tuned user tracking
This commit is contained in:
parent
833c2b30c3
commit
0810963359
|
@ -38,7 +38,7 @@
|
|||
#define XBEE_MESSAGE_CONSTANT 586782343
|
||||
#define XBEE_STOP_TRANSMISSION 4355356352
|
||||
#define TIMEOUT 60
|
||||
#define BUZZRATE 50
|
||||
#define BUZZRATE 10
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
|
|
@ -0,0 +1,430 @@
|
|||
include "vec2.bzz"
|
||||
updated="update_ack"
|
||||
update_no=0
|
||||
function updated_neigh(){
|
||||
neighbors.broadcast(updated, update_no)
|
||||
}
|
||||
TARGET_ALTITUDE = 5.0
|
||||
CURSTATE = "TURNEDOFF"
|
||||
|
||||
# Lennard-Jones parameters
|
||||
TARGET = 12.0
|
||||
EPSILON = 10.0
|
||||
|
||||
#################################################
|
||||
### UTILITY FUNCTIONS ###########################
|
||||
#################################################
|
||||
|
||||
# Write a table as if it was a matrix
|
||||
function write_knowledge(k, row, col, val) {
|
||||
var key = string.concat(string.tostring(row),"-",string.tostring(col))
|
||||
k[key] = val
|
||||
log("Writing knowledge:", val, " to ", row, " ", col)
|
||||
}
|
||||
|
||||
# Read a table as if it was a matrix
|
||||
function read_knowledge(k, row, col) {
|
||||
var key = string.concat(string.tostring(row),"-",string.tostring(col))
|
||||
if (k[key] == nil) {
|
||||
log("Warning: reading 'nil' value from the knowledge table at", row, " ", col, ", returning -1")
|
||||
return -1
|
||||
} else {
|
||||
return k[key]
|
||||
}
|
||||
}
|
||||
|
||||
# Int to String
|
||||
function itos(i) {
|
||||
|
||||
log("Use 'string.tostring(OJB)' instead")
|
||||
|
||||
if (i==0) { return "0" }
|
||||
if (i==1) { return "1" }
|
||||
if (i==2) { return "2" }
|
||||
if (i==3) { return "3" }
|
||||
if (i==4) { return "4" }
|
||||
if (i==5) { return "5" }
|
||||
if (i==6) { return "6" }
|
||||
if (i==7) { return "7" }
|
||||
if (i==8) { return "8" }
|
||||
if (i==9) { return "9" }
|
||||
|
||||
log("Function 'itos' out of bounds, returning the answer (42)")
|
||||
return "42"
|
||||
}
|
||||
|
||||
# String to Int
|
||||
function stoi(s) {
|
||||
if (s=='0') { return 0 }
|
||||
if (s=='1') { return 1 }
|
||||
if (s=='2') { return 2 }
|
||||
if (s=='3') { return 3 }
|
||||
if (s=='4') { return 4 }
|
||||
if (s=='5') { return 5 }
|
||||
if (s=='6') { return 6 }
|
||||
if (s=='7') { return 7 }
|
||||
if (s=='8') { return 8 }
|
||||
if (s=='9') { return 9 }
|
||||
|
||||
log("Function 'stoi' out of bounds, returning the answer (42)")
|
||||
return 42
|
||||
|
||||
}
|
||||
|
||||
# Rads to degrees
|
||||
function rtod(r) {
|
||||
return (r*(180.0/math.pi))
|
||||
}
|
||||
|
||||
# Degrees to rads
|
||||
function dtor(d) {
|
||||
return (math.pi*(d/180.0))
|
||||
}
|
||||
|
||||
# Force angles in the (-180,180) interval
|
||||
function degrees_interval(a) {
|
||||
var temp = a
|
||||
while ((temp>360.0) or (temp<0.0)) {
|
||||
if (temp > 360.0) {
|
||||
temp = temp - 360.0
|
||||
} else if (temp < 0.0){
|
||||
temp = temp + 360.0
|
||||
}
|
||||
}
|
||||
if (temp > 180.0) {
|
||||
temp = temp - 360.0
|
||||
}
|
||||
return temp
|
||||
}
|
||||
|
||||
# Force angles in the (-pi,pi) interval
|
||||
function radians_interval(a) {
|
||||
var temp = a
|
||||
while ((temp>2.0*math.pi) or (temp<0.0)) {
|
||||
if (temp > 2.0*math.pi) {
|
||||
temp = temp - 2.0*math.pi
|
||||
} else if (temp < 0.0){
|
||||
temp = temp + 2.0*math.pi
|
||||
}
|
||||
}
|
||||
if (temp > math.pi) {
|
||||
temp = temp - 2.0*math.pi
|
||||
}
|
||||
return temp
|
||||
}
|
||||
|
||||
#################################################
|
||||
### MOVEMENT/COMMUNICATION PRIMITIVES ###########
|
||||
#################################################
|
||||
|
||||
# Lennard-Jones interaction magnitude
|
||||
function lj_magnitude(dist, target, epsilon) {
|
||||
return -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
|
||||
}
|
||||
# Neighbor data to LJ interaction vector
|
||||
function lj_vector(rid, data) {
|
||||
return math.vec2.newp(lj_magnitude(data.distance, TARGET, EPSILON), data.azimuth)
|
||||
}
|
||||
# Accumulator of neighbor LJ interactions
|
||||
function lj_sum(rid, data, accum) {
|
||||
return math.vec2.add(data, accum)
|
||||
}
|
||||
|
||||
# Calculates and actuates the flocking interaction
|
||||
function hexagon() {
|
||||
# Calculate accumulator
|
||||
var accum = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
|
||||
if(neighbors.count() > 0)
|
||||
math.vec2.scale(accum, 1.0 / neighbors.count())
|
||||
# Move according to vector
|
||||
moveto(accum.x, accum.y)
|
||||
}
|
||||
|
||||
function inform_your_neighborhood() {
|
||||
# Reset to 0 the visibility of all neighbors
|
||||
foreach(knowledge, function(key, value) {
|
||||
column = string.sub(key, string.length(key)-1,string.length(key))
|
||||
if (column=='3') {
|
||||
knowledge[key] = 0
|
||||
}
|
||||
})
|
||||
neighbors.foreach( function(rid, data) {
|
||||
# For each neighbor, send a message with its azimuth, as seen by the broadcasting robot
|
||||
message_id = string.tostring(rid)
|
||||
neighbors.broadcast(message_id, rtod(data.azimuth))
|
||||
# Record the neighbor azimuth in my own knowledge table
|
||||
write_knowledge(knowledge, rid, 0, rtod(data.azimuth))
|
||||
# Record the neighbor distance in my own knowledge table
|
||||
write_knowledge(knowledge, rid, 2, data.distance)
|
||||
# Set neighbor as visible
|
||||
write_knowledge(knowledge, rid, 3, 1)
|
||||
})
|
||||
# Send a message with the desired direction, as seen by the broadcasting robot
|
||||
neighbors.broadcast("direction", local_dir)
|
||||
|
||||
}
|
||||
|
||||
function listen_to_your_neighborhood() {
|
||||
# For all "senders" in my neighborhood, record my azimuth, as seen by them
|
||||
message_id = string.tostring(id)
|
||||
neighbors.listen(message_id, function(vid, value, rid) {
|
||||
write_knowledge(knowledge, rid, 1, value)
|
||||
})
|
||||
}
|
||||
|
||||
#################################################
|
||||
### ACTUAL CONTROLLERS ##########################
|
||||
#################################################
|
||||
|
||||
function zero() {
|
||||
# Do not move
|
||||
moveto(0.0,0.0)
|
||||
# Tell the neighbors of the center where to go
|
||||
inform_your_neighborhood()
|
||||
}
|
||||
|
||||
function onetwo() {
|
||||
if (id == 1) {
|
||||
angle = 45
|
||||
} else {
|
||||
angle = -135
|
||||
}
|
||||
# Broadcast information
|
||||
inform_your_neighborhood()
|
||||
# If the center 0 is in sight
|
||||
if (read_knowledge(knowledge, 0, 3) == 1) {
|
||||
arm_offset = degrees_interval(read_knowledge(knowledge, 0, 1) - angle)
|
||||
if (arm_offset<3 and arm_offset>(-3)) {
|
||||
hexagon() # Underlying Lennard-Jones potential behavior
|
||||
} else {
|
||||
|
||||
local_rotation = degrees_interval( read_knowledge(knowledge, 0, 1) + (180.0 - read_knowledge(knowledge, 0, 0)) )
|
||||
local_arm = degrees_interval(angle - local_rotation)
|
||||
|
||||
if (read_knowledge(knowledge, 0, 2) > 250.0) {
|
||||
x_mov = math.cos(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
y_mov = math.sin(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
} else if (read_knowledge(knowledge, 0, 2) < 30.0) {
|
||||
x_mov = -math.cos(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
y_mov = -math.sin(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
} else {
|
||||
spiraling = 2.0+(id/10.0) # Fun stuff but be careful with this, it affects how a robots turns around a central node, use random number generation, eventually
|
||||
if (arm_offset > 0) { # Clockwise
|
||||
|
||||
x_mov = -math.sin(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
y_mov = math.cos(dtor(read_knowledge(knowledge, 0, 0))) * spiraling
|
||||
} else { # Counterclockwise
|
||||
x_mov = math.sin(dtor(read_knowledge(knowledge, 0, 0)))
|
||||
y_mov = -math.cos(dtor(read_knowledge(knowledge, 0, 0))) * spiraling
|
||||
}
|
||||
}
|
||||
speed = 100
|
||||
moveto(speed * x_mov,speed * y_mov)
|
||||
}
|
||||
} else {
|
||||
hexagon()
|
||||
}
|
||||
}
|
||||
|
||||
########################################
|
||||
#
|
||||
# BARRIER-RELATED FUNCTIONS
|
||||
#
|
||||
########################################
|
||||
|
||||
#
|
||||
# Constants
|
||||
#
|
||||
BARRIER_VSTIG = 1
|
||||
|
||||
#
|
||||
# Sets a barrier
|
||||
#
|
||||
function barrier_set(threshold, transf) {
|
||||
statef = function() {
|
||||
barrier_wait(threshold, transf);
|
||||
}
|
||||
barrier = stigmergy.create(BARRIER_VSTIG)
|
||||
}
|
||||
|
||||
#
|
||||
# Make yourself ready
|
||||
#
|
||||
function barrier_ready() {
|
||||
barrier.put(id, 1)
|
||||
}
|
||||
|
||||
#
|
||||
# Executes the barrier
|
||||
#
|
||||
WAIT_TIMEOUT = 200
|
||||
timeW=0
|
||||
function barrier_wait(threshold, transf) {
|
||||
barrier.get(id)
|
||||
barrier.put(id, 1)
|
||||
CURSTATE = "BARRIERWAIT"
|
||||
if(barrier.size() >= threshold) {
|
||||
#barrier = nil
|
||||
transf()
|
||||
} else if(timeW>=WAIT_TIMEOUT) {
|
||||
barrier = nil
|
||||
statef=land
|
||||
timeW=0
|
||||
}
|
||||
timeW = timeW+1
|
||||
}
|
||||
|
||||
# flight status
|
||||
|
||||
function idle() {
|
||||
statef=idle
|
||||
CURSTATE = "IDLE"
|
||||
|
||||
}
|
||||
|
||||
function takeoff() {
|
||||
CURSTATE = "TAKEOFF"
|
||||
statef=takeoff
|
||||
#log("TakeOff: ", flight.status)
|
||||
#log("Relative position: ", position.altitude)
|
||||
|
||||
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
|
||||
if(id==0)
|
||||
barrier_set(ROBOTS, zero)
|
||||
else
|
||||
barrier_set(ROBOTS, onetwo)
|
||||
barrier_ready()
|
||||
#statef=hexagon
|
||||
}
|
||||
else {
|
||||
log("Altitude: ", TARGET_ALTITUDE)
|
||||
neighbors.broadcast("cmd", 22)
|
||||
uav_takeoff(TARGET_ALTITUDE)
|
||||
}
|
||||
}
|
||||
function land() {
|
||||
CURSTATE = "LAND"
|
||||
statef=land
|
||||
#log("Land: ", flight.status)
|
||||
if(flight.status == 2 or flight.status == 3){
|
||||
neighbors.broadcast("cmd", 21)
|
||||
uav_land()
|
||||
}
|
||||
else {
|
||||
barrier_set(ROBOTS,idle)
|
||||
barrier_ready()
|
||||
timeW=0
|
||||
#barrier = nil
|
||||
#statef=idle
|
||||
}
|
||||
}
|
||||
|
||||
function users_save(t) {
|
||||
if(size(t)>0) {
|
||||
foreach(t, function(id, tab) {
|
||||
#log("id: ",id," Latitude ", tab.la, "Longitude ", tab.lo)
|
||||
add_user_rb(id,tab.la,tab.lo)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
# printing the contents of a table: a custom function
|
||||
function table_print(t) {
|
||||
if(size(t)>0) {
|
||||
foreach(t, function(u, tab) {
|
||||
log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#################################################
|
||||
### BUZZ FUNCTIONS ##############################
|
||||
#################################################
|
||||
|
||||
# Executed at init time
|
||||
function init() {
|
||||
s = swarm.create(0)
|
||||
s.join()
|
||||
# Local knowledge table
|
||||
knowledge = {}
|
||||
# Update local knowledge with information from the neighbors
|
||||
listen_to_your_neighborhood()
|
||||
# Variables initialization
|
||||
iteration = 0
|
||||
|
||||
vt = stigmergy.create(5)
|
||||
t = {}
|
||||
vt.put("p",t)
|
||||
statef=idle
|
||||
CURSTATE = "IDLE"
|
||||
}
|
||||
|
||||
# Executed every time step
|
||||
function step() {
|
||||
if(flight.rc_cmd==22) {
|
||||
log("cmd 22")
|
||||
flight.rc_cmd=0
|
||||
statef = takeoff
|
||||
CURSTATE = "TAKEOFF"
|
||||
neighbors.broadcast("cmd", 22)
|
||||
} else if(flight.rc_cmd==21) {
|
||||
log("cmd 21")
|
||||
log("To land")
|
||||
flight.rc_cmd=0
|
||||
statef = land
|
||||
CURSTATE = "LAND"
|
||||
neighbors.broadcast("cmd", 21)
|
||||
} else if(flight.rc_cmd==16) {
|
||||
flight.rc_cmd=0
|
||||
statef = idle
|
||||
#uav_goto()
|
||||
add_user_rb(10,rc_goto.latitude,rc_goto.longitude)
|
||||
} else if(flight.rc_cmd==400) {
|
||||
flight.rc_cmd=0
|
||||
uav_arm()
|
||||
neighbors.broadcast("cmd", 400)
|
||||
} else if (flight.rc_cmd==401){
|
||||
flight.rc_cmd=0
|
||||
uav_disarm()
|
||||
neighbors.broadcast("cmd", 401)
|
||||
}
|
||||
neighbors.listen("cmd",
|
||||
function(vid, value, rid) {
|
||||
print("Got (", vid, ",", value, ") from robot #", rid)
|
||||
if(value==22 and CURSTATE=="IDLE") {
|
||||
statef=takeoff
|
||||
} else if(value==21) {
|
||||
statef=land
|
||||
} else if(value==400 and CURSTATE=="IDLE") {
|
||||
uav_arm()
|
||||
} else if(value==401 and CURSTATE=="IDLE"){
|
||||
uav_disarm()
|
||||
}
|
||||
}
|
||||
|
||||
)
|
||||
statef()
|
||||
log("Current state: ", CURSTATE)
|
||||
log("Swarm size: ",ROBOTS)
|
||||
|
||||
# Read a value from the structure
|
||||
# log(users)
|
||||
#users_print(users.dataG)
|
||||
if(size(users.dataG)>0)
|
||||
vt.put("p", users.dataG)
|
||||
|
||||
# Get the number of keys in the structure
|
||||
#log("The vstig has ", vt.size(), " elements")
|
||||
users_save(vt.get("p"))
|
||||
#table_print(users.dataL)
|
||||
|
||||
# Count the number of steps
|
||||
iteration = iteration + 1
|
||||
}
|
||||
|
||||
# Executed once when the robot (or the simulator) is reset.
|
||||
function reset() {
|
||||
}
|
||||
# Execute at exit
|
||||
function destroy() {
|
||||
}
|
|
@ -16,11 +16,12 @@ CURSTATE = "TURNEDOFF"
|
|||
|
||||
# Lennard-Jones parameters
|
||||
TARGET = 12.0
|
||||
EPSILON = 0.5
|
||||
EPSILON = 14.0
|
||||
|
||||
# Lennard-Jones interaction magnitude
|
||||
function lj_magnitude(dist, target, epsilon) {
|
||||
return -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
|
||||
#return -(4 * epsilon) * ((target / dist)^12 - (target / dist)^6)
|
||||
}
|
||||
|
||||
# Neighbor data to LJ interaction vector
|
||||
|
@ -33,24 +34,50 @@ function lj_sum(rid, data, accum) {
|
|||
return math.vec2.add(data, accum)
|
||||
}
|
||||
|
||||
function user_attract(t) {
|
||||
fus = math.vec2.new(0.0, 0.0)
|
||||
if(size(t)>0) {
|
||||
foreach(t, function(u, tab) {
|
||||
#log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
|
||||
fus = math.vec2.add(fus, math.vec2.newp(lj_magnitude(tab.r, TARGET / 2.0, EPSILON * 2.0), tab.b))
|
||||
})
|
||||
math.vec2.scale(fus, 1.0 / size(t))
|
||||
}
|
||||
#print("User attract:", fus.x," ", fus.y, " [", size(t), "]")
|
||||
return fus
|
||||
}
|
||||
|
||||
# Calculates and actuates the flocking interaction
|
||||
function hexagon() {
|
||||
statef=hexagon
|
||||
CURSTATE = "HEXAGON"
|
||||
# Calculate accumulator
|
||||
var accum = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
|
||||
if(neighbors.count() > 0)
|
||||
math.vec2.scale(accum, 1.0 / neighbors.count())
|
||||
accum = math.vec2.scale(accum, 1.0 / neighbors.count())
|
||||
|
||||
accum = math.vec2.add(accum, user_attract(users.dataL))
|
||||
accum = math.vec2.scale(accum, 1.0 / 2.0)
|
||||
|
||||
if(math.vec2.length(accum) > 0.75) {
|
||||
accum = math.vec2.scale(accum, 0.75 / math.vec2.length(accum))
|
||||
}
|
||||
|
||||
# Move according to vector
|
||||
#print("Robot ", id, "must push ",accum.length, "; ", accum.angle)
|
||||
uav_moveto(accum.x,accum.y)
|
||||
print("Robot ", id, "must push ", math.vec2.length(accum) )#, "; ", math.vec2.angle(accum))
|
||||
uav_moveto(accum.x, accum.y)
|
||||
CURSTATE = "LENNARDJONES"
|
||||
|
||||
# if(timeW>=WAIT_TIMEOUT) { #FOR MOVETO TESTS
|
||||
# timeW =0
|
||||
# statef=land
|
||||
# } else {
|
||||
# } else if(timeW>=WAIT_TIMEOUT/2) {
|
||||
# CURSTATE ="GOEAST"
|
||||
# timeW = timeW+1
|
||||
# uav_moveto(0.0,0.0)
|
||||
# uav_moveto(0.0,5.0)
|
||||
# } else {
|
||||
# CURSTATE ="GONORTH"
|
||||
# timeW = timeW+1
|
||||
# uav_moveto(5.0,0.0)
|
||||
# }
|
||||
}
|
||||
|
||||
|
@ -89,9 +116,10 @@ WAIT_TIMEOUT = 200
|
|||
timeW=0
|
||||
function barrier_wait(threshold, transf) {
|
||||
barrier.get(id)
|
||||
barrier.put(id, 1)
|
||||
CURSTATE = "BARRIERWAIT"
|
||||
if(barrier.size() >= threshold) {
|
||||
barrier = nil
|
||||
#barrier = nil
|
||||
transf()
|
||||
} else if(timeW>=WAIT_TIMEOUT) {
|
||||
barrier = nil
|
||||
|
@ -112,8 +140,8 @@ CURSTATE = "IDLE"
|
|||
function takeoff() {
|
||||
CURSTATE = "TAKEOFF"
|
||||
statef=takeoff
|
||||
log("TakeOff: ", flight.status)
|
||||
log("Relative position: ", position.altitude)
|
||||
#log("TakeOff: ", flight.status)
|
||||
#log("Relative position: ", position.altitude)
|
||||
|
||||
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
|
||||
barrier_set(ROBOTS,hexagon)
|
||||
|
@ -129,15 +157,17 @@ function takeoff() {
|
|||
function land() {
|
||||
CURSTATE = "LAND"
|
||||
statef=land
|
||||
log("Land: ", flight.status)
|
||||
#log("Land: ", flight.status)
|
||||
if(flight.status == 2 or flight.status == 3){
|
||||
neighbors.broadcast("cmd", 21)
|
||||
uav_land()
|
||||
}
|
||||
else {
|
||||
barrier_set(ROBOTS,idle)
|
||||
barrier_ready()
|
||||
timeW=0
|
||||
barrier = nil
|
||||
statef=idle
|
||||
#barrier = nil
|
||||
#statef=idle
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -194,7 +224,8 @@ function step() {
|
|||
} else if(flight.rc_cmd==16) {
|
||||
flight.rc_cmd=0
|
||||
statef = idle
|
||||
uav_goto()
|
||||
#uav_goto()
|
||||
add_user_rb(10,rc_goto.latitude,rc_goto.longitude)
|
||||
} else if(flight.rc_cmd==400) {
|
||||
flight.rc_cmd=0
|
||||
uav_arm()
|
||||
|
|
|
@ -41,8 +41,8 @@ namespace buzz_utility{
|
|||
void update_users(){
|
||||
if(users_map.size()>0) {
|
||||
/* Reset users information */
|
||||
// buzzusers_reset();
|
||||
create_stig_tables();
|
||||
buzzusers_reset();
|
||||
// create_stig_tables();
|
||||
/* Get user id and update user information */
|
||||
map< int, Pos_struct >::iterator it;
|
||||
for (it=users_map.begin(); it!=users_map.end(); ++it){
|
||||
|
@ -68,6 +68,8 @@ namespace buzz_utility{
|
|||
buzzvm_pushs(VM, buzzvm_string_register(VM, "put", 1));
|
||||
buzzvm_tget(VM);*/
|
||||
buzzvm_pushs(VM, buzzvm_string_register(VM, "users", 1));
|
||||
buzzvm_gload(VM);
|
||||
buzzvm_pushs(VM, buzzvm_string_register(VM, "dataG", 1));
|
||||
buzzvm_push(VM, t);
|
||||
buzzvm_gstore(VM);
|
||||
//buzzvm_pushi(VM, 2);
|
||||
|
|
|
@ -683,7 +683,7 @@ namespace rosbzz_node{
|
|||
{
|
||||
for(int it=0; it<n; ++it)
|
||||
{
|
||||
buzz_utility::add_user(data.pos_neigh[it].position_covariance_type,data.pos_neigh[it].latitude, data.pos_neigh[it].longitude, data.pos_neigh[it].altitude);
|
||||
buzz_utility::add_user(data.pos_neigh[it].position_covariance_type,data.pos_neigh[it].latitude, data.pos_neigh[it].longitude, data.pos_neigh[it].altitude);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -715,8 +715,8 @@ namespace rosbzz_node{
|
|||
moveMsg.header.stamp = ros::Time::now();
|
||||
moveMsg.header.seq = setpoint_counter++;
|
||||
moveMsg.header.frame_id = 1;
|
||||
float ned_x, ned_y;
|
||||
gps_ned_home(ned_x, ned_y);
|
||||
// float ned_x, ned_y;
|
||||
// gps_ned_home(ned_x, ned_y);
|
||||
// ROS_INFO("[%i] ROSBuzz Home: %.7f, %.7f", robot_id, home[0], home[1]);
|
||||
// ROS_INFO("[%i] ROSBuzz LocalPos: %.7f, %.7f", robot_id, local_pos[0], local_pos[1]);
|
||||
|
||||
|
@ -827,7 +827,7 @@ namespace rosbzz_node{
|
|||
gps_rb(nei_pos, cvt_neighbours_pos_payload);
|
||||
/*Extract robot id of the neighbour*/
|
||||
uint16_t* out = buzz_utility::u64_cvt_u16((uint64_t)*(message_obt+3));
|
||||
//cout << "Rel Pos of " << (int)out[1] << ": " << cvt_neighbours_pos_payload[0] << ", "<< cvt_neighbours_pos_payload[1] << ", "<< cvt_neighbours_pos_payload[2] << endl;
|
||||
ROS_WARN("RAB of %i: %f, %f", (int)out[1], cvt_neighbours_pos_payload[0], cvt_neighbours_pos_payload[1]);
|
||||
/*pass neighbour position to local maintaner*/
|
||||
buzz_utility::Pos_struct n_pos(cvt_neighbours_pos_payload[0],cvt_neighbours_pos_payload[1],cvt_neighbours_pos_payload[2]);
|
||||
/*Put RID and pos*/
|
||||
|
|
Loading…
Reference in New Issue