CM_DEFAULT),
// @Param: 4_ADDR
// @DisplayName: Bus address of fourth rangefinder
// @Description: This sets the bus address of the sensor, where applicable. Used for the LightWare I2C sensor to allow for multiple sensors on different addresses. A value of 0 disables the sensor.
// @Range: 0 127
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("4_ADDR", 48, RangeFinder, _address[3], 0),
// @Param: 4_POS_X
// @DisplayName: X position offset
// @Description: X position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 4_POS_Y
// @DisplayName: Y position offset
// @Description: Y position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
// @Param: 4_POS_Z
// @DisplayName: Z position offset
// @Description: Z position of the fourth rangefinder in body frame. Use the zero range datum point if supplied.
// @Units: m
// @User: Advanced
AP_GROUPINFO("4_POS", 52, RangeFinder, _pos_offset[3], 0.0f),
// @Param: 4_ORIENT
// @DisplayName: Rangefinder 4 orientation
// @Description: Orientation of 4th range finder
// @Values: 0:Forward, 1:Forward-Right, 2:Right, 3:Back-Right, 4:Back, 5:Back-Left, 6:Left, 7:Forward-Left, 24:Up, 25:Down
// @User: Advanced
AP_GROUPINFO("4_ORIENT", 56, RangeFinder, _orientation[3], ROTATION_PITCH_270),
#endif
AP_GROUPEND
};
RangeFinder::RangeFinder(AP_SerialManager &_serial_manager, enum Rotation orientation_default) :
num_instances(0),
estimated_terrain_height(0),
serial_manager(_serial_manager)
{
AP_Param::setup_object_defaults(this, var_info);
// set orientation defaults
for (uint8_t i=0; i<RANGEFINDER_MAX_INSTANCES; i++) {
_orientation[i].set_default(orientation_default);
}
// init state and drivers
memset(state,0,sizeof(state));
memset(drivers,0,sizeof(drivers));
}
/*
initialise the RangeFinder class. We do detection of attached range
finders here. For now we won't allow for hot-plugging of
rangefinders.
*/
void RangeFinder::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; i<RANGEFINDER_MAX_INSTANCES; i++) {
detect_instance(i);
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1;
}
2015-04-13 00:18:46 -03:00
// initialise pre-arm check variables
state[i].pre_arm_check = false;
state[i].pre_arm_distance_min = 9999; // initialise to an arbitrary large value
state[i].pre_arm_distance_max = 0;
// initialise status
state[i].status = RangeFinder_NotConnected;
state[i].range_valid_count = 0;
}
}
/*
update RangeFinder state for all instances. This should be called at
around 10Hz by main loop
*/
void RangeFinder::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (drivers[i] != nullptr) {
if (_type[i] == RangeFinder_TYPE_NONE) {
// allow user to disable a rangefinder at runtime
state[i].status = RangeFinder_NotConnected;
state[i].range_valid_count = 0;
continue;
}
drivers[i]->update();
2015-04-13 00:18:46 -03:00
update_pre_arm_check(i);
}
}
}
bool RangeFinder::_add_backend(AP_RangeFinder_Backend *backend)
{
if (!backend) {
return false;
}
if (num_instances == RANGEFINDER_MAX_INSTANCES) {
AP_HAL::panic("Too many RANGERS backends");
}
drivers[num_instances++] = backend;
return true;
}
/*
detect if an instance of a rangefinder is connected.
*/
void RangeFinder::detect_instance(uint8_t instance)
{
enum RangeFinder_Type type = (enum RangeFinder_Type)_type[instance].get();
switch (type) {
case RangeFinder_TYPE_PLI2C:
case RangeFinder_TYPE_PLI2CV3:
if (!_add_backend(AP_RangeFinder_PulsedLightLRF::detect(1, *this, instance, state[instance], type))) {
_add_backend(AP_RangeFinder_PulsedLightLRF::detect(0, *this, instance, state[instance], type));
}
break;
case RangeFinder_TYPE_MBI2C:
_add_backend(AP_RangeFinder_MaxsonarI2CXL::detect(*this, instance, state[instance]));
break;
case RangeFinder_TYPE_LWI2C:
if (_address[instance]) {
_add_backend(AP_RangeFinder_LightWareI2C::detect(*this, instance, state[instance],
hal.i2c_mgr->get_device(HAL_RANGEFINDER_LIGHTWARE_I2C_BUS, _address[instance])));
}
break;
case RangeFinder_TYPE_TRONE:
if (!_add_backend(AP_RangeFinder_trone::detect(0, *this, instance, state[instance]))) {
_add_backend(AP_RangeFinder_trone::detect(1, *this, instance, state[instance]));
}
break;
case RangeFinder_TYPE_VL53L0X:
if (!_add_backend(AP_RangeFinder_VL53L0X::detect(*this, instance, state[instance],
hal.i2c_mgr->get_device(1, 0x29)))) {
_add_backend(AP_RangeFinder_VL53L0X::detect(*this, instance, state[instance],
hal.i2c_mgr->get_device(0, 0x29)));
}
break;
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
case RangeFinder_TYPE_PX4_PWM:
if (AP_RangeFinder_PX4_PWM::detect(*this, instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_PX4_PWM(*this, instance, state[instance]);
}
break;
#endif
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI
case RangeFinder_TYPE_BBB_PRU:
if (AP_RangeFinder_BBB_PRU::detect(*this, instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_BBB_PRU(*this, instance, state[instance]);
}
break;
#endif
case RangeFinder_TYPE_LWSER:
if (AP_RangeFinder_LightWareSerial::detect(*this, instance, serial_manager)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_LightWareSerial(*this, instance, state[instance], serial_manager);
}
break;
case RangeFinder_TYPE_LEDDARONE:
2016-09-13 00:24:41 -03:00
if (AP_RangeFinder_LeddarOne::detect(*this, instance, serial_manager)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_LeddarOne(*this, instance, state[instance], serial_manager);
}
break;
case RangeFinder_TYPE_ULANDING:
if (AP_RangeFinder_uLanding::detect(*this, instance, serial_manager)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_uLanding(*this, instance, state[instance], serial_manager);
}
break;
2016-06-15 23:44:01 -03:00
#if (CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO) && defined(HAVE_LIBIIO)
case RangeFinder_TYPE_BEBOP:
if (AP_RangeFinder_Bebop::detect(*this, instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_Bebop(*this, instance, state[instance]);
}
break;
#endif
case RangeFinder_TYPE_MAVLink:
if (AP_RangeFinder_MAVLink::detect(*this, instance)) {
2016-05-04 00:02:44 -03:00
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_MAVLink(*this, instance, state[instance]);
2016-05-04 00:02:44 -03:00
}
break;
case RangeFinder_TYPE_MBSER:
if (AP_RangeFinder_MaxsonarSerialLV::detect(*this, instance, serial_manager)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_MaxsonarSerialLV(*this, instance, state[instance], serial_manager);
}
break;
case RangeFinder_TYPE_ANALOG:
// note that analog will always come back as present if the pin is valid
if (AP_RangeFinder_analog::detect(*this, instance)) {
state[instance].instance = instance;
drivers[instance] = new AP_RangeFinder_analog(*this, instance, state[instance]);
}
break;
default:
break;
}
}
// query status
RangeFinder::RangeFinder_Status RangeFinder::status(uint8_t instance) const
{
// sanity check instance
if (instance >= RANGEFINDER_MAX_INSTANCES) {
return RangeFinder_NotConnected;
}
if (drivers[instance] == nullptr || _type[instance] == RangeFinder_TYPE_NONE) {
return RangeFinder_NotConnected;
}
return state[instance].status;
}
RangeFinder::RangeFinder_Status RangeFinder::status_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return status(i);
}
return RangeFinder_NotConnected;
}
void RangeFinder::handle_msg(mavlink_message_t *msg)
{
uint8_t i;
for (i=0; i<num_instances; i++) {
if ((drivers[i] != nullptr) && (_type[i] != RangeFinder_TYPE_NONE)) {
drivers[i]->handle_msg(msg);
}
}
}
// return true if we have a range finder with the specified orientation
bool RangeFinder::has_orientation(enum Rotation orientation) const
{
uint8_t i;
return find_instance(orientation, i);
}
// find first range finder instance with the specified orientation
bool RangeFinder::find_instance(enum Rotation orientation, uint8_t &instance) const
{
for (uint8_t i=0; i<num_instances; i++) {
if (_orientation[i] == orientation) {
instance = i;
return true;
}
}
return false;
}
uint16_t RangeFinder::distance_cm_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return distance_cm(i);
}
return 0;
}
uint16_t RangeFinder::voltage_mv_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return voltage_mv(i);
}
return 0;
}
int16_t RangeFinder::max_distance_cm_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return max_distance_cm(i);
}
return 0;
}
int16_t RangeFinder::min_distance_cm_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return min_distance_cm(i);
}
return 0;
}
int16_t RangeFinder::ground_clearance_cm_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return ground_clearance_cm(i);
}
return 0;
2016-05-04 00:02:44 -03:00
}
// true if sensor is returning data
bool RangeFinder::has_data(uint8_t instance) const
{
// sanity check instance
if (instance >= RANGEFINDER_MAX_INSTANCES) {
return RangeFinder_NotConnected;
}
return ((state[instance].status != RangeFinder_NotConnected) && (state[instance].status != RangeFinder_NoData));
}
bool RangeFinder::has_data_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return has_data(i);
}
return false;
}
uint8_t RangeFinder::range_valid_count_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return range_valid_count(i);
}
return 0;
}
2015-04-13 00:18:46 -03:00
/*
returns true if pre-arm checks have passed for all range finders
these checks involve the user lifting or rotating the vehicle so that sensor readings between
the min and 2m can be captured
*/
bool RangeFinder::pre_arm_check() const
{
for (uint8_t i=0; i<num_instances; i++) {
// if driver is valid but pre_arm_check is false, return false
if ((drivers[i] != nullptr) && (_type[i] != RangeFinder_TYPE_NONE) && !state[i].pre_arm_check) {
2015-04-13 00:18:46 -03:00
return false;
}
}
return true;
}
/*
set pre-arm checks to passed if the range finder has been exercised through a reasonable range of movement
max distance sensed is at least 50cm > min distance sensed
max distance < 200cm
min distance sensed is within 10cm of ground clearance or sensor's minimum distance
*/
void RangeFinder::update_pre_arm_check(uint8_t instance)
{
// return immediately if already passed or no sensor data
if (state[instance].pre_arm_check || state[instance].status == RangeFinder_NotConnected || state[instance].status == RangeFinder_NoData) {
2015-04-13 00:18:46 -03:00
return;
}
// update min, max captured distances
state[instance].pre_arm_distance_min = MIN(state[instance].distance_cm, state[instance].pre_arm_distance_min);
state[instance].pre_arm_distance_max = MAX(state[instance].distance_cm, state[instance].pre_arm_distance_max);
2015-04-13 00:18:46 -03:00
// Check that the range finder has been exercised through a realistic range of movement
if (((state[instance].pre_arm_distance_max - state[instance].pre_arm_distance_min) > RANGEFINDER_PREARM_REQUIRED_CHANGE_CM) &&
(state[instance].pre_arm_distance_max < RANGEFINDER_PREARM_ALT_MAX_CM) &&
((int16_t)state[instance].pre_arm_distance_min < (MAX(_ground_clearance_cm[instance],min_distance_cm(instance)) + 10)) &&
((int16_t)state[instance].pre_arm_distance_min > (MIN(_ground_clearance_cm[instance],min_distance_cm(instance)) - 10))) {
2015-04-13 00:18:46 -03:00
state[instance].pre_arm_check = true;
}
}
const Vector3f &RangeFinder::get_pos_offset_orient(enum Rotation orientation) const
{
uint8_t i=0;
if (find_instance(orientation, i)) {
return get_pos_offset(i);
}
return pos_offset_zero;
}
MAV_DISTANCE_SENSOR RangeFinder::get_sensor_type(uint8_t instance) const {
// sanity check instance
if (instance >= RANGEFINDER_MAX_INSTANCES) {
return MAV_DISTANCE_SENSOR_UNKNOWN;
}
if (drivers[instance] == nullptr || _type[instance] == RangeFinder_TYPE_NONE) {
return MAV_DISTANCE_SENSOR_UNKNOWN;
}
return drivers[instance]->get_sensor_type();
}
MAV_DISTANCE_SENSOR RangeFinder::get_sensor_type_orient(enum Rotation orientation) const
{
uint8_t i;
if (find_instance(orientation, i)) {
return get_sensor_type(i);
}
return MAV_DISTANCE_SENSOR_UNKNOWN;
}