Replace <ctype.h> locale dependent functions with Python "pyctype.h"
locale independent functions:
* Replace isalpha() with Py_ISALPHA().
* Replace isdigit() with Py_ISDIGIT().
* Replace isxdigit() with Py_ISXDIGIT().
* Replace tolower() with Py_TOLOWER().
Leave Modules/_sre/sre.c unchanged, it uses locale dependent
functions on purpose.
Include explicitly <ctype.h> in _decimal.c to get isascii().
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
Argument Clinic now only includes pycore_gc.h if PyGC_Head is needed,
and only includes pycore_runtime.h if _Py_ID() is needed.
* Add 'condition' optional argument to Clinic.add_include().
* deprecate_keyword_use() includes pycore_runtime.h when using
the _PyID() function.
* Fix rendering of includes: comments start at the column 35.
* Mark PC/clinic/_wmimodule.cpp.h and
"Objects/stringlib/clinic/*.h.h" header files as generated in
.gitattributes.
Effects:
* 42 header files generated by AC no longer include the internal C
API, instead of 4 header files before. For example,
Modules/clinic/_abc.c.h no longer includes the internal C API.
* Fix _testclinic_depr.c.h: it now always includes pycore_runtime.h
to get _Py_ID().
Python built with "configure --with-trace-refs" (tracing references)
is now ABI compatible with Python release build and debug build.
Moreover, it now also supports the Limited API.
Change Py_TRACE_REFS build:
* Remove _PyObject_EXTRA_INIT macro.
* The PyObject structure no longer has two extra members (_ob_prev
and _ob_next).
* Use a hash table (_Py_hashtable_t) to trace references (all
objects): PyInterpreterState.object_state.refchain.
* Py_TRACE_REFS build is now ABI compatible with release build and
debug build.
* Limited C API extensions can now be built with Py_TRACE_REFS:
xxlimited, xxlimited_35, _testclinic_limited.
* No longer rename PyModule_Create2() and PyModule_FromDefAndSpec2()
functions to PyModule_Create2TraceRefs() and
PyModule_FromDefAndSpec2TraceRefs().
* _Py_PrintReferenceAddresses() is now called before
finalize_interp_delete() which deletes the refchain hash table.
* test_tracemalloc find_trace() now also filters by size to ignore
the memory allocated by _PyRefchain_Trace().
Test changes for Py_TRACE_REFS:
* Add test.support.Py_TRACE_REFS constant.
* Add test_sys.test_getobjects() to test sys.getobjects() function.
* test_exceptions skips test_recursion_normalizing_with_no_memory()
and test_memory_error_in_PyErr_PrintEx() if Python is built with
Py_TRACE_REFS.
* test_repl skips test_no_memory().
* test_capi skisp test_set_nomemory().
Move PyUnstable_ExecutableKinds and associated macros from the
internal C API to the public C API.
Rename constants: replace "PY_" prefix with "PyUnstable_" prefix.
This mis-initialization caused the executor optimization to kick in sooner than intended. It also set the lower 4 bits of the counter to `1` -- those bits are supposed to be reserved (the actual counter is in the upper 12 bits).
Also remove NOP instructions.
The "stubs" are not optimized in this fashion (their SAVE_IP should always be preserved since it's where to jump next, and they don't contain NOPs by their nature).
Remove these private functions from the public C API:
* _PyRun_AnyFileObject()
* _PyRun_InteractiveLoopObject()
* _PyRun_SimpleFileObject()
* _Py_SourceAsString()
Move them to the internal C API: add a new pycore_pythonrun.h header
file. No longer export these functions.
* Rename _PyUnstable_GetUnaryIntrinsicName() to
PyUnstable_GetUnaryIntrinsicName()
* Rename _PyUnstable_GetBinaryIntrinsicName()
to PyUnstable_GetBinaryIntrinsicName().
Functions like PyErr_SetFromErrno() and SetFromWindowsErr() should be
called immediately after using the C API which sets errno or the Windows
error code.
Move these private functions to the internal C API
(pycore_abstract.h):
* _Py_convert_optional_to_ssize_t()
* _PyNumber_Index()
Argument Clinic now emits #include "pycore_abstract.h" when these
functions are used.
The parser of the c-analyzer tool now uses a list of files which use
the limited C API, rather than a list of files using the internal C
API.
Instead of using `GO_TO_INSTRUCTION(CALL_PY_EXACT_ARGS)` we just add the macro elements of the latter to the macro for the former. This requires lengthening the uops array in struct opcode_macro_expansion. (It also required changes to stacking.py that were merged already.)
Move private functions to the internal C API (pycore_sysmodule.h):
* _PySys_GetAttr()
* _PySys_GetSizeOf()
No longer export most of these functions.
Fix also a typo in Include/cpython/optimizer.h: add a missing space.
Move private functions to the internal C API (pycore_dict.h):
* _PyDictView_Intersect()
* _PyDictView_New()
* _PyDict_ContainsId()
* _PyDict_DelItemId()
* _PyDict_DelItem_KnownHash()
* _PyDict_GetItemIdWithError()
* _PyDict_GetItem_KnownHash()
* _PyDict_HasSplitTable()
* _PyDict_NewPresized()
* _PyDict_Next()
* _PyDict_Pop()
* _PyDict_SetItemId()
* _PyDict_SetItem_KnownHash()
* _PyDict_SizeOf()
No longer export most of these functions.
Move also the _PyDictViewObject structure to the internal C API.
Move dict_getitem_knownhash() function from _testcapi to the
_testinternalcapi extension. Update test_capi.test_dict for this
change.
I was comparing the last preceding poke with the *last* peek,
rather than the *first* peek.
Unfortunately this bug obscured another bug:
When the last preceding poke is UNUSED, the first peek disappears,
leaving the variable unassigned. This is how I fixed it:
- Rename CopyEffect to CopyItem.
- Change CopyItem to contain StackItems instead of StackEffects.
- Update those StackItems when adjusting the manager higher or lower.
- Assert that those StackItems' offsets are equivalent.
- Other clever things.
---------
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
Remove the internal _PyDict_GetItemStringWithError() function. It can
now be replaced with the new public PyDict_ContainsString() and
PyDict_GetItemStringRef() functions.
getargs.c now now uses a strong reference for current_arg.
find_keyword() returns a strong reference.
Replace _PyDict_GetItemStringWithError() calls with
PyDict_GetItemStringRef() which returns a strong reference to the
item.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Replace PyDict_GetItem() calls with PyDict_GetItemRef()
or PyDict_GetItemWithError() to handle errors.
* Replace PyLong_AS_LONG() with _PyLong_AsInt()
and check for errors.
* Check for PyDict_Contains() error.
* pycore_init_builtins() checks for _PyType_Lookup() failure.
Remove private _PyDict_GetItemStringWithError() function of the
public C API: the new PyDict_GetItemStringRef() can be used instead.
* Move private _PyDict_GetItemStringWithError() to the internal C API.
* _testcapi get_code_extra_index() uses PyDict_GetItemStringRef().
Avoid using private functions in _testcapi which tests the public C
API.
Such C API functions as PyErr_SetString(), PyErr_Format(),
PyErr_SetFromErrnoWithFilename() and many others no longer crash or
ignore errors if it failed to format the error message or decode the
filename. Instead, they keep a corresponding error.
This finishes the work begun in gh-107760. When, while projecting a superblock, we encounter a call to a short, simple function, the superblock will now enter the function using `_PUSH_FRAME`, continue through it, and leave it using `_POP_FRAME`, and then continue through the original code. Multiple frame pushes and pops are even possible. It is also possible to stop appending to the superblock in the middle of a called function, when running out of space or encountering an unsupported bytecode.
* Split `CALL_PY_EXACT_ARGS` into uops
This is only the first step for doing `CALL` in Tier 2.
The next step involves tracing into the called code object and back.
After that we'll have to do the remaining `CALL` specialization.
Finally we'll have to deal with `KW_NAMES`.
Note: this moves setting `frame->return_offset` directly in front of
`DISPATCH_INLINED()`, to make it easier to move it into `_PUSH_FRAME`.
- The `dump_stack()` method could call a `__repr__` method implemented in Python,
causing (infinite) recursion.
I rewrote it to only print out the values for some fundamental types (`int`, `str`, etc.);
for everything else it just prints `<type_name @ 0xdeadbeef>`.
- The lltrace-like feature for uops wrote to `stderr`, while the one in `ceval.c` writes to `stdout`;
I changed the uops to write to stdout as well.
Introducing a new file, stacking.py, that takes over several responsibilities related to symbolic evaluation of push/pop operations, with more generality.
The linked list of objects was a global variable, which broke isolation between interpreters, causing crashes. To solve this, we've moved the linked list to each interpreter.
gh-107184 introduced a refleak in test_import.SubinterpImportTests (specifically test_singlephase_check_with_setting_and_override and test_single_init_extension_compat). We fix it here by making sure _testsinglephase is removed from sys.modules whenever we clear the runtime's internal state for the module.
The underlying problem is strictly contained in the internal function _PyImport_ClearExtension() (AKA _testinternalcapi.clear_extension()), which is only used in tests.
(This also fixes an intermittent segfault introduced in the same place, in test_disallowed_reimport.)
There's no need to use a dummy uop to skip unused cache entries. The macro syntax lets you write `unused/1` instead.
Similarly, move `unused/5` from op `_LOAD_ATTR_INSTANCE_VALUE` to macro `LOAD_ATTR_INSTANCE_VALUE`.
This fixes a crasher due to a race condition, triggered infrequently when two isolated (own GIL) subinterpreters simultaneously initialize their sys or builtins modules. The crash happened due the combination of the "detached" thread state we were using and the "last holder" logic we use for the GIL. It turns out it's tricky to use the same thread state for different threads. Who could have guessed?
We solve the problem by eliminating the one object we were still sharing between interpreters. We replace it with a low-level hashtable, using the "raw" allocator to avoid tying it to the main interpreter.
We also remove the accommodations for "detached" thread states, which were a dubious idea to start with.
The _xxsubinterpreters module should not rely on internal API. Some of the functions it uses were recently moved there however. Here we move them back (and expose them properly).
We tried this before with a dict and for all interned strings. That ran into problems due to interpreter isolation. However, exclusively using a per-interpreter cache caused some inconsistency that can eliminate the benefit of interning. Here we circle back to using a global cache, but only for statically allocated strings. We also use a more-basic _Py_hashtable_t for that global cache instead of a dict.
Ideally we would only have the global cache, but the optional isolation of each interpreter's allocator means that a non-static string object must not outlive its interpreter. Thus we would have to store a copy of each such interned string in the global cache, tied to the main interpreter.
Move private _PyDict functions to the internal C API (pycore_dict.h):
* _PyDict_Contains_KnownHash()
* _PyDict_DebugMallocStats()
* _PyDict_DelItemIf()
* _PyDict_GetItemWithError()
* _PyDict_HasOnlyStringKeys()
* _PyDict_MaybeUntrack()
* _PyDict_MergeEx()
No longer export these functions.
Move private debug _PyObject functions to the internal C API
(pycore_object.h):
* _PyDebugAllocatorStats()
* _PyObject_CheckConsistency()
* _PyObject_DebugTypeStats()
* _PyObject_IsFreed()
No longer export most of these functions, except of
_PyObject_IsFreed().
Move test functions using _PyObject_IsFreed() from _testcapi to
_testinternalcapi. check_pyobject_is_freed() test no longer catch
_testcapi.error: the tested function cannot raise _testcapi.error.
Rename private C API constants:
* Rename PY_MONITORING_UNGROUPED_EVENTS to _PY_MONITORING_UNGROUPED_EVENTS
* Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS
* No longer export most private _PyHash symbols, only export the ones
which are needed by shared extensions.
* Modules/_xxtestfuzz/fuzzer.c now uses the internal C API.
By turning `assert(kwnames == NULL)` into a macro that is not in the "forbidden" list, many instructions that formerly were skipped because they contained such an assert (but no other mention of `kwnames`) are now supported in Tier 2. This covers 10 instructions in total (all specializations of `CALL` that invoke some C code):
- `CALL_NO_KW_TYPE_1`
- `CALL_NO_KW_STR_1`
- `CALL_NO_KW_TUPLE_1`
- `CALL_NO_KW_BUILTIN_O`
- `CALL_NO_KW_BUILTIN_FAST`
- `CALL_NO_KW_LEN`
- `CALL_NO_KW_ISINSTANCE`
- `CALL_NO_KW_METHOD_DESCRIPTOR_O`
- `CALL_NO_KW_METHOD_DESCRIPTOR_NOARGS`
- `CALL_NO_KW_METHOD_DESCRIPTOR_FAST`
These aren't automatically translated because (ironically)
they are macros deferring to POP_JUMP_IF_{TRUE,FALSE},
which are not viable uops (being manually translated).
The hack is that we emit IS_NONE and then set opcode and
jump to the POP_JUMP_IF_{TRUE,FALSE} translation code.
The Tier 2 opcode _IS_ITER_EXHAUSTED_LIST (and _TUPLE)
didn't set it->it_seq to NULL, causing a subtle bug
that resulted in test_exhausted_iterator in list_tests.py
to fail when running all tests with -Xuops.
The bug was introduced in gh-106696.
Added this as an explicit test.
Also fixed the dependencies for ceval.o -- it depends on executor_cases.c.h.
This moves EXIT_TRACE, SAVE_IP, JUMP_TO_TOP, and
_POP_JUMP_IF_{FALSE,TRUE} from ceval.c to bytecodes.c.
They are no less special than before, but this way
they are discoverable o the copy-and-patch tooling.
During superblock generation, a JUMP_BACKWARD instruction is translated to either a JUMP_TO_TOP micro-op (when the target of the jump is exactly the beginning of the superblock, closing the loop), or a SAVE_IP + EXIT_TRACE pair, when the jump goes elsewhere.
The new JUMP_TO_TOP instruction includes a CHECK_EVAL_BREAKER() call, so a closed loop can still be interrupted.
* Convert PyObject_DelAttr() and PyObject_DelAttrString() macros to
functions.
* Add PyObject_DelAttr() and PyObject_DelAttrString() functions to
the stable ABI.
* Replace PyObject_SetAttr(obj, name, NULL) with
PyObject_DelAttr(obj, name).
- Hand-written uops JUMP_IF_{TRUE,FALSE}.
These peek at the top of the stack.
The jump target (in superblock space) is absolute.
- Hand-written translation for POP_JUMP_IF_{TRUE,FALSE},
assuming the jump is unlikely.
Once we implement jump-likelihood profiling,
we can implement the jump-unlikely case (in another PR).
- Tests (including some test cleanup).
- Improvements to len(ex) and ex[i] to expose the whole trace.
This adds several of unspecialized opcodes to superblocks:
TO_BOOL, BINARY_SUBSCR, STORE_SUBSCR,
UNPACK_SEQUENCE, LOAD_GLOBAL, LOAD_ATTR,
COMPARE_OP, BINARY_OP.
While we may not want that eventually, for now this helps finding bugs.
There is a rudimentary test checking for UNPACK_SEQUENCE.
Once we're ready to undo this, that would be simple:
just replace the call to variable_used_unspecialized
with a call to variable_used (as shown in a comment).
Or add individual opcdes to FORBIDDEN_NAMES_IN_UOPS.
Instead of special-casing specific instructions,
we add a few more special values to the 'size' field of expansions,
so in the future we can automatically handle
additional super-instructions in the generator.
The uops test wasn't testing anything by default,
and was failing when run with -Xuops.
Made the two executor-related context managers global,
so TestUops can use them (notably `with temporary_optimizer(opt)`).
Made clear_executor() a little more thorough.
Fixed a crash upon finalizing a uop optimizer,
by adding a `tp_dealloc` handler.
When `_PyOptimizer_BackEdge` returns `NULL`, we should restore `next_instr` (and `stack_pointer`). To accomplish this we should jump to `resume_with_error` instead of just `error`.
The problem this causes is subtle -- the only repro I have is in PR gh-106393, at commit d7df54b139bcc47f5ea094bfaa9824f79bc45adc. But the fix is real (as shown later in that PR).
While we're at it, also improve the debug output: the offsets at which traces are identified are now measured in bytes, and always show the start offset. This makes it easier to correlate executor calls with optimizer calls, and either with `dis` output.
<!-- gh-issue-number: gh-104584 -->
* Issue: gh-104584
<!-- /gh-issue-number -->
Remove private pylifecycle.h functions: move them to the internal C
API ( pycore_atexit.h, pycore_pylifecycle.h and pycore_signal.h). No
longer export most of these functions.
Move _testcapi.test_atexit() to _testinternalcapi.
Remove private _PyUnicode_TransformDecimalAndSpaceToASCII() and other
private _PyUnicode C API functions: move them to the internal C API
(pycore_unicodeobject.h). No longer most of these functions.
Replace _testcapi.unicode_transformdecimalandspacetoascii() with
_testinternal._PyUnicode_TransformDecimalAndSpaceToASCII().
Remove more private _PyUnicode C API functions:
move them to the internal C API (pycore_unicodeobject.h).
No longer export most pycore_unicodeobject.h functions.
- Tweak uops debugging output
- Fix the bug from gh-106290
- Rename `SET_IP` to `SAVE_IP` (per https://github.com/faster-cpython/ideas/issues/558)
- Add a `SAVE_IP` uop at the start of the trace (ditto)
- Allow `unbound_local_error`; this gives us uops for `LOAD_FAST_CHECK`, `LOAD_CLOSURE`, and `DELETE_FAST`
- Longer traces
- Support `STORE_FAST_LOAD_FAST`, `STORE_FAST_STORE_FAST`
- Add deps on pycore_uops.h to Makefile(.pre.in)
Remove the following functions from the C API, move them to the internal C
API: add a new pycore_modsupport.h internal header file:
* PyModule_CreateInitialized()
* _PyArg_NoKwnames()
* _Py_VaBuildStack()
No longer export these functions.
Remove private _PyThreadState and _PyInterpreterState C API
functions: move them to the internal C API (pycore_pystate.h and
pycore_interp.h). Don't export most of these functions anymore, but
still export functions used by tests.
Remove _PyThreadState_Prealloc() and _PyThreadState_Init() from the C
API, but keep it in the stable API.
Remove the "cpython/pytime.h" header file: it only contained private
functions. Move functions to the internal pycore_time.h header file.
Move tests from _testcapi to _testinternalcapi. Rename also test
methods to have the same name than tested C functions.
No longer export these functions:
* _PyTime_Add()
* _PyTime_As100Nanoseconds()
* _PyTime_FromMicrosecondsClamp()
* _PyTime_FromTimespec()
* _PyTime_FromTimeval()
* _PyTime_GetPerfCounterWithInfo()
* _PyTime_MulDiv()
Remove the following private functions of the C API:
* _PyCodecInfo_GetIncrementalDecoder()
* _PyCodecInfo_GetIncrementalEncoder()
* _PyCodec_DecodeText()
* _PyCodec_EncodeText()
* _PyCodec_Forget()
* _PyCodec_Lookup()
* _PyCodec_LookupTextEncoding()
Move these functions to a new pycore_codecs.h internal header file.
These functions are no longer exported.
* EOFError no longer overrides other errors such as MemoryError or OSError at
the start of the object.
* Raise more relevant error when the NULL object occurs as a code object
component.
* Minimize an overhead of calling PyErr_Occurred().
This produces longer traces (superblocks?).
Also improved debug output (uop names are now printed instead of numeric opcodes). This would be simpler if the numeric opcode values were generated by generate_cases.py, but that's another project.
Refactored some code in generate_cases.py so the essential algorithm for cache effects is only run once. (Deciding which effects are used and what the total cache size is, regardless of what's used.)
Remove the following private functions from the public C API:
* _Py_CheckFunctionResult()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdNoArgs()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_CallMethodIdOneArg()
* _PyObject_MakeTpCall()
* _PyObject_VectorcallMethodId()
* _PyStack_AsDict()
Move these functions to the internal C API (pycore_call.h).
No longer export the following functions:
* _PyObject_Call()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_Call_Prepend()
* _PyObject_FastCallDictTstate()
* _PyStack_AsDict()
The following functions are still exported for stdlib shared
extensions:
* _Py_CheckFunctionResult()
* _PyObject_MakeTpCall()
Mark the following internal functions as extern:
* _PyStack_UnpackDict()
* _PyStack_UnpackDict_Free()
* _PyStack_UnpackDict_FreeNoDecRef()
This effectively reverts bb578a0, restoring the original DEOPT_IF() macro in ceval_macros.h, and redefining it in the Tier 2 interpreter. We can get rid of the PREDICTED() macros there as well!
Added a new, experimental, tracing optimizer and interpreter (a.k.a. "tier 2"). This currently pessimizes, so don't use yet -- this is infrastructure so we can experiment with optimizing passes. To enable it, pass ``-Xuops`` or set ``PYTHONUOPS=1``. To get debug output, set ``PYTHONUOPSDEBUG=N`` where ``N`` is a debug level (0-4, where 0 is no debug output and 4 is excessively verbose).
All of this code is likely to change dramatically before the 3.13 feature freeze. But this is a first step.
Remove old aliases which were kept backwards compatibility with
Python 3.8:
* _PyObject_CallMethodNoArgs()
* _PyObject_CallMethodOneArg()
* _PyObject_CallOneArg()
* _PyObject_FastCallDict()
* _PyObject_Vectorcall()
* _PyObject_VectorcallMethod()
* _PyVectorcall_Function()
Update code which used these aliases to use new names.
These functions are broken by design because they discard any exceptions raised
inside, including MemoryError and KeyboardInterrupt. They should not be
used in new code.
* PyDict_GetItem() and PyObject_HasAttr() suppress arbitrary errors and
should not be used.
* PyUnicode_CompareWithASCIIString() only works if the second argument
is ASCII string.
* Refleak in get_suggestions_for_name_error.
* Use of borrowed pointer after possible freeing (self).
* Add some missing error checks.
It now raises an exception if sys.modules doesn't hold a strong
reference to the module.
Elaborate the comment explaining why a weak reference is used to
create a borrowed reference.
* Replace PyWeakref_GET_OBJECT() with _PyWeakref_GET_REF().
* _sqlite/blob.c now holds a strong reference to the blob object
while calling close_blob().
* _xidregistry_find_type() now holds a strong reference to registered
while using it.
finalize_modules_clear_weaklist() now holds a strong reference to the
module longer than before: replace PyWeakref_GET_OBJECT() with
_PyWeakref_GET_REF().
* Add tests on PyImport_AddModuleRef(), PyImport_AddModule() and
PyImport_AddModuleObject().
* pythonrun.c: Replace Py_XNewRef(PyImport_AddModule(name)) with
PyImport_AddModuleRef(name).
Refactor PyRun_InteractiveOneObjectEx(), _PyRun_SimpleFileObject()
and PyRun_SimpleStringFlags():
* Keep a strong reference to the __main__ module while using its
dictionary (PyModule_GetDict()). Use PyImport_AddModule() with
Py_XNewRef().
* Declare variables closer to where they are defined.
* Rename variables to use name longer than 1 character.
* Add pyrun_one_parse_ast() sub-function.
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
This fixes a race during import. The existing _PyRuntimeState.imports.pkgcontext is shared between interpreters, and occasionally this would cause a crash when multiple interpreters were importing extensions modules at the same time. To solve this we add a thread-local variable for the value. We also leave the existing state (and infrequent race) in place for platforms that do not support thread-local variables.
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
The risk of a race with this state is relatively low, but we play it safe anyway. We do avoid using the lock in performance-sensitive cases where the risk of a race is very, very low.
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
Remove functions in the C API:
* PyEval_AcquireLock()
* PyEval_ReleaseLock()
* PyEval_InitThreads()
* PyEval_ThreadsInitialized()
But keep these functions in the stable ABI.
Mention "make regen-limited-abi" in "make regen-all".
Remove the following old functions to configure the Python
initialization, deprecated in Python 3.11:
* PySys_AddWarnOptionUnicode()
* PySys_AddWarnOption()
* PySys_AddXOption()
* PySys_HasWarnOptions()
* PySys_SetArgvEx()
* PySys_SetArgv()
* PySys_SetPath()
* Py_SetPath()
* Py_SetProgramName()
* Py_SetPythonHome()
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Most of these functions are kept in the stable ABI, except:
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Update Doc/extending/embedding.rst and Doc/extending/extending.rst to
use the new PyConfig API.
_testembed.c:
* check_stdio_details() now sets stdio_encoding and stdio_errors
of PyConfig.
* Add definitions of functions removed from the API but kept in the
stable ABI.
* test_init_from_config() and test_init_read_set() now use
PyConfig_SetString() instead of PyConfig_SetBytesString().
Remove _Py_ClearStandardStreamEncoding() internal function.
Deprecate the old Py_UNICODE and PY_UNICODE_TYPE types in the C API:
use wchar_t instead.
Replace Py_UNICODE with wchar_t in multiple C files.
Co-authored-by: Inada Naoki <songofacandy@gmail.com>
* Remove the Lib/test/imghdrdata/ directory.
* Copy 5 pictures (gif, png, ppm, pgm, xbm) from removed
Lib/test/imghdrdata/ to a new Lib/test/tkinterdata/ directory.
* Update Sphinx from 4.5 to 6.2 in Doc/requirements.txt.
* socket_helper.transient_internet() no longer imports nntplib to
catch nntplib.NNTPTemporaryError.
* ssltests.py no longer runs test_nntplib.
* "make quicktest" no longer runs test_nntplib.
* WASM: remove nntplib from OMIT_NETWORKING_FILES.
* Remove mentions to nntplib in the email documentation.
This commit replaces the Python implementation of the tokenize module with an implementation
that reuses the real C tokenizer via a private extension module. The tokenize module now implements
a compatibility layer that transforms tokens from the C tokenizer into Python tokenize tokens for backward
compatibility.
As the C tokenizer does not emit some tokens that the Python tokenizer provides (such as comments and non-semantic newlines), a new special mode has been added to the C tokenizer mode that currently is only used via
the extension module that exposes it to the Python layer. This new mode forces the C tokenizer to emit these new extra tokens and add the appropriate metadata that is needed to match the old Python implementation.
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>