Ardupilot2/libraries/AP_Mount/AP_Mount.cpp

614 lines
22 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Mount.h>
const AP_Param::GroupInfo AP_Mount::var_info[] PROGMEM = {
2012-07-03 18:36:34 -03:00
// @Param: MODE
// @DisplayName: Mount operation mode
// @Description: Camera or antenna mount operation mode
// @Values: 0:retract,1:neutral,2:MavLink_targeting,3:RC_targeting,4:GPS_point
// @User: Standard
AP_GROUPINFO("MODE", 0, AP_Mount, _mount_mode, MAV_MOUNT_MODE_RETRACT), // see MAV_MOUNT_MODE at ardupilotmega.h
2012-07-03 18:36:34 -03:00
// @Param: RETRACT
// @DisplayName: Mount retract angles
// @Description: Mount angles when in retract operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("RETRACT", 1, AP_Mount, _retract_angles, 0),
2012-07-03 18:36:34 -03:00
// @Param: NEUTRAL
// @DisplayName: Mount neutral angles
// @Description: Mount angles when in neutral operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("NEUTRAL", 2, AP_Mount, _neutral_angles, 0),
2012-07-03 18:36:34 -03:00
// @Param: CONTROL
// @DisplayName: Mount control angles
// @Description: Mount angles when in MavLink or RC control operation mode
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
2012-07-03 18:36:34 -03:00
// @User: Standard
AP_GROUPINFO("CONTROL", 3, AP_Mount, _control_angles, 0),
2012-07-03 18:36:34 -03:00
// @Param: STAB_ROLL
// @DisplayName: Stabilize mount roll
// @Description:enable roll stabilisation relative to Earth
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_ROLL", 4, AP_Mount, _stab_roll, 0),
2012-07-03 18:36:34 -03:00
// @Param: STAB_TILT
// @DisplayName: Stabilize mount tilt
// @Description: enable tilt (pitch) stabilisation relative to Earth
2012-07-03 18:36:34 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_TILT", 5, AP_Mount, _stab_tilt, 0),
2012-07-03 18:36:34 -03:00
// @Param: STAB_PAN
// @DisplayName: Stabilize mount pan
// @Description: enable pan (yaw) stabilisation relative to Earth
2012-07-03 18:36:34 -03:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("STAB_PAN", 6, AP_Mount, _stab_pan, 0),
// @Param: RC_IN_ROLL
// @DisplayName: roll RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control roll movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8
// @User: Standard
AP_GROUPINFO("RC_IN_ROLL", 7, AP_Mount, _roll_rc_in, 0),
// @Param: ANGMIN_ROL
// @DisplayName: Minimum roll angle
// @Description: Minimum physical roll angular position of mount.
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMIN_ROL", 8, AP_Mount, _roll_angle_min, -4500),
// @Param: ANGMAX_ROL
// @DisplayName: Maximum roll angle
// @Description: Maximum physical roll angular position of the mount
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMAX_ROL", 9, AP_Mount, _roll_angle_max, 4500),
// @Param: RC_IN_TILT
// @DisplayName: tilt (pitch) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control tilt (pitch) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8
// @User: Standard
AP_GROUPINFO("RC_IN_TILT", 10, AP_Mount, _tilt_rc_in, 0),
// @Param: ANGMIN_TIL
// @DisplayName: Minimum tilt angle
// @Description: Minimum physical tilt (pitch) angular position of mount.
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMIN_TIL", 11, AP_Mount, _tilt_angle_min, -4500),
// @Param: ANGMAX_TIL
// @DisplayName: Maximum tilt angle
// @Description: Maximum physical tilt (pitch) angular position of the mount
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMAX_TIL", 12, AP_Mount, _tilt_angle_max, 4500),
// @Param: RC_IN_PAN
// @DisplayName: pan (yaw) RC input channel
// @Description: 0 for none, any other for the RC channel to be used to control pan (yaw) movements
// @Values: 0:Disabled,5:RC5,6:RC6,7:RC7,8:RC8
// @User: Standard
AP_GROUPINFO("RC_IN_PAN", 13, AP_Mount, _pan_rc_in, 0),
// @Param: ANGMIN_PAN
// @DisplayName: Minimum pan angle
// @Description: Minimum physical pan (yaw) angular position of mount.
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMIN_PAN", 14, AP_Mount, _pan_angle_min, -4500),
// @Param: ANGMAX_PAN
// @DisplayName: Maximum pan angle
// @Description: Maximum physical pan (yaw) angular position of the mount
// @Units: centi-Degrees
// @Range: -18000 17999
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ANGMAX_PAN", 15, AP_Mount, _pan_angle_max, 4500),
// @Param: JSTICK_SPD
// @DisplayName: mount joystick speed
// @Description: 0 for position control, small for low speeds, 10 for max speed
// @Range: 0 10
// @Increment: 1
// @User: Standard
AP_GROUPINFO("JSTICK_SPD", 16, AP_Mount, _joystick_speed, 0),
AP_GROUPEND
};
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
extern RC_Channel* rc_ch[NUM_CHANNELS];
AP_Mount::AP_Mount(const struct Location *current_loc, GPS *&gps, AP_AHRS *ahrs, uint8_t id):
_gps(gps)
{
_ahrs = ahrs;
_current_loc = current_loc;
// default to zero angles
_retract_angles = Vector3f(0,0,0);
_neutral_angles = Vector3f(0,0,0);
_control_angles = Vector3f(0,0,0);
// default unknown mount type
_mount_type = k_unknown;
if (id == 0) {
_roll_idx = RC_Channel_aux::k_mount_roll;
_tilt_idx = RC_Channel_aux::k_mount_tilt;
_pan_idx = RC_Channel_aux::k_mount_pan;
_open_idx = RC_Channel_aux::k_mount_open;
} else {
_roll_idx = RC_Channel_aux::k_mount2_roll;
_tilt_idx = RC_Channel_aux::k_mount2_tilt;
_pan_idx = RC_Channel_aux::k_mount2_pan;
_open_idx = RC_Channel_aux::k_mount2_open;
}
}
/// Auto-detect the mount gimbal type depending on the functions assigned to the servos
void
AP_Mount::update_mount_type()
{
if ((g_rc_function[_roll_idx] == NULL) && (g_rc_function[_tilt_idx] != NULL) && (g_rc_function[_pan_idx] != NULL))
{
_mount_type = k_pan_tilt;
}
if ((g_rc_function[_roll_idx] != NULL) && (g_rc_function[_tilt_idx] != NULL) && (g_rc_function[_pan_idx] == NULL))
{
_mount_type = k_tilt_roll;
}
if ((g_rc_function[_roll_idx] != NULL) && (g_rc_function[_tilt_idx] != NULL) && (g_rc_function[_pan_idx] != NULL))
{
_mount_type = k_pan_tilt_roll;
}
}
/// sets the servo angles for retraction, note angles are in degrees
void AP_Mount::set_retract_angles(float roll, float tilt, float pan)
{
_retract_angles = Vector3f(roll, tilt, pan);
}
//sets the servo angles for neutral, note angles are in degrees
void AP_Mount::set_neutral_angles(float roll, float tilt, float pan)
{
_neutral_angles = Vector3f(roll, tilt, pan);
}
/// sets the servo angles for MAVLink, note angles are in degrees
void AP_Mount::set_control_angles(float roll, float tilt, float pan)
{
_control_angles = Vector3f(roll, tilt, pan);
}
/// used to tell the mount to track GPS location
void AP_Mount::set_GPS_target_location(Location targetGPSLocation)
{
_target_GPS_location=targetGPSLocation;
}
/// This one should be called periodically
void AP_Mount::update_mount_position()
{
static bool mount_open = 0; // 0 is closed
switch((enum MAV_MOUNT_MODE)_mount_mode.get())
{
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT:
{
Vector3f vec = _retract_angles.get();
_roll_angle = vec.x;
_tilt_angle = vec.y;
_pan_angle = vec.z;
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
{
Vector3f vec = _neutral_angles.get();
_roll_angle = vec.x;
_tilt_angle = vec.y;
_pan_angle = vec.z;
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
Vector3f vec = _control_angles.get();
_roll_control_angle = radians(vec.x);
_tilt_control_angle = radians(vec.y);
_pan_control_angle = radians(vec.z);
stabilize();
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
{
if (_joystick_speed) { // for spring loaded joysticks
// allow pilot speed position input to come directly from an RC_Channel
if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) {
//_roll_control_angle += angle_input(rc_ch[_roll_rc_in-1], _roll_angle_min, _roll_angle_max) * 0.00001 * _joystick_speed;
_roll_control_angle += rc_ch[_roll_rc_in-1]->norm_input() * 0.00001 * _joystick_speed;
if (_roll_control_angle < radians(_roll_angle_min*0.01)) _roll_control_angle = radians(_roll_angle_min*0.01);
if (_roll_control_angle > radians(_roll_angle_max*0.01)) _roll_control_angle = radians(_roll_angle_max*0.01);
}
if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) {
//_tilt_control_angle += angle_input(rc_ch[_tilt_rc_in-1], _tilt_angle_min, _tilt_angle_max) * 0.00001 * _joystick_speed;
_tilt_control_angle += rc_ch[_tilt_rc_in-1]->norm_input() * 0.00001 * _joystick_speed;
if (_tilt_control_angle < radians(_tilt_angle_min*0.01)) _tilt_control_angle = radians(_tilt_angle_min*0.01);
if (_tilt_control_angle > radians(_tilt_angle_max*0.01)) _tilt_control_angle = radians(_tilt_angle_max*0.01);
}
if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) {
//_pan_control_angle += angle_input(rc_ch[_pan_rc_in-1], _pan_angle_min, _pan_angle_max) * 0.00001 * _joystick_speed;
_pan_control_angle += rc_ch[_pan_rc_in-1]->norm_input() * 0.00001 * _joystick_speed;
if (_pan_control_angle < radians(_pan_angle_min*0.01)) _pan_control_angle = radians(_pan_angle_min*0.01);
if (_pan_control_angle > radians(_pan_angle_max*0.01)) _pan_control_angle = radians(_pan_angle_max*0.01);
}
} else {
// allow pilot position input to come directly from an RC_Channel
if (_roll_rc_in && (rc_ch[_roll_rc_in-1])) {
_roll_control_angle = angle_input_rad(rc_ch[_roll_rc_in-1], _roll_angle_min, _roll_angle_max);
}
if (_tilt_rc_in && (rc_ch[_tilt_rc_in-1])) {
_tilt_control_angle = angle_input_rad(rc_ch[_tilt_rc_in-1], _tilt_angle_min, _tilt_angle_max);
}
if (_pan_rc_in && (rc_ch[_pan_rc_in-1])) {
_pan_control_angle = angle_input_rad(rc_ch[_pan_rc_in-1], _pan_angle_min, _pan_angle_max);
}
}
stabilize();
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
{
if(_gps->fix){
calc_GPS_target_angle(&_target_GPS_location);
stabilize();
}
break;
}
default:
//do nothing
break;
}
// move mount to a "retracted position" into the fuselage with a fourth servo
if (g_rc_function[_open_idx]){
bool mount_open_new = (enum MAV_MOUNT_MODE)_mount_mode.get()==MAV_MOUNT_MODE_RETRACT?0:1;
if (mount_open != mount_open_new) {
mount_open = mount_open_new;
move_servo(g_rc_function[_open_idx], mount_open_new, 0, 1);
}
}
// write the results to the servos
move_servo(g_rc_function[_roll_idx], _roll_angle*10, _roll_angle_min*0.1, _roll_angle_max*0.1);
move_servo(g_rc_function[_tilt_idx], _tilt_angle*10, _tilt_angle_min*0.1, _tilt_angle_max*0.1);
move_servo(g_rc_function[_pan_idx ], _pan_angle*10, _pan_angle_min*0.1, _pan_angle_max*0.1);
}
void AP_Mount::set_mode(enum MAV_MOUNT_MODE mode)
{
_mount_mode = (int8_t)mode;
}
/// Change the configuration of the mount
/// triggered by a MavLink packet.
void AP_Mount::configure_msg(mavlink_message_t* msg)
{
__mavlink_mount_configure_t packet;
mavlink_msg_mount_configure_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
set_mode((enum MAV_MOUNT_MODE)packet.mount_mode);
_stab_roll = packet.stab_roll;
_stab_tilt = packet.stab_pitch;
_stab_pan = packet.stab_yaw;
}
/// Control the mount (depends on the previously set mount configuration)
/// triggered by a MavLink packet.
void AP_Mount::control_msg(mavlink_message_t *msg)
{
__mavlink_mount_control_t packet;
mavlink_msg_mount_control_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch ((enum MAV_MOUNT_MODE)_mount_mode.get())
{
case MAV_MOUNT_MODE_RETRACT: // Load and keep safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
set_retract_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
if (packet.save_position)
{
_retract_angles.save();
}
break;
case MAV_MOUNT_MODE_NEUTRAL: // Load and keep neutral position (Roll,Pitch,Yaw) from EEPROM
set_neutral_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
if (packet.save_position)
{
_neutral_angles.save();
}
break;
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // Load neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
set_control_angles(packet.input_b*0.01, packet.input_a*0.01, packet.input_c*0.01);
break;
case MAV_MOUNT_MODE_RC_TARGETING: // Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
{
Vector3f vec = _neutral_angles.get();
_roll_angle = vec.x;
_tilt_angle = vec.y;
_pan_angle = vec.z;
}
break;
case MAV_MOUNT_MODE_GPS_POINT: // Load neutral position and start to point to Lat,Lon,Alt
Location targetGPSLocation;
targetGPSLocation.lat = packet.input_a;
targetGPSLocation.lng = packet.input_b;
targetGPSLocation.alt = packet.input_c;
set_GPS_target_location(targetGPSLocation);
break;
case MAV_MOUNT_MODE_ENUM_END:
break;
default:
// do nothing
break;
}
}
/// Return mount status information (depends on the previously set mount configuration)
/// triggered by a MavLink packet.
void AP_Mount::status_msg(mavlink_message_t *msg)
{
__mavlink_mount_status_t packet;
mavlink_msg_mount_status_decode(msg, &packet);
if (mavlink_check_target(packet.target_system, packet.target_component)) {
// not for us
return;
}
switch ((enum MAV_MOUNT_MODE)_mount_mode.get())
{
case MAV_MOUNT_MODE_RETRACT: // safe position (Roll,Pitch,Yaw) from EEPROM and stop stabilization
case MAV_MOUNT_MODE_NEUTRAL: // neutral position (Roll,Pitch,Yaw) from EEPROM
case MAV_MOUNT_MODE_MAVLINK_TARGETING: // neutral position and start MAVLink Roll,Pitch,Yaw control with stabilization
case MAV_MOUNT_MODE_RC_TARGETING: // neutral position and start RC Roll,Pitch,Yaw control with stabilization
packet.pointing_b = _roll_angle*100; ///< degrees*100
packet.pointing_a = _tilt_angle*100; ///< degrees*100
packet.pointing_c = _pan_angle*100; ///< degrees*100
break;
case MAV_MOUNT_MODE_GPS_POINT: // neutral position and start to point to Lat,Lon,Alt
packet.pointing_a = _target_GPS_location.lat; ///< latitude
packet.pointing_b = _target_GPS_location.lng; ///< longitude
packet.pointing_c = _target_GPS_location.alt; ///< altitude
break;
case MAV_MOUNT_MODE_ENUM_END:
break;
}
// status reply
// TODO: is COMM_3 correct ?
mavlink_msg_mount_status_send(MAVLINK_COMM_3, packet.target_system, packet.target_component,
packet.pointing_a, packet.pointing_b, packet.pointing_c);
}
/// Set mount point/region of interest, triggered by mission script commands
void AP_Mount::set_roi_cmd(struct Location *target_loc)
{
// set the target gps location
_target_GPS_location = *target_loc;
// set the mode to GPS tracking mode
set_mode(MAV_MOUNT_MODE_GPS_POINT);
}
/// Set mount configuration, triggered by mission script commands
void AP_Mount::configure_cmd()
{
// TODO get the information out of the mission command and use it
}
/// Control the mount (depends on the previously set mount configuration), triggered by mission script commands
void AP_Mount::control_cmd()
{
// TODO get the information out of the mission command and use it
}
/// returns the angle (degrees*100) that the RC_Channel input is receiving
int32_t
AP_Mount::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{
return (rc->get_reverse()?-1:1) * (rc->radio_in - rc->radio_min) * (int32_t)(angle_max - angle_min) / (rc->radio_max - rc->radio_min) + (rc->get_reverse()?angle_max:angle_min);
}
/// returns the angle (radians) that the RC_Channel input is receiving
float
AP_Mount::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{
return radians(angle_input(rc, angle_min, angle_max)*0.01);
}
void
AP_Mount::calc_GPS_target_angle(struct Location *target)
{
float GPS_vector_x = (target->lng-_current_loc->lng)*cos(ToRad((_current_loc->lat+target->lat)*.00000005))*.01113195;
float GPS_vector_y = (target->lat-_current_loc->lat)*.01113195;
float GPS_vector_z = (target->alt-_current_loc->alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
float target_distance = 100.0*sqrt(GPS_vector_x*GPS_vector_x + GPS_vector_y*GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
_roll_control_angle = 0;
_tilt_control_angle = atan2(GPS_vector_z, target_distance);
_pan_control_angle = atan2(GPS_vector_x, GPS_vector_y);
}
/// Stabilizes mount relative to the Earth's frame
/// Inputs:
/// _roll_control_angle desired roll angle in radians,
/// _tilt_control_angle desired tilt/pitch angle in radians,
/// _pan_control_angle desired pan/yaw angle in radians
/// Outputs:
/// _roll_angle stabilized roll angle in degrees,
/// _tilt_angle stabilized tilt/pitch angle in degrees,
/// _pan_angle stabilized pan/yaw angle in degrees
void
AP_Mount::stabilize()
{
if (_ahrs) {
// only do the full 3D frame transform if we are doing pan control
if (_stab_pan) {
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
m = _ahrs->get_dcm_matrix();
m.transpose();
cam.from_euler(_roll_control_angle, _tilt_control_angle, _pan_control_angle);
gimbal_target = m * cam;
gimbal_target.to_euler(&_roll_angle, &_tilt_angle, &_pan_angle);
_roll_angle = _stab_roll?degrees(_roll_angle):degrees(_roll_control_angle);
_tilt_angle = _stab_tilt?degrees(_tilt_angle):degrees(_tilt_control_angle);
_pan_angle = degrees(_pan_angle);
} else {
// otherwise base mount roll and tilt on the ahrs
// roll/tilt attitude, plus any requested angle
_roll_angle = degrees(_roll_control_angle);
_tilt_angle = degrees(_tilt_control_angle);
_pan_angle = degrees(_pan_control_angle);
if (_stab_roll) {
_roll_angle -= degrees(_ahrs->roll);
}
if (_stab_tilt) {
_tilt_angle -= degrees(_ahrs->pitch);
}
}
} else {
_roll_angle = degrees(_roll_control_angle);
_tilt_angle = degrees(_tilt_control_angle);
_pan_angle = degrees(_pan_control_angle);
}
}
/*
/// For testing and development. Called in the medium loop.
void
AP_Mount::debug_output()
{ Serial3.print("current - ");
Serial3.print("lat ");
Serial3.print(_current_loc->lat);
Serial3.print(",lon ");
Serial3.print(_current_loc->lng);
Serial3.print(",alt ");
Serial3.println(_current_loc->alt);
Serial3.print("gps - ");
Serial3.print("lat ");
Serial3.print(_gps->latitude);
Serial3.print(",lon ");
Serial3.print(_gps->longitude);
Serial3.print(",alt ");
Serial3.print(_gps->altitude);
Serial3.println();
Serial3.print("target - ");
Serial3.print("lat ");
Serial3.print(_target_GPS_location.lat);
Serial3.print(",lon ");
Serial3.print(_target_GPS_location.lng);
Serial3.print(",alt ");
Serial3.print(_target_GPS_location.alt);
Serial3.print(" hdg to targ ");
Serial3.print(degrees(_pan_control_angle));
Serial3.println();
}
*/
/// saturate to the closest angle limit if outside of [min max] angle interval
/// input angle is in degrees * 10
int16_t
AP_Mount::closest_limit(int16_t angle, int16_t* angle_min, int16_t* angle_max)
{
// Make sure the angle lies in the interval [-180 .. 180[ degrees
while (angle < -1800) angle += 3600;
while (angle >= 1800) angle -= 3600;
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
while (*angle_min < -1800) *angle_min += 3600;
while (*angle_min >= 1800) *angle_min -= 3600;
while (*angle_max < -1800) *angle_max += 3600;
while (*angle_max >= 1800) *angle_max -= 3600;
// TODO call this function somehow, otherwise this will never work
//set_range(min, max);
// If the angle is outside servo limits, saturate the angle to the closest limit
// On a circle the closest angular position must be carefully calculated to account for wrap-around
if ((angle < *angle_min) && (angle > *angle_max)){
// angle error if min limit is used
int16_t err_min = *angle_min - angle + (angle<*angle_min?0:3600); // add 360 degrees if on the "wrong side"
// angle error if max limit is used
int16_t err_max = angle - *angle_max + (angle>*angle_max?0:3600); // add 360 degrees if on the "wrong side"
angle = err_min<err_max?*angle_min:*angle_max;
}
return angle;
}
/// all angles are degrees * 10 units
void
AP_Mount::move_servo(RC_Channel* rc, int16_t angle, int16_t angle_min, int16_t angle_max)
{
if (rc) {
// saturate to the closest angle limit if outside of [min max] angle interval
rc->servo_out = closest_limit(angle, &angle_min, &angle_max);
// This is done every time because the user might change the min, max values on the fly
rc->set_range(angle_min, angle_max);
// convert angle to PWM using a linear transformation (ignores trimming because the servo limits might not be symmetric)
rc->calc_pwm();
rc->output();
}
}