Ardupilot2/libraries/AP_Mount/AP_Mount.cpp

710 lines
25 KiB
C++
Raw Normal View History

#include <AP_Common/AP_Common.h>
#include <AP_Param/AP_Param.h>
#include "AP_Mount.h"
#include "AP_Mount_Backend.h"
#include "AP_Mount_Servo.h"
#include "AP_Mount_SoloGimbal.h"
#include "AP_Mount_Alexmos.h"
#include "AP_Mount_SToRM32.h"
#include "AP_Mount_SToRM32_serial.h"
const AP_Param::GroupInfo AP_Mount::var_info[] = {
2015-01-12 08:11:32 -04:00
// @Param: _DEFLT_MODE
// @DisplayName: Mount default operating mode
// @Description: Mount default operating mode on startup and after control is returned from autopilot
// @Values: 0:Retracted,1:Neutral,2:MavLink Targeting,3:RC Targeting,4:GPS Point
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_DEFLT_MODE", 0, AP_Mount, state[0]._default_mode, MAV_MOUNT_MODE_RC_TARGETING),
2012-07-03 18:36:34 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _RETRACT_X
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount roll angle when in retracted position
// @Description: Mount roll angle when in retracted position
// @Units: deg
// @Range: -180.00 179.99
2013-01-02 03:47:39 -04:00
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
// @Param: _RETRACT_Y
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount tilt/pitch angle when in retracted position
// @Description: Mount tilt/pitch angle when in retracted position
// @Units: deg
// @Range: -180.00 179.99
2013-01-02 03:47:39 -04:00
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
// @Param: _RETRACT_Z
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount yaw/pan angle when in retracted position
// @Description: Mount yaw/pan angle when in retracted position
// @Units: deg
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_RETRACT", 1, AP_Mount, state[0]._retract_angles, 0),
2012-07-03 18:36:34 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _NEUTRAL_X
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount roll angle when in neutral position
// @Description: Mount roll angle when in neutral position
// @Units: deg
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
2012-07-03 18:36:34 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _NEUTRAL_Y
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount tilt/pitch angle when in neutral position
// @Description: Mount tilt/pitch angle when in neutral position
// @Units: deg
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
2013-01-02 03:47:39 -04:00
2015-01-12 08:11:32 -04:00
// @Param: _NEUTRAL_Z
2013-01-02 03:47:39 -04:00
// @DisplayName: Mount pan/yaw angle when in neutral position
// @Description: Mount pan/yaw angle when in neutral position
// @Units: deg
// @Range: -180.00 179.99
2013-01-02 03:47:39 -04:00
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_NEUTRAL", 2, AP_Mount, state[0]._neutral_angles, 0),
2013-01-02 03:47:39 -04:00
2015-01-08 16:10:48 -04:00
// 3 was used for control_angles
2013-01-02 03:47:39 -04:00
2015-01-12 08:11:32 -04:00
// @Param: _STAB_ROLL
2013-01-02 03:47:39 -04:00
// @DisplayName: Stabilize mount's roll angle
// @Description: enable roll stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_STAB_ROLL", 4, AP_Mount, state[0]._stab_roll, 0),
2012-07-03 18:36:34 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _STAB_TILT
2013-01-02 03:47:39 -04:00
// @DisplayName: Stabilize mount's pitch/tilt angle
// @Description: enable tilt/pitch stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_STAB_TILT", 5, AP_Mount, state[0]._stab_tilt, 0),
2012-07-03 18:36:34 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _STAB_PAN
2013-01-02 03:47:39 -04:00
// @DisplayName: Stabilize mount pan/yaw angle
// @Description: enable pan/yaw stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_STAB_PAN", 6, AP_Mount, state[0]._stab_pan, 0),
2015-01-12 08:11:32 -04:00
// @Param: _RC_IN_ROLL
// @DisplayName: roll RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control roll movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_RC_IN_ROLL", 7, AP_Mount, state[0]._roll_rc_in, 0),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMIN_ROL
// @DisplayName: Minimum roll angle
// @Description: Minimum physical roll angular position of mount.
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMIN_ROL", 8, AP_Mount, state[0]._roll_angle_min, -4500),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMAX_ROL
// @DisplayName: Maximum roll angle
// @Description: Maximum physical roll angular position of the mount
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMAX_ROL", 9, AP_Mount, state[0]._roll_angle_max, 4500),
2015-01-12 08:11:32 -04:00
// @Param: _RC_IN_TILT
// @DisplayName: tilt (pitch) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control tilt (pitch) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_RC_IN_TILT", 10, AP_Mount, state[0]._tilt_rc_in, 0),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMIN_TIL
// @DisplayName: Minimum tilt angle
// @Description: Minimum physical tilt (pitch) angular position of mount.
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMIN_TIL", 11, AP_Mount, state[0]._tilt_angle_min, -4500),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMAX_TIL
// @DisplayName: Maximum tilt angle
// @Description: Maximum physical tilt (pitch) angular position of the mount
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMAX_TIL", 12, AP_Mount, state[0]._tilt_angle_max, 4500),
2015-01-12 08:11:32 -04:00
// @Param: _RC_IN_PAN
// @DisplayName: pan (yaw) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control pan (yaw) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_RC_IN_PAN", 13, AP_Mount, state[0]._pan_rc_in, 0),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMIN_PAN
// @DisplayName: Minimum pan angle
// @Description: Minimum physical pan (yaw) angular position of mount.
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMIN_PAN", 14, AP_Mount, state[0]._pan_angle_min, -4500),
2015-01-12 08:11:32 -04:00
// @Param: _ANGMAX_PAN
// @DisplayName: Maximum pan angle
// @Description: Maximum physical pan (yaw) angular position of the mount
// @Units: cdeg
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_ANGMAX_PAN", 15, AP_Mount, state[0]._pan_angle_max, 4500),
2015-01-12 08:11:32 -04:00
// @Param: _JSTICK_SPD
// @DisplayName: mount joystick speed
// @Description: 0 for position control, small for low speeds, 100 for max speed. A good general value is 10 which gives a movement speed of 3 degrees per second.
// @Range: 0 100
// @Increment: 1
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_JSTICK_SPD", 16, AP_Mount, _joystick_speed, 0),
2015-01-12 08:11:32 -04:00
// @Param: _LEAD_RLL
2014-08-26 09:52:04 -03:00
// @DisplayName: Roll stabilization lead time
// @Description: Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.
// @Units: s
2014-08-26 09:52:04 -03:00
// @Range: 0.0 0.2
// @Increment: .005
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_LEAD_RLL", 17, AP_Mount, state[0]._roll_stb_lead, 0.0f),
2014-08-26 09:52:04 -03:00
2015-01-12 08:11:32 -04:00
// @Param: _LEAD_PTCH
2014-08-26 09:52:04 -03:00
// @DisplayName: Pitch stabilization lead time
// @Description: Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.
// @Units: s
2014-08-26 09:52:04 -03:00
// @Range: 0.0 0.2
// @Increment: .005
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_LEAD_PTCH", 18, AP_Mount, state[0]._pitch_stb_lead, 0.0f),
2015-01-08 16:10:48 -04:00
2015-01-12 08:11:32 -04:00
// @Param: _TYPE
2015-01-08 16:10:48 -04:00
// @DisplayName: Mount Type
// @Description: Mount Type (None, Servo or MAVLink)
// @Values: 0:None, 1:Servo, 2:3DR Solo, 3:Alexmos Serial, 4:SToRM32 MAVLink, 5:SToRM32 Serial
// @RebootRequired: True
2015-01-08 16:10:48 -04:00
// @User: Standard
2015-01-12 08:11:32 -04:00
AP_GROUPINFO("_TYPE", 19, AP_Mount, state[0]._type, 0),
2014-08-26 09:52:04 -03:00
// 20 formerly _OFF_JNT
// 21 formerly _OFF_ACC
// 22 formerly _OFF_GYRO
// 23 formerly _K_RATE
// 24 is AVAILABLE
2015-01-12 08:49:46 -04:00
#if AP_MOUNT_MAX_INSTANCES > 1
// @Param: 2_DEFLT_MODE
// @DisplayName: Mount default operating mode
// @Description: Mount default operating mode on startup and after control is returned from autopilot
// @Values: 0:Retracted,1:Neutral,2:MavLink Targeting,3:RC Targeting,4:GPS Point
// @User: Standard
AP_GROUPINFO("2_DEFLT_MODE", 25, AP_Mount, state[1]._default_mode, MAV_MOUNT_MODE_RC_TARGETING),
// @Param: 2_RETRACT_X
// @DisplayName: Mount2 roll angle when in retracted position
// @Description: Mount2 roll angle when in retracted position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
// @Param: 2_RETRACT_Y
// @DisplayName: Mount2 tilt/pitch angle when in retracted position
// @Description: Mount2 tilt/pitch angle when in retracted position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
// @Param: 2_RETRACT_Z
// @DisplayName: Mount2 yaw/pan angle when in retracted position
// @Description: Mount2 yaw/pan angle when in retracted position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_RETRACT", 26, AP_Mount, state[1]._retract_angles, 0),
// @Param: 2_NEUTRAL_X
// @DisplayName: Mount2 roll angle when in neutral position
// @Description: Mount2 roll angle when in neutral position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
// @Param: 2_NEUTRAL_Y
// @DisplayName: Mount2 tilt/pitch angle when in neutral position
// @Description: Mount2 tilt/pitch angle when in neutral position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
// @Param: 2_NEUTRAL_Z
// @DisplayName: Mount2 pan/yaw angle when in neutral position
// @Description: Mount2 pan/yaw angle when in neutral position
// @Units: deg
2015-01-12 08:49:46 -04:00
// @Range: -180.00 179.99
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_NEUTRAL", 27, AP_Mount, state[1]._neutral_angles, 0),
// 3 was used for control_angles
// @Param: 2_STAB_ROLL
// @DisplayName: Stabilize Mount2's roll angle
// @Description: enable roll stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("2_STAB_ROLL", 28, AP_Mount, state[1]._stab_roll, 0),
// @Param: 2_STAB_TILT
// @DisplayName: Stabilize Mount2's pitch/tilt angle
// @Description: enable tilt/pitch stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("2_STAB_TILT", 29, AP_Mount, state[1]._stab_tilt, 0),
// @Param: 2_STAB_PAN
// @DisplayName: Stabilize mount2 pan/yaw angle
// @Description: enable pan/yaw stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("2_STAB_PAN", 30, AP_Mount, state[1]._stab_pan, 0),
// @Param: 2_RC_IN_ROLL
// @DisplayName: Mount2's roll RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control roll movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
2015-01-12 08:49:46 -04:00
// @User: Standard
AP_GROUPINFO("2_RC_IN_ROLL", 31, AP_Mount, state[1]._roll_rc_in, 0),
// @Param: 2_ANGMIN_ROL
// @DisplayName: Mount2's minimum roll angle
// @Description: Mount2's minimum physical roll angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMIN_ROL", 32, AP_Mount, state[1]._roll_angle_min, -4500),
// @Param: 2_ANGMAX_ROL
// @DisplayName: Mount2's maximum roll angle
// @Description: Mount2's maximum physical roll angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMAX_ROL", 33, AP_Mount, state[1]._roll_angle_max, 4500),
// @Param: 2_RC_IN_TILT
// @DisplayName: Mount2's tilt (pitch) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control tilt (pitch) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
2015-01-12 08:49:46 -04:00
// @User: Standard
AP_GROUPINFO("2_RC_IN_TILT", 34, AP_Mount, state[1]._tilt_rc_in, 0),
// @Param: 2_ANGMIN_TIL
// @DisplayName: Mount2's minimum tilt angle
// @Description: Mount2's minimum physical tilt (pitch) angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMIN_TIL", 35, AP_Mount, state[1]._tilt_angle_min, -4500),
// @Param: 2_ANGMAX_TIL
// @DisplayName: Mount2's maximum tilt angle
// @Description: Mount2's maximum physical tilt (pitch) angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMAX_TIL", 36, AP_Mount, state[1]._tilt_angle_max, 4500),
// @Param: 2_RC_IN_PAN
// @DisplayName: Mount2's pan (yaw) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control pan (yaw) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8,9:RC9,10:RC10,11:RC11,12:RC12
2015-01-12 08:49:46 -04:00
// @User: Standard
AP_GROUPINFO("2_RC_IN_PAN", 37, AP_Mount, state[1]._pan_rc_in, 0),
// @Param: 2_ANGMIN_PAN
// @DisplayName: Mount2's minimum pan angle
// @Description: Mount2's minimum physical pan (yaw) angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMIN_PAN", 38, AP_Mount, state[1]._pan_angle_min, -4500),
// @Param: 2_ANGMAX_PAN
// @DisplayName: Mount2's maximum pan angle
// @Description: MOunt2's maximum physical pan (yaw) angular position
// @Units: cdeg
2015-01-12 08:49:46 -04:00
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("2_ANGMAX_PAN", 39, AP_Mount, state[1]._pan_angle_max, 4500),
// @Param: 2_LEAD_RLL
// @DisplayName: Mount2's Roll stabilization lead time
// @Description: Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate, compensating for servo delay. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.
// @Units: s
2015-01-12 08:49:46 -04:00
// @Range: 0.0 0.2
// @Increment: .005
// @User: Standard
AP_GROUPINFO("2_LEAD_RLL", 40, AP_Mount, state[1]._roll_stb_lead, 0.0f),
// @Param: 2_LEAD_PTCH
// @DisplayName: Mount2's Pitch stabilization lead time
// @Description: Causes the servo angle output to lead the current angle of the vehicle by some amount of time based on current angular rate. Increase until the servo is responsive but doesn't overshoot. Does nothing with pan stabilization enabled.
// @Units: s
2015-01-12 08:49:46 -04:00
// @Range: 0.0 0.2
// @Increment: .005
// @User: Standard
AP_GROUPINFO("2_LEAD_PTCH", 41, AP_Mount, state[1]._pitch_stb_lead, 0.0f),
// @Param: 2_TYPE
// @DisplayName: Mount2 Type
// @Description: Mount Type (None, Servo or MAVLink)
// @Values: 0:None, 1:Servo, 2:3DR Solo, 3:Alexmos Serial, 4:SToRM32 MAVLink, 5:SToRM32 Serial
2015-01-12 08:49:46 -04:00
// @User: Standard
AP_GROUPINFO("2_TYPE", 42, AP_Mount, state[1]._type, 0),
#endif // AP_MOUNT_MAX_INSTANCES > 1
AP_GROUPEND
};
AP_Mount::AP_Mount(const struct Location &current_loc) :
_current_loc(current_loc)
{
2018-07-24 20:30:23 -03:00
if (_singleton != nullptr) {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("Mount must be singleton");
#endif
return;
}
_singleton = this;
2012-12-12 17:52:04 -04:00
AP_Param::setup_object_defaults(this, var_info);
}
2015-01-08 16:10:48 -04:00
// init - detect and initialise all mounts
void AP_Mount::init(const AP_SerialManager& serial_manager)
{
2015-01-08 16:10:48 -04:00
// check init has not been called before
if (_num_instances != 0) {
return;
}
// default mount to servo mount if rc output channels to control roll, tilt or pan have been defined
if (!state[0]._type.configured()) {
2017-01-05 01:13:02 -04:00
if (SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t::k_mount_pan) ||
SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t::k_mount_tilt) ||
SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t::k_mount_roll)) {
state[0]._type.set_and_save(Mount_Type_Servo);
}
}
2015-01-18 21:21:47 -04:00
// primary is reset to the first instantiated mount
bool primary_set = false;
2015-01-08 16:10:48 -04:00
// create each instance
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
// default instance's state
state[instance]._mode = (enum MAV_MOUNT_MODE)state[instance]._default_mode.get();
2015-01-08 16:10:48 -04:00
MountType mount_type = get_mount_type(instance);
2015-01-08 16:10:48 -04:00
// check for servo mounts
if (mount_type == Mount_Type_Servo) {
_backends[instance] = new AP_Mount_Servo(*this, state[instance], instance);
2015-01-08 16:10:48 -04:00
_num_instances++;
#if AP_AHRS_NAVEKF_AVAILABLE
#if !HAL_MINIMIZE_FEATURES
2015-01-08 16:10:48 -04:00
// check for MAVLink mounts
} else if (mount_type == Mount_Type_SoloGimbal) {
_backends[instance] = new AP_Mount_SoloGimbal(*this, state[instance], instance);
2015-01-08 16:10:48 -04:00
_num_instances++;
#endif // HAL_MINIMIZE_FEATURES
#endif // AP_AHRS_NAVEKF_AVAILABLE
// check for Alexmos mounts
} else if (mount_type == Mount_Type_Alexmos) {
_backends[instance] = new AP_Mount_Alexmos(*this, state[instance], instance);
_num_instances++;
2015-02-14 08:27:58 -04:00
2015-05-26 04:21:12 -03:00
// check for SToRM32 mounts using MAVLink protocol
2015-02-14 08:27:58 -04:00
} else if (mount_type == Mount_Type_SToRM32) {
_backends[instance] = new AP_Mount_SToRM32(*this, state[instance], instance);
_num_instances++;
2015-05-26 04:21:12 -03:00
// check for SToRM32 mounts using serial protocol
} else if (mount_type == Mount_Type_SToRM32_serial) {
_backends[instance] = new AP_Mount_SToRM32_serial(*this, state[instance], instance);
_num_instances++;
}
2015-01-08 16:10:48 -04:00
// init new instance
if (_backends[instance] != nullptr) {
2015-01-19 09:38:17 -04:00
_backends[instance]->init(serial_manager);
2015-01-18 21:21:47 -04:00
if (!primary_set) {
_primary = instance;
primary_set = true;
}
2015-01-08 16:10:48 -04:00
}
}
}
2015-01-08 16:10:48 -04:00
// update - give mount opportunity to update servos. should be called at 10hz or higher
void AP_Mount::update()
{
2015-01-08 16:10:48 -04:00
// update each instance
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
2015-01-08 16:10:48 -04:00
_backends[instance]->update();
}
}
}
// used for gimbals that need to read INS data at full rate
void AP_Mount::update_fast()
{
// update each instance
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
_backends[instance]->update_fast();
}
}
}
2015-01-08 16:10:48 -04:00
// get_mount_type - returns the type of mount
AP_Mount::MountType AP_Mount::get_mount_type(uint8_t instance) const
{
2015-01-08 16:10:48 -04:00
if (instance >= AP_MOUNT_MAX_INSTANCES) {
return Mount_Type_None;
}
return (MountType)state[instance]._type.get();
}
2015-01-08 16:10:48 -04:00
// has_pan_control - returns true if the mount has yaw control (required for copters)
bool AP_Mount::has_pan_control(uint8_t instance) const
{
if (instance >= AP_MOUNT_MAX_INSTANCES || _backends[instance] == nullptr) {
2015-01-08 16:10:48 -04:00
return false;
}
2015-01-08 16:10:48 -04:00
// ask backend if it support pan
return _backends[instance]->has_pan_control();
}
2015-01-08 16:10:48 -04:00
// get_mode - returns current mode of mount (i.e. Retracted, Neutral, RC_Targeting, GPS Point)
MAV_MOUNT_MODE AP_Mount::get_mode(uint8_t instance) const
{
2015-01-08 16:10:48 -04:00
// sanity check instance
if (instance >= AP_MOUNT_MAX_INSTANCES) {
return MAV_MOUNT_MODE_RETRACT;
}
return state[instance]._mode;
}
2015-01-08 16:10:48 -04:00
// set_mode_to_default - restores the mode to it's default mode held in the MNT_MODE parameter
// this operation requires 60us on a Pixhawk/PX4
2015-01-08 16:10:48 -04:00
void AP_Mount::set_mode_to_default(uint8_t instance)
{
set_mode(instance, (enum MAV_MOUNT_MODE)state[instance]._default_mode.get());
}
2015-01-08 16:10:48 -04:00
// set_mode - sets mount's mode
void AP_Mount::set_mode(uint8_t instance, enum MAV_MOUNT_MODE mode)
{
2015-01-08 16:10:48 -04:00
// sanity check instance
if (instance >= AP_MOUNT_MAX_INSTANCES || _backends[instance] == nullptr) {
return;
2015-01-08 16:10:48 -04:00
}
// call backend's set_mode
_backends[instance]->set_mode(mode);
}
2015-03-21 08:58:57 -03:00
// set_angle_targets - sets angle targets in degrees
void AP_Mount::set_angle_targets(uint8_t instance, float roll, float tilt, float pan)
{
if (instance >= AP_MOUNT_MAX_INSTANCES || _backends[instance] == nullptr) {
2015-03-21 08:58:57 -03:00
return;
}
// send command to backend
_backends[instance]->set_angle_targets(roll, tilt, pan);
}
MAV_RESULT AP_Mount::handle_command_do_mount_configure(const mavlink_command_long_t &packet)
{
if (_primary >= AP_MOUNT_MAX_INSTANCES || _backends[_primary] == nullptr) {
return MAV_RESULT_FAILED;
}
_backends[_primary]->set_mode((MAV_MOUNT_MODE)packet.param1);
state[0]._stab_roll = packet.param2;
state[0]._stab_tilt = packet.param3;
state[0]._stab_pan = packet.param4;
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT AP_Mount::handle_command_do_mount_control(const mavlink_command_long_t &packet)
{
if (_primary >= AP_MOUNT_MAX_INSTANCES || _backends[_primary] == nullptr) {
return MAV_RESULT_FAILED;
2015-01-08 16:10:48 -04:00
}
// send message to backend
_backends[_primary]->control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7);
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT AP_Mount::handle_command_long(const mavlink_command_long_t &packet)
{
switch (packet.command) {
case MAV_CMD_DO_MOUNT_CONFIGURE:
return handle_command_do_mount_configure(packet);
case MAV_CMD_DO_MOUNT_CONTROL:
return handle_command_do_mount_control(packet);
default:
return MAV_RESULT_UNSUPPORTED;
}
}
/// Change the configuration of the mount
void AP_Mount::handle_mount_configure(const mavlink_message_t &msg)
{
if (_primary >= AP_MOUNT_MAX_INSTANCES || _backends[_primary] == nullptr) {
2015-01-08 16:10:48 -04:00
return;
}
2015-01-08 16:10:48 -04:00
mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(&msg, &packet);
2015-01-08 16:10:48 -04:00
// send message to backend
_backends[_primary]->handle_mount_configure(packet);
}
/// Control the mount (depends on the previously set mount configuration)
void AP_Mount::handle_mount_control(const mavlink_message_t &msg)
{
if (_primary >= AP_MOUNT_MAX_INSTANCES || _backends[_primary] == nullptr) {
return;
}
mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(&msg, &packet);
// send message to backend
_backends[_primary]->handle_mount_control(packet);
}
2015-01-08 16:10:48 -04:00
/// Return mount status information
void AP_Mount::send_mount_status(mavlink_channel_t chan)
{
// call send_mount_status for each instance
2015-01-08 16:10:48 -04:00
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
_backends[instance]->send_mount_status(chan);
2014-08-26 09:52:04 -03:00
}
}
}
2015-01-08 16:10:48 -04:00
// set_roi_target - sets target location that mount should attempt to point towards
void AP_Mount::set_roi_target(uint8_t instance, const struct Location &target_loc)
{
2015-01-08 16:10:48 -04:00
// call instance's set_roi_cmd
if (instance < AP_MOUNT_MAX_INSTANCES && _backends[instance] != nullptr) {
2015-01-08 16:10:48 -04:00
_backends[instance]->set_roi_target(target_loc);
}
}
// pass a GIMBAL_REPORT message to the backend
void AP_Mount::handle_gimbal_report(mavlink_channel_t chan, const mavlink_message_t &msg)
{
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
_backends[instance]->handle_gimbal_report(chan, msg);
}
}
}
void AP_Mount::handle_message(mavlink_channel_t chan, const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_GIMBAL_REPORT:
handle_gimbal_report(chan, msg);
break;
case MAVLINK_MSG_ID_MOUNT_CONFIGURE:
handle_mount_configure(msg);
break;
case MAVLINK_MSG_ID_MOUNT_CONTROL:
handle_mount_control(msg);
break;
default:
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("Unhandled mount case");
#endif
break;
}
}
// handle PARAM_VALUE
void AP_Mount::handle_param_value(const mavlink_message_t &msg)
{
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
_backends[instance]->handle_param_value(msg);
}
}
}
// send a GIMBAL_REPORT message to the GCS
void AP_Mount::send_gimbal_report(mavlink_channel_t chan)
{
for (uint8_t instance=0; instance<AP_MOUNT_MAX_INSTANCES; instance++) {
if (_backends[instance] != nullptr) {
_backends[instance]->send_gimbal_report(chan);
}
}
}
2018-07-24 20:30:23 -03:00
// singleton instance
AP_Mount *AP_Mount::_singleton;
namespace AP {
AP_Mount *mount()
{
return AP_Mount::get_singleton();
}
};