276 lines
6.1 KiB
Plaintext
276 lines
6.1 KiB
Plaintext
# We need this for 2D vectors
|
|
# Make sure you pass the correct include path to "bzzc -I <path1:path2> ..."
|
|
include "vec2.bzz"
|
|
####################################################################################################
|
|
# Updater related
|
|
# This should be here for the updater to work, changing position of code will crash the updater
|
|
####################################################################################################
|
|
updated="update_ack"
|
|
update_no=0
|
|
function updated_neigh(){
|
|
neighbors.broadcast(updated, update_no)
|
|
}
|
|
|
|
TARGET_ALTITUDE = 10.0
|
|
CURSTATE = "TURNEDOFF"
|
|
|
|
# Lennard-Jones parameters
|
|
TARGET = 12.0
|
|
EPSILON = 14.0
|
|
|
|
# Lennard-Jones interaction magnitude
|
|
function lj_magnitude(dist, target, epsilon) {
|
|
return -(epsilon / dist) * ((target / dist)^4 - (target / dist)^2)
|
|
#return -(4 * epsilon) * ((target / dist)^12 - (target / dist)^6)
|
|
}
|
|
|
|
# Neighbor data to LJ interaction vector
|
|
function lj_vector(rid, data) {
|
|
return math.vec2.newp(lj_magnitude(data.distance, TARGET, EPSILON), data.azimuth)
|
|
}
|
|
|
|
# Accumulator of neighbor LJ interactions
|
|
function lj_sum(rid, data, accum) {
|
|
return math.vec2.add(data, accum)
|
|
}
|
|
|
|
function user_attract(t) {
|
|
fus = math.vec2.new(0.0, 0.0)
|
|
if(size(t)>0) {
|
|
foreach(t, function(u, tab) {
|
|
#log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
|
|
fus = math.vec2.add(fus, math.vec2.newp(lj_magnitude(tab.r, TARGET / 2.0, EPSILON * 2.0), tab.b))
|
|
})
|
|
math.vec2.scale(fus, 1.0 / size(t))
|
|
}
|
|
#print("User attract:", fus.x," ", fus.y, " [", size(t), "]")
|
|
return fus
|
|
}
|
|
|
|
# Calculates and actuates the flocking interaction
|
|
function hexagon() {
|
|
statef=hexagon
|
|
# Calculate accumulator
|
|
var accum = neighbors.map(lj_vector).reduce(lj_sum, math.vec2.new(0.0, 0.0))
|
|
if(neighbors.count() > 0)
|
|
accum = math.vec2.scale(accum, 1.0 / neighbors.count())
|
|
|
|
accum = math.vec2.add(accum, user_attract(users.dataL))
|
|
accum = math.vec2.scale(accum, 1.0 / 2.0)
|
|
|
|
if(math.vec2.length(accum) > 0.75) {
|
|
accum = math.vec2.scale(accum, 0.75 / math.vec2.length(accum))
|
|
}
|
|
|
|
# Move according to vector
|
|
print("Robot ", id, "must push ", math.vec2.length(accum) )#, "; ", math.vec2.angle(accum))
|
|
uav_moveto(accum.x, accum.y)
|
|
CURSTATE = "LENNARDJONES"
|
|
|
|
# if(timeW>=WAIT_TIMEOUT) { #FOR MOVETO TESTS
|
|
# timeW =0
|
|
# statef=land
|
|
# } else if(timeW>=WAIT_TIMEOUT/2) {
|
|
# CURSTATE ="GOEAST"
|
|
# timeW = timeW+1
|
|
# uav_moveto(0.0,5.0)
|
|
# } else {
|
|
# CURSTATE ="GONORTH"
|
|
# timeW = timeW+1
|
|
# uav_moveto(5.0,0.0)
|
|
# }
|
|
}
|
|
|
|
########################################
|
|
#
|
|
# BARRIER-RELATED FUNCTIONS
|
|
#
|
|
########################################
|
|
|
|
#
|
|
# Constants
|
|
#
|
|
BARRIER_VSTIG = 1
|
|
|
|
#
|
|
# Sets a barrier
|
|
#
|
|
function barrier_set(threshold, transf) {
|
|
statef = function() {
|
|
barrier_wait(threshold, transf);
|
|
}
|
|
barrier = stigmergy.create(BARRIER_VSTIG)
|
|
}
|
|
|
|
#
|
|
# Make yourself ready
|
|
#
|
|
function barrier_ready() {
|
|
barrier.put(id, 1)
|
|
}
|
|
|
|
#
|
|
# Executes the barrier
|
|
#
|
|
WAIT_TIMEOUT = 200
|
|
timeW=0
|
|
function barrier_wait(threshold, transf) {
|
|
barrier.get(id)
|
|
barrier.put(id, 1)
|
|
CURSTATE = "BARRIERWAIT"
|
|
if(barrier.size() >= threshold) {
|
|
#barrier = nil
|
|
transf()
|
|
} else if(timeW>=WAIT_TIMEOUT) {
|
|
barrier = nil
|
|
statef=land
|
|
timeW=0
|
|
}
|
|
timeW = timeW+1
|
|
}
|
|
|
|
# flight status
|
|
|
|
function idle() {
|
|
statef=idle
|
|
CURSTATE = "IDLE"
|
|
|
|
}
|
|
|
|
function takeoff() {
|
|
CURSTATE = "TAKEOFF"
|
|
statef=takeoff
|
|
#log("TakeOff: ", flight.status)
|
|
#log("Relative position: ", position.altitude)
|
|
|
|
if( flight.status == 2 and position.altitude >= TARGET_ALTITUDE-TARGET_ALTITUDE/20.0) {
|
|
barrier_set(ROBOTS,hexagon)
|
|
barrier_ready()
|
|
#statef=hexagon
|
|
}
|
|
else {
|
|
log("Altitude: ", TARGET_ALTITUDE)
|
|
neighbors.broadcast("cmd", 22)
|
|
uav_takeoff(TARGET_ALTITUDE)
|
|
}
|
|
}
|
|
function land() {
|
|
CURSTATE = "LAND"
|
|
statef=land
|
|
#log("Land: ", flight.status)
|
|
if(flight.status == 2 or flight.status == 3){
|
|
neighbors.broadcast("cmd", 21)
|
|
uav_land()
|
|
}
|
|
else {
|
|
barrier_set(ROBOTS,idle)
|
|
barrier_ready()
|
|
timeW=0
|
|
#barrier = nil
|
|
#statef=idle
|
|
}
|
|
}
|
|
|
|
function users_save(t) {
|
|
if(size(t)>0) {
|
|
foreach(t, function(id, tab) {
|
|
#log("id: ",id," Latitude ", tab.la, "Longitude ", tab.lo)
|
|
add_user_rb(id,tab.la,tab.lo)
|
|
})
|
|
}
|
|
}
|
|
|
|
# printing the contents of a table: a custom function
|
|
function table_print(t) {
|
|
if(size(t)>0) {
|
|
foreach(t, function(u, tab) {
|
|
log("id: ",u," Range ", tab.r, "Bearing ", tab.b)
|
|
})
|
|
}
|
|
}
|
|
|
|
########################################
|
|
#
|
|
# MAIN FUNCTIONS
|
|
#
|
|
########################################
|
|
|
|
# Executed once at init time.
|
|
function init() {
|
|
s = swarm.create(1)
|
|
s.join()
|
|
vt = stigmergy.create(5)
|
|
t = {}
|
|
vt.put("p",t)
|
|
statef=idle
|
|
CURSTATE = "IDLE"
|
|
}
|
|
|
|
# Executed at each time step.
|
|
function step() {
|
|
if(flight.rc_cmd==22) {
|
|
log("cmd 22")
|
|
flight.rc_cmd=0
|
|
statef = takeoff
|
|
CURSTATE = "TAKEOFF"
|
|
neighbors.broadcast("cmd", 22)
|
|
} else if(flight.rc_cmd==21) {
|
|
log("cmd 21")
|
|
log("To land")
|
|
flight.rc_cmd=0
|
|
statef = land
|
|
CURSTATE = "LAND"
|
|
neighbors.broadcast("cmd", 21)
|
|
} else if(flight.rc_cmd==16) {
|
|
flight.rc_cmd=0
|
|
statef = idle
|
|
#uav_goto()
|
|
add_user_rb(10,rc_goto.latitude,rc_goto.longitude)
|
|
} else if(flight.rc_cmd==400) {
|
|
flight.rc_cmd=0
|
|
uav_arm()
|
|
neighbors.broadcast("cmd", 400)
|
|
} else if (flight.rc_cmd==401){
|
|
flight.rc_cmd=0
|
|
uav_disarm()
|
|
neighbors.broadcast("cmd", 401)
|
|
}
|
|
neighbors.listen("cmd",
|
|
function(vid, value, rid) {
|
|
print("Got (", vid, ",", value, ") from robot #", rid)
|
|
if(value==22 and CURSTATE=="IDLE") {
|
|
statef=takeoff
|
|
} else if(value==21) {
|
|
statef=land
|
|
} else if(value==400 and CURSTATE=="IDLE") {
|
|
uav_arm()
|
|
} else if(value==401 and CURSTATE=="IDLE"){
|
|
uav_disarm()
|
|
}
|
|
}
|
|
|
|
)
|
|
statef()
|
|
log("Current state: ", CURSTATE)
|
|
log("Swarm size: ",ROBOTS)
|
|
|
|
# Read a value from the structure
|
|
# log(users)
|
|
#users_print(users.dataG)
|
|
if(size(users.dataG)>0)
|
|
vt.put("p", users.dataG)
|
|
|
|
# Get the number of keys in the structure
|
|
#log("The vstig has ", vt.size(), " elements")
|
|
users_save(vt.get("p"))
|
|
table_print(users.dataL)
|
|
}
|
|
|
|
# Executed once when the robot (or the simulator) is reset.
|
|
function reset() {
|
|
}
|
|
|
|
# Executed once at the end of experiment.
|
|
function destroy() {
|
|
}
|