cpython/Python/compile.c

5704 lines
131 KiB
C
Raw Normal View History

1990-11-18 13:27:39 -04:00
/* Compile an expression node to intermediate code */
1990-12-20 11:06:42 -04:00
/* XXX TO DO:
XXX add __doc__ attribute == co_doc to code object attributes?
XXX (it's currently the first item of the co_const tuple)
1990-12-20 11:06:42 -04:00
XXX Generate simple jump for break/return outside 'try...finally'
XXX Allow 'continue' inside finally clause of try-finally
XXX New opcode for loading the initial index for a for loop
1995-07-18 11:51:37 -03:00
XXX other JAR tricks?
1990-12-20 11:06:42 -04:00
*/
#include "Python.h"
1990-12-20 11:06:42 -04:00
1990-11-18 13:27:39 -04:00
#include "node.h"
#include "token.h"
#include "graminit.h"
#include "compile.h"
#include "symtable.h"
1990-11-18 13:27:39 -04:00
#include "opcode.h"
1990-12-20 11:06:42 -04:00
#include "structmember.h"
#include <ctype.h>
/* Three symbols from graminit.h are also defined in Python.h, with
Py_ prefixes to their names. Python.h can't include graminit.h
(which defines too many confusing symbols), but we can check here
that they haven't changed (which is very unlikely, but possible). */
#if Py_single_input != single_input
#error "single_input has changed -- update Py_single_input in Python.h"
#endif
#if Py_file_input != file_input
#error "file_input has changed -- update Py_file_input in Python.h"
#endif
#if Py_eval_input != eval_input
#error "eval_input has changed -- update Py_eval_input in Python.h"
#endif
int Py_OptimizeFlag = 0;
1996-07-30 13:49:37 -03:00
#define OP_DELETE 0
#define OP_ASSIGN 1
#define OP_APPLY 2
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
#define VAR_LOAD 0
#define VAR_STORE 1
#define VAR_DELETE 2
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
#define DEL_CLOSURE_ERROR \
"can not delete variable '%.400s' referenced in nested scope"
#define DUPLICATE_ARGUMENT \
"duplicate argument '%s' in function definition"
#define ILLEGAL_DYNAMIC_SCOPE \
"%.100s: exec or 'import *' makes names ambiguous in nested scope"
#define GLOBAL_AFTER_ASSIGN \
"name '%.400s' is assigned to before global declaration"
#define GLOBAL_AFTER_USE \
"name '%.400s' is used prior to global declaration"
#define LOCAL_GLOBAL \
"name '%.400s' is a function parameter and declared global"
#define LATE_FUTURE \
"from __future__ imports must occur at the beginning of the file"
#define ASSIGN_DEBUG \
"can not assign to __debug__"
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
#define MANGLE_LEN 256
#define OFF(x) offsetof(PyCodeObject, x)
1990-12-20 11:06:42 -04:00
static PyMemberDef code_memberlist[] = {
1995-07-18 11:51:37 -03:00
{"co_argcount", T_INT, OFF(co_argcount), READONLY},
{"co_nlocals", T_INT, OFF(co_nlocals), READONLY},
{"co_stacksize",T_INT, OFF(co_stacksize), READONLY},
1995-07-18 11:51:37 -03:00
{"co_flags", T_INT, OFF(co_flags), READONLY},
1992-01-11 22:30:05 -04:00
{"co_code", T_OBJECT, OFF(co_code), READONLY},
{"co_consts", T_OBJECT, OFF(co_consts), READONLY},
{"co_names", T_OBJECT, OFF(co_names), READONLY},
1995-07-18 11:51:37 -03:00
{"co_varnames", T_OBJECT, OFF(co_varnames), READONLY},
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
{"co_freevars", T_OBJECT, OFF(co_freevars), READONLY},
{"co_cellvars", T_OBJECT, OFF(co_cellvars), READONLY},
1992-01-11 22:30:05 -04:00
{"co_filename", T_OBJECT, OFF(co_filename), READONLY},
{"co_name", T_OBJECT, OFF(co_name), READONLY},
{"co_firstlineno", T_INT, OFF(co_firstlineno), READONLY},
{"co_lnotab", T_OBJECT, OFF(co_lnotab), READONLY},
1990-12-20 11:06:42 -04:00
{NULL} /* Sentinel */
};
PyDoc_STRVAR(code_doc,
"code(argcount, nlocals, stacksize, flags, codestring, constants, names,\n\
varnames, filename, name, firstlineno, lnotab[, freevars[, cellvars]])\n\
\n\
Create a code object. Not for the faint of heart.");
static PyObject *
code_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
int argcount;
int nlocals;
int stacksize;
int flags;
PyObject *code;
PyObject *consts;
PyObject *names;
PyObject *varnames;
PyObject *freevars = NULL;
PyObject *cellvars = NULL;
PyObject *filename;
PyObject *name;
int firstlineno;
PyObject *lnotab;
if (!PyArg_ParseTuple(args, "iiiiSO!O!O!SSiS|O!O!:code",
&argcount, &nlocals, &stacksize, &flags,
&code,
&PyTuple_Type, &consts,
&PyTuple_Type, &names,
&PyTuple_Type, &varnames,
&filename, &name,
&firstlineno, &lnotab,
&PyTuple_Type, &freevars,
&PyTuple_Type, &cellvars))
return NULL;
if (freevars == NULL || cellvars == NULL) {
PyObject *empty = PyTuple_New(0);
if (empty == NULL)
return NULL;
if (freevars == NULL) {
freevars = empty;
Py_INCREF(freevars);
}
if (cellvars == NULL) {
cellvars = empty;
Py_INCREF(cellvars);
}
Py_DECREF(empty);
}
if (!PyObject_CheckReadBuffer(code)) {
PyErr_SetString(PyExc_TypeError,
"bytecode object must be a single-segment read-only buffer");
return NULL;
}
return (PyObject *)PyCode_New(argcount, nlocals, stacksize, flags,
code, consts, names, varnames,
freevars, cellvars, filename, name,
firstlineno, lnotab);
}
1990-11-18 13:27:39 -04:00
static void
code_dealloc(PyCodeObject *co)
1990-11-18 13:27:39 -04:00
{
Py_XDECREF(co->co_code);
Py_XDECREF(co->co_consts);
Py_XDECREF(co->co_names);
Py_XDECREF(co->co_varnames);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_XDECREF(co->co_freevars);
Py_XDECREF(co->co_cellvars);
Py_XDECREF(co->co_filename);
Py_XDECREF(co->co_name);
Py_XDECREF(co->co_lnotab);
PyObject_DEL(co);
1990-11-18 13:27:39 -04:00
}
static PyObject *
code_repr(PyCodeObject *co)
{
char buf[500];
int lineno = -1;
char *filename = "???";
char *name = "???";
if (co->co_firstlineno != 0)
lineno = co->co_firstlineno;
if (co->co_filename && PyString_Check(co->co_filename))
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
filename = PyString_AS_STRING(co->co_filename);
if (co->co_name && PyString_Check(co->co_name))
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
name = PyString_AS_STRING(co->co_name);
PyOS_snprintf(buf, sizeof(buf),
"<code object %.100s at %p, file \"%.300s\", line %d>",
name, co, filename, lineno);
return PyString_FromString(buf);
}
static int
code_compare(PyCodeObject *co, PyCodeObject *cp)
{
int cmp;
cmp = PyObject_Compare(co->co_name, cp->co_name);
if (cmp) return cmp;
cmp = co->co_argcount - cp->co_argcount;
1995-07-18 11:51:37 -03:00
if (cmp) return cmp;
cmp = co->co_nlocals - cp->co_nlocals;
1995-07-18 11:51:37 -03:00
if (cmp) return cmp;
cmp = co->co_flags - cp->co_flags;
1995-07-18 11:51:37 -03:00
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_code, cp->co_code);
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_consts, cp->co_consts);
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_names, cp->co_names);
1995-07-18 11:51:37 -03:00
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_varnames, cp->co_varnames);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_freevars, cp->co_freevars);
if (cmp) return cmp;
cmp = PyObject_Compare(co->co_cellvars, cp->co_cellvars);
return cmp;
}
static long
code_hash(PyCodeObject *co)
{
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
long h, h0, h1, h2, h3, h4, h5, h6;
h0 = PyObject_Hash(co->co_name);
if (h0 == -1) return -1;
h1 = PyObject_Hash(co->co_code);
if (h1 == -1) return -1;
h2 = PyObject_Hash(co->co_consts);
if (h2 == -1) return -1;
h3 = PyObject_Hash(co->co_names);
if (h3 == -1) return -1;
h4 = PyObject_Hash(co->co_varnames);
1995-07-18 11:51:37 -03:00
if (h4 == -1) return -1;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
h5 = PyObject_Hash(co->co_freevars);
if (h5 == -1) return -1;
h6 = PyObject_Hash(co->co_cellvars);
if (h6 == -1) return -1;
h = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^
1995-07-18 11:51:37 -03:00
co->co_argcount ^ co->co_nlocals ^ co->co_flags;
if (h == -1) h = -2;
return h;
}
/* XXX code objects need to participate in GC? */
PyTypeObject PyCode_Type = {
PyObject_HEAD_INIT(&PyType_Type)
1990-11-18 13:27:39 -04:00
0,
"code",
sizeof(PyCodeObject),
1990-11-18 13:27:39 -04:00
0,
(destructor)code_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
(cmpfunc)code_compare, /* tp_compare */
(reprfunc)code_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)code_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
code_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
code_memberlist, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
code_new, /* tp_new */
1990-11-18 13:27:39 -04:00
};
#define NAME_CHARS \
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz"
/* all_name_chars(s): true iff all chars in s are valid NAME_CHARS */
static int
all_name_chars(unsigned char *s)
{
static char ok_name_char[256];
static unsigned char *name_chars = (unsigned char *)NAME_CHARS;
if (ok_name_char[*name_chars] == 0) {
unsigned char *p;
for (p = name_chars; *p; p++)
ok_name_char[*p] = 1;
}
while (*s) {
if (ok_name_char[*s++] == 0)
return 0;
}
return 1;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int
intern_strings(PyObject *tuple)
{
int i;
for (i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
PyObject *v = PyTuple_GET_ITEM(tuple, i);
if (v == NULL || !PyString_Check(v)) {
Py_FatalError("non-string found in code slot");
PyErr_BadInternalCall();
return -1;
}
PyString_InternInPlace(&PyTuple_GET_ITEM(tuple, i));
}
return 0;
}
PyCodeObject *
PyCode_New(int argcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno,
PyObject *lnotab)
1990-11-18 13:27:39 -04:00
{
PyCodeObject *co;
1990-11-18 13:27:39 -04:00
int i;
/* Check argument types */
1995-07-18 11:51:37 -03:00
if (argcount < 0 || nlocals < 0 ||
code == NULL ||
consts == NULL || !PyTuple_Check(consts) ||
names == NULL || !PyTuple_Check(names) ||
varnames == NULL || !PyTuple_Check(varnames) ||
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
freevars == NULL || !PyTuple_Check(freevars) ||
cellvars == NULL || !PyTuple_Check(cellvars) ||
name == NULL || !PyString_Check(name) ||
filename == NULL || !PyString_Check(filename) ||
2001-11-09 18:02:48 -04:00
lnotab == NULL || !PyString_Check(lnotab) ||
!PyObject_CheckReadBuffer(code)) {
PyErr_BadInternalCall();
return NULL;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
intern_strings(names);
intern_strings(varnames);
intern_strings(freevars);
intern_strings(cellvars);
/* Intern selected string constants */
for (i = PyTuple_Size(consts); --i >= 0; ) {
PyObject *v = PyTuple_GetItem(consts, i);
if (!PyString_Check(v))
continue;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (!all_name_chars((unsigned char *)PyString_AS_STRING(v)))
continue;
PyString_InternInPlace(&PyTuple_GET_ITEM(consts, i));
1990-11-18 13:27:39 -04:00
}
co = PyObject_NEW(PyCodeObject, &PyCode_Type);
1990-11-18 13:27:39 -04:00
if (co != NULL) {
1995-07-18 11:51:37 -03:00
co->co_argcount = argcount;
co->co_nlocals = nlocals;
co->co_stacksize = stacksize;
1995-07-18 11:51:37 -03:00
co->co_flags = flags;
Py_INCREF(code);
co->co_code = code;
Py_INCREF(consts);
1990-11-18 13:27:39 -04:00
co->co_consts = consts;
Py_INCREF(names);
1990-11-18 13:27:39 -04:00
co->co_names = names;
Py_INCREF(varnames);
1995-07-18 11:51:37 -03:00
co->co_varnames = varnames;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_INCREF(freevars);
co->co_freevars = freevars;
Py_INCREF(cellvars);
co->co_cellvars = cellvars;
Py_INCREF(filename);
co->co_filename = filename;
Py_INCREF(name);
co->co_name = name;
co->co_firstlineno = firstlineno;
Py_INCREF(lnotab);
co->co_lnotab = lnotab;
1990-11-18 13:27:39 -04:00
}
return co;
}
/* Data structure used internally */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* The compiler uses two passes to generate bytecodes. The first pass
builds the symbol table. The second pass generates the bytecode.
The first pass uses a single symtable struct. The second pass uses
a compiling struct for each code block. The compiling structs
share a reference to the symtable.
The two passes communicate via symtable_load_symbols() and via
is_local() and is_global(). The former initializes several slots
in the compiling struct: c_varnames, c_locals, c_nlocals,
c_argcount, c_globals, and c_flags.
*/
/* All about c_lnotab.
c_lnotab is an array of unsigned bytes disguised as a Python string. In -O
mode, SET_LINENO opcodes aren't generated, and bytecode offsets are mapped
to source code line #s (when needed for tracebacks) via c_lnotab instead.
The array is conceptually a list of
(bytecode offset increment, line number increment)
pairs. The details are important and delicate, best illustrated by example:
byte code offset source code line number
0 1
6 2
50 7
350 307
361 308
The first trick is that these numbers aren't stored, only the increments
from one row to the next (this doesn't really work, but it's a start):
0, 1, 6, 1, 44, 5, 300, 300, 11, 1
The second trick is that an unsigned byte can't hold negative values, or
values larger than 255, so (a) there's a deep assumption that byte code
offsets and their corresponding line #s both increase monotonically, and (b)
if at least one column jumps by more than 255 from one row to the next, more
than one pair is written to the table. In case #b, there's no way to know
from looking at the table later how many were written. That's the delicate
part. A user of c_lnotab desiring to find the source line number
corresponding to a bytecode address A should do something like this
lineno = addr = 0
for addr_incr, line_incr in c_lnotab:
addr += addr_incr
if addr > A:
return lineno
lineno += line_incr
In order for this to work, when the addr field increments by more than 255,
the line # increment in each pair generated must be 0 until the remaining addr
increment is < 256. So, in the example above, com_set_lineno should not (as
was actually done until 2.2) expand 300, 300 to 255, 255, 45, 45, but to
255, 0, 45, 255, 0, 45.
*/
1990-11-18 13:27:39 -04:00
struct compiling {
PyObject *c_code; /* string */
PyObject *c_consts; /* list of objects */
PyObject *c_const_dict; /* inverse of c_consts */
PyObject *c_names; /* list of strings (names) */
PyObject *c_name_dict; /* inverse of c_names */
PyObject *c_globals; /* dictionary (value=None) */
PyObject *c_locals; /* dictionary (value=localID) */
PyObject *c_varnames; /* list (inverse of c_locals) */
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyObject *c_freevars; /* dictionary (value=None) */
PyObject *c_cellvars; /* list */
1995-07-18 11:51:37 -03:00
int c_nlocals; /* index of next local */
int c_argcount; /* number of top-level arguments */
int c_flags; /* same as co_flags */
1990-11-18 13:27:39 -04:00
int c_nexti; /* index into c_code */
int c_errors; /* counts errors occurred */
1990-12-20 11:06:42 -04:00
int c_infunction; /* set when compiling a function */
int c_interactive; /* generating code for interactive command */
1990-12-20 11:06:42 -04:00
int c_loops; /* counts nested loops */
int c_begin; /* begin of current loop, for 'continue' */
int c_block[CO_MAXBLOCKS]; /* stack of block types */
int c_nblocks; /* current block stack level */
1990-12-20 11:06:42 -04:00
char *c_filename; /* filename of current node */
char *c_name; /* name of object (e.g. function) */
int c_lineno; /* Current line number */
int c_stacklevel; /* Current stack level */
int c_maxstacklevel; /* Maximum stack level */
int c_firstlineno;
PyObject *c_lnotab; /* Table mapping address to line number */
int c_last_addr, c_last_line, c_lnotab_next;
1996-08-24 03:21:31 -03:00
char *c_private; /* for private name mangling */
int c_tmpname; /* temporary local name counter */
int c_nested; /* Is block nested funcdef or lamdef? */
int c_closure; /* Is nested w/freevars? */
struct symtable *c_symtable; /* pointer to module symbol table */
PyFutureFeatures *c_future; /* pointer to module's __future__ */
char *c_encoding; /* source encoding (a borrowed reference) */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
};
2001-04-14 14:55:09 -03:00
static int
is_free(int v)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
{
if ((v & (USE | DEF_FREE))
&& !(v & (DEF_LOCAL | DEF_PARAM | DEF_GLOBAL)))
return 1;
if (v & DEF_FREE_CLASS)
return 1;
return 0;
}
static void
com_error(struct compiling *c, PyObject *exc, char *msg)
{
PyObject *t = NULL, *v = NULL, *w = NULL, *line = NULL;
if (c == NULL) {
/* Error occurred via symtable call to
is_constant_false */
PyErr_SetString(exc, msg);
return;
}
c->c_errors++;
if (c->c_lineno < 1 || c->c_interactive) {
/* Unknown line number or interactive input */
PyErr_SetString(exc, msg);
return;
}
v = PyString_FromString(msg);
if (v == NULL)
return; /* MemoryError, too bad */
line = PyErr_ProgramText(c->c_filename, c->c_lineno);
if (line == NULL) {
Py_INCREF(Py_None);
line = Py_None;
}
if (exc == PyExc_SyntaxError) {
t = Py_BuildValue("(ziOO)", c->c_filename, c->c_lineno,
Py_None, line);
if (t == NULL)
goto exit;
w = Py_BuildValue("(OO)", v, t);
if (w == NULL)
goto exit;
PyErr_SetObject(exc, w);
} else {
/* Make sure additional exceptions are printed with
file and line, also. */
PyErr_SetObject(exc, v);
PyErr_SyntaxLocation(c->c_filename, c->c_lineno);
}
exit:
Py_XDECREF(t);
Py_XDECREF(v);
Py_XDECREF(w);
Py_XDECREF(line);
}
/* Interface to the block stack */
static void
block_push(struct compiling *c, int type)
{
if (c->c_nblocks >= CO_MAXBLOCKS) {
com_error(c, PyExc_SystemError,
"too many statically nested blocks");
}
else {
c->c_block[c->c_nblocks++] = type;
}
}
static void
block_pop(struct compiling *c, int type)
{
if (c->c_nblocks > 0)
c->c_nblocks--;
if (c->c_block[c->c_nblocks] != type && c->c_errors == 0) {
com_error(c, PyExc_SystemError, "bad block pop");
}
}
1995-07-18 11:51:37 -03:00
/* Prototype forward declarations */
static int com_init(struct compiling *, char *);
static void com_free(struct compiling *);
static void com_push(struct compiling *, int);
static void com_pop(struct compiling *, int);
static void com_done(struct compiling *);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void com_node(struct compiling *, node *);
static void com_factor(struct compiling *, node *);
static void com_addbyte(struct compiling *, int);
static void com_addint(struct compiling *, int);
static void com_addoparg(struct compiling *, int, int);
static void com_addfwref(struct compiling *, int, int *);
static void com_backpatch(struct compiling *, int);
static int com_add(struct compiling *, PyObject *, PyObject *, PyObject *);
static int com_addconst(struct compiling *, PyObject *);
static int com_addname(struct compiling *, PyObject *);
static void com_addopname(struct compiling *, int, node *);
static void com_list(struct compiling *, node *, int);
static void com_list_iter(struct compiling *, node *, node *, char *);
static int com_argdefs(struct compiling *, node *);
static void com_assign(struct compiling *, node *, int, node *);
static void com_assign_name(struct compiling *, node *, int);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static PyCodeObject *icompile(node *, struct compiling *);
static PyCodeObject *jcompile(node *, char *, struct compiling *,
PyCompilerFlags *);
static PyObject *parsestrplus(struct compiling*, node *);
static PyObject *parsestr(struct compiling *, char *);
static node *get_rawdocstring(node *);
1990-11-18 13:27:39 -04:00
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int get_ref_type(struct compiling *, char *);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* symtable operations */
static int symtable_build(struct compiling *, node *);
static int symtable_load_symbols(struct compiling *);
static struct symtable *symtable_init(void);
static void symtable_enter_scope(struct symtable *, char *, int, int);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static int symtable_exit_scope(struct symtable *);
static int symtable_add_def(struct symtable *, char *, int);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int symtable_add_def_o(struct symtable *, PyObject *, PyObject *, int);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void symtable_node(struct symtable *, node *);
static void symtable_funcdef(struct symtable *, node *);
static void symtable_default_args(struct symtable *, node *);
static void symtable_params(struct symtable *, node *);
static void symtable_params_fplist(struct symtable *, node *n);
static void symtable_global(struct symtable *, node *);
static void symtable_import(struct symtable *, node *);
static void symtable_assign(struct symtable *, node *, int);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void symtable_list_comprehension(struct symtable *, node *);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int symtable_update_free_vars(struct symtable *);
static int symtable_undo_free(struct symtable *, PyObject *, PyObject *);
static int symtable_check_global(struct symtable *, PyObject *, PyObject *);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* helper */
static void
do_pad(int pad)
{
int i;
for (i = 0; i < pad; ++i)
fprintf(stderr, " ");
}
static void
dump(node *n, int pad, int depth)
{
int i;
if (depth == 0)
return;
do_pad(pad);
fprintf(stderr, "%d: %s\n", TYPE(n), STR(n));
if (depth > 0)
depth--;
for (i = 0; i < NCH(n); ++i)
dump(CHILD(n, i), pad + 1, depth);
}
#define DUMP(N) dump(N, 0, -1)
1990-11-18 13:27:39 -04:00
static int
com_init(struct compiling *c, char *filename)
1990-11-18 13:27:39 -04:00
{
memset((void *)c, '\0', sizeof(struct compiling));
if ((c->c_code = PyString_FromStringAndSize((char *)NULL,
1000)) == NULL)
goto fail;
if ((c->c_consts = PyList_New(0)) == NULL)
goto fail;
if ((c->c_const_dict = PyDict_New()) == NULL)
goto fail;
if ((c->c_names = PyList_New(0)) == NULL)
goto fail;
if ((c->c_name_dict = PyDict_New()) == NULL)
goto fail;
if ((c->c_locals = PyDict_New()) == NULL)
goto fail;
if ((c->c_lnotab = PyString_FromStringAndSize((char *)NULL,
1000)) == NULL)
goto fail;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_globals = NULL;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
c->c_varnames = NULL;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_freevars = NULL;
c->c_cellvars = NULL;
1995-07-18 11:51:37 -03:00
c->c_nlocals = 0;
c->c_argcount = 0;
c->c_flags = 0;
1990-11-18 13:27:39 -04:00
c->c_nexti = 0;
c->c_errors = 0;
1990-12-20 11:06:42 -04:00
c->c_infunction = 0;
c->c_interactive = 0;
1990-12-20 11:06:42 -04:00
c->c_loops = 0;
c->c_begin = 0;
c->c_nblocks = 0;
1990-12-20 11:06:42 -04:00
c->c_filename = filename;
c->c_name = "?";
c->c_lineno = 0;
c->c_stacklevel = 0;
c->c_maxstacklevel = 0;
c->c_firstlineno = 0;
c->c_last_addr = 0;
c->c_last_line = 0;
c->c_lnotab_next = 0;
c->c_tmpname = 0;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_nested = 0;
c->c_closure = 0;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
c->c_symtable = NULL;
1990-11-18 13:27:39 -04:00
return 1;
fail:
com_free(c);
1990-11-18 13:27:39 -04:00
return 0;
}
static void
com_free(struct compiling *c)
1990-11-18 13:27:39 -04:00
{
Py_XDECREF(c->c_code);
Py_XDECREF(c->c_consts);
Py_XDECREF(c->c_const_dict);
Py_XDECREF(c->c_names);
Py_XDECREF(c->c_name_dict);
Py_XDECREF(c->c_globals);
Py_XDECREF(c->c_locals);
Py_XDECREF(c->c_varnames);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_XDECREF(c->c_freevars);
Py_XDECREF(c->c_cellvars);
Py_XDECREF(c->c_lnotab);
if (c->c_future)
PyObject_FREE((void *)c->c_future);
1990-11-18 13:27:39 -04:00
}
static void
com_push(struct compiling *c, int n)
{
c->c_stacklevel += n;
if (c->c_stacklevel > c->c_maxstacklevel) {
c->c_maxstacklevel = c->c_stacklevel;
/*
fprintf(stderr, "%s:%s:%d max stack nexti=%d level=%d n=%d\n",
c->c_filename, c->c_name, c->c_lineno,
c->c_nexti, c->c_stacklevel, n);
*/
}
}
static void
com_pop(struct compiling *c, int n)
{
if (c->c_stacklevel < n)
c->c_stacklevel = 0;
else
c->c_stacklevel -= n;
}
1990-11-18 13:27:39 -04:00
static void
com_done(struct compiling *c)
1990-11-18 13:27:39 -04:00
{
if (c->c_code != NULL)
_PyString_Resize(&c->c_code, c->c_nexti);
if (c->c_lnotab != NULL)
_PyString_Resize(&c->c_lnotab, c->c_lnotab_next);
1990-11-18 13:27:39 -04:00
}
static int
com_check_size(PyObject **s, int offset)
{
int len = PyString_GET_SIZE(*s);
if (offset >= len)
return _PyString_Resize(s, len * 2);
return 0;
}
1990-11-18 13:27:39 -04:00
static void
com_addbyte(struct compiling *c, int byte)
1990-11-18 13:27:39 -04:00
{
1995-07-18 11:51:37 -03:00
/*fprintf(stderr, "%3d: %3d\n", c->c_nexti, byte);*/
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
assert(byte >= 0 && byte <= 255);
assert(c->c_code != 0);
if (com_check_size(&c->c_code, c->c_nexti)) {
c->c_errors++;
1990-11-18 13:27:39 -04:00
return;
}
PyString_AS_STRING(c->c_code)[c->c_nexti++] = byte;
1990-11-18 13:27:39 -04:00
}
static void
com_addint(struct compiling *c, int x)
1990-11-18 13:27:39 -04:00
{
com_addbyte(c, x & 0xff);
com_addbyte(c, x >> 8); /* XXX x should be positive */
1990-11-18 13:27:39 -04:00
}
static void
com_add_lnotab(struct compiling *c, int addr, int line)
{
char *p;
if (c->c_lnotab == NULL)
return;
if (com_check_size(&c->c_lnotab, c->c_lnotab_next + 2)) {
c->c_errors++;
return;
}
p = PyString_AS_STRING(c->c_lnotab) + c->c_lnotab_next;
*p++ = addr;
*p++ = line;
c->c_lnotab_next += 2;
}
static void
com_set_lineno(struct compiling *c, int lineno)
{
c->c_lineno = lineno;
if (c->c_firstlineno == 0) {
c->c_firstlineno = c->c_last_line = lineno;
}
else {
int incr_addr = c->c_nexti - c->c_last_addr;
int incr_line = lineno - c->c_last_line;
while (incr_addr > 255) {
com_add_lnotab(c, 255, 0);
incr_addr -= 255;
}
while (incr_line > 255) {
com_add_lnotab(c, incr_addr, 255);
incr_line -=255;
incr_addr = 0;
}
if (incr_addr > 0 || incr_line > 0)
com_add_lnotab(c, incr_addr, incr_line);
c->c_last_addr = c->c_nexti;
c->c_last_line = lineno;
}
}
1990-11-18 13:27:39 -04:00
static void
com_addoparg(struct compiling *c, int op, int arg)
1990-11-18 13:27:39 -04:00
{
int extended_arg = arg >> 16;
if (op == SET_LINENO) {
com_set_lineno(c, arg);
if (Py_OptimizeFlag)
return;
}
if (extended_arg){
com_addbyte(c, EXTENDED_ARG);
com_addint(c, extended_arg);
arg &= 0xffff;
}
com_addbyte(c, op);
com_addint(c, arg);
1990-11-18 13:27:39 -04:00
}
static void
com_addfwref(struct compiling *c, int op, int *p_anchor)
1990-11-18 13:27:39 -04:00
{
/* Compile a forward reference for backpatching */
int here;
int anchor;
com_addbyte(c, op);
here = c->c_nexti;
anchor = *p_anchor;
*p_anchor = here;
com_addint(c, anchor == 0 ? 0 : here - anchor);
}
static void
com_backpatch(struct compiling *c, int anchor)
1990-11-18 13:27:39 -04:00
{
unsigned char *code = (unsigned char *) PyString_AS_STRING(c->c_code);
1990-11-18 13:27:39 -04:00
int target = c->c_nexti;
int dist;
int prev;
for (;;) {
/* Make the JUMP instruction at anchor point to target */
prev = code[anchor] + (code[anchor+1] << 8);
dist = target - (anchor+2);
code[anchor] = dist & 0xff;
dist >>= 8;
code[anchor+1] = dist;
dist >>= 8;
if (dist) {
com_error(c, PyExc_SystemError,
"com_backpatch: offset too large");
break;
}
1990-11-18 13:27:39 -04:00
if (!prev)
break;
anchor -= prev;
}
}
1991-12-31 09:13:35 -04:00
/* Handle literals and names uniformly */
1990-11-18 13:27:39 -04:00
static int
com_add(struct compiling *c, PyObject *list, PyObject *dict, PyObject *v)
1990-11-18 13:27:39 -04:00
{
PyObject *w, *t, *np=NULL;
long n;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
t = Py_BuildValue("(OO)", v, v->ob_type);
if (t == NULL)
goto fail;
w = PyDict_GetItem(dict, t);
if (w != NULL) {
n = PyInt_AsLong(w);
} else {
n = PyList_Size(list);
np = PyInt_FromLong(n);
if (np == NULL)
goto fail;
if (PyList_Append(list, v) != 0)
goto fail;
if (PyDict_SetItem(dict, t, np) != 0)
goto fail;
Py_DECREF(np);
}
Py_DECREF(t);
return n;
fail:
Py_XDECREF(np);
Py_XDECREF(t);
c->c_errors++;
return 0;
1990-11-18 13:27:39 -04:00
}
static int
com_addconst(struct compiling *c, PyObject *v)
1990-11-18 13:27:39 -04:00
{
return com_add(c, c->c_consts, c->c_const_dict, v);
1990-11-18 13:27:39 -04:00
}
static int
com_addname(struct compiling *c, PyObject *v)
1990-11-18 13:27:39 -04:00
{
return com_add(c, c->c_names, c->c_name_dict, v);
1990-11-18 13:27:39 -04:00
}
int
_Py_Mangle(char *p, char *name, char *buffer, size_t maxlen)
1996-08-24 03:21:31 -03:00
{
/* Name mangling: __private becomes _classname__private.
1996-08-24 03:21:31 -03:00
This is independent from how the name is used. */
size_t nlen, plen;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (p == NULL || name == NULL || name[0] != '_' || name[1] != '_')
return 0;
1996-08-24 03:21:31 -03:00
nlen = strlen(name);
if (nlen+2 >= maxlen)
1996-08-24 03:21:31 -03:00
return 0; /* Don't mangle __extremely_long_names */
if (name[nlen-1] == '_' && name[nlen-2] == '_')
return 0; /* Don't mangle __whatever__ */
/* Strip leading underscores from class name */
while (*p == '_')
p++;
if (*p == '\0')
return 0; /* Don't mangle if class is just underscores */
plen = strlen(p);
if (plen + nlen >= maxlen)
plen = maxlen-nlen-2; /* Truncate class name if too long */
/* buffer = "_" + p[:plen] + name # i.e. 1+plen+nlen bytes */
1996-08-24 03:21:31 -03:00
buffer[0] = '_';
strncpy(buffer+1, p, plen);
strcpy(buffer+1+plen, name);
1996-08-24 03:21:31 -03:00
return 1;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
1990-11-18 13:27:39 -04:00
static void
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(struct compiling *c, int op, char *name)
1990-11-18 13:27:39 -04:00
{
PyObject *v;
1990-11-18 13:27:39 -04:00
int i;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
char buffer[MANGLE_LEN];
if (_Py_Mangle(c->c_private, name, buffer, sizeof(buffer)))
1996-08-24 03:21:31 -03:00
name = buffer;
if (name == NULL || (v = PyString_InternFromString(name)) == NULL) {
1990-11-18 13:27:39 -04:00
c->c_errors++;
i = 255;
}
else {
i = com_addname(c, v);
Py_DECREF(v);
1990-11-18 13:27:39 -04:00
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addoparg(c, op, i);
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
#define NAME_LOCAL 0
#define NAME_GLOBAL 1
#define NAME_DEFAULT 2
#define NAME_CLOSURE 3
static int
com_lookup_arg(PyObject *dict, PyObject *name)
{
PyObject *v = PyDict_GetItem(dict, name);
if (v == NULL)
return -1;
else
return PyInt_AS_LONG(v);
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void
com_addop_varname(struct compiling *c, int kind, char *name)
{
PyObject *v;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int i, reftype;
int scope = NAME_DEFAULT;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
int op = STOP_CODE;
char buffer[MANGLE_LEN];
if (_Py_Mangle(c->c_private, name, buffer, sizeof(buffer)))
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
name = buffer;
if (name == NULL || (v = PyString_InternFromString(name)) == NULL) {
c->c_errors++;
i = 255;
goto done;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
reftype = get_ref_type(c, name);
switch (reftype) {
case LOCAL:
if (c->c_symtable->st_cur->ste_type == TYPE_FUNCTION)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
scope = NAME_LOCAL;
break;
case GLOBAL_EXPLICIT:
scope = NAME_GLOBAL;
break;
case GLOBAL_IMPLICIT:
if (c->c_flags & CO_OPTIMIZED)
scope = NAME_GLOBAL;
break;
case FREE:
case CELL:
scope = NAME_CLOSURE;
break;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
i = com_addname(c, v);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (scope == NAME_LOCAL)
i = com_lookup_arg(c->c_locals, v);
else if (reftype == FREE)
i = com_lookup_arg(c->c_freevars, v);
else if (reftype == CELL)
i = com_lookup_arg(c->c_cellvars, v);
if (i == -1) {
c->c_errors++; /* XXX no exception set */
i = 255;
goto done;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
Py_DECREF(v);
switch (kind) {
case VAR_LOAD:
switch (scope) {
case NAME_LOCAL:
op = LOAD_FAST;
break;
case NAME_GLOBAL:
op = LOAD_GLOBAL;
break;
case NAME_DEFAULT:
op = LOAD_NAME;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
break;
case NAME_CLOSURE:
op = LOAD_DEREF;
break;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
break;
case VAR_STORE:
switch (scope) {
case NAME_LOCAL:
op = STORE_FAST;
break;
case NAME_GLOBAL:
op = STORE_GLOBAL;
break;
case NAME_DEFAULT:
op = STORE_NAME;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
break;
case NAME_CLOSURE:
op = STORE_DEREF;
break;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
break;
case VAR_DELETE:
switch (scope) {
case NAME_LOCAL:
op = DELETE_FAST;
break;
case NAME_GLOBAL:
op = DELETE_GLOBAL;
break;
case NAME_DEFAULT:
op = DELETE_NAME;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
break;
case NAME_CLOSURE: {
char buf[500];
PyOS_snprintf(buf, sizeof(buf),
DEL_CLOSURE_ERROR, name);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
com_error(c, PyExc_SyntaxError, buf);
i = 255;
break;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
break;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
done:
1990-11-18 13:27:39 -04:00
com_addoparg(c, op, i);
}
static void
com_addopname(struct compiling *c, int op, node *n)
{
char *name;
char buffer[1000];
/* XXX it is possible to write this code without the 1000
chars on the total length of dotted names, I just can't be
bothered right now */
if (TYPE(n) == STAR)
name = "*";
else if (TYPE(n) == dotted_name) {
char *p = buffer;
int i;
name = buffer;
for (i = 0; i < NCH(n); i += 2) {
char *s = STR(CHILD(n, i));
if (p + strlen(s) > buffer + (sizeof buffer) - 2) {
com_error(c, PyExc_MemoryError,
"dotted_name too long");
1995-02-17 11:04:57 -04:00
name = NULL;
break;
}
if (p != buffer)
*p++ = '.';
strcpy(p, s);
p = strchr(p, '\0');
}
}
else {
REQ(n, NAME);
name = STR(n);
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(c, op, name);
}
static PyObject *
parsenumber(struct compiling *co, char *s)
1990-11-18 13:27:39 -04:00
{
char *end;
1990-11-18 13:27:39 -04:00
long x;
double dx;
#ifndef WITHOUT_COMPLEX
Py_complex c;
int imflag;
#endif
errno = 0;
end = s + strlen(s) - 1;
#ifndef WITHOUT_COMPLEX
1996-01-26 16:53:56 -04:00
imflag = *end == 'j' || *end == 'J';
#endif
1992-03-27 13:28:26 -04:00
if (*end == 'l' || *end == 'L')
return PyLong_FromString(s, (char **)0, 0);
if (s[0] == '0') {
x = (long) PyOS_strtoul(s, &end, 0);
if (x < 0 && errno == 0) {
if (PyErr_Warn(PyExc_DeprecationWarning,
"hex/oct constants > sys.maxint "
"will return positive values "
"in Python 2.4 and up") < 0)
return NULL;
errno = 0; /* Might be changed by PyErr_Warn() */
}
}
else
x = PyOS_strtol(s, &end, 0);
if (*end == '\0') {
if (errno != 0)
return PyLong_FromString(s, (char **)0, 0);
return PyInt_FromLong(x);
}
/* XXX Huge floats may silently fail */
#ifndef WITHOUT_COMPLEX
if (imflag) {
c.real = 0.;
PyFPE_START_PROTECT("atof", return 0)
c.imag = atof(s);
1997-03-14 00:32:50 -04:00
PyFPE_END_PROTECT(c)
return PyComplex_FromCComplex(c);
}
else
#endif
{
PyFPE_START_PROTECT("atof", return 0)
dx = atof(s);
1997-03-14 00:32:50 -04:00
PyFPE_END_PROTECT(dx)
return PyFloat_FromDouble(dx);
}
1990-11-18 13:27:39 -04:00
}
static PyObject *
decode_utf8(char **sPtr, char *end, char* encoding)
{
#ifndef Py_USING_UNICODE
2002-08-07 12:18:57 -03:00
Py_FatalError("decode_utf8 should not be called in this build.");
return NULL;
#else
PyObject *u, *v;
char *s, *t;
t = s = *sPtr;
/* while (s < end && *s != '\\') s++; */ /* inefficient for u".." */
while (s < end && (*s & 0x80)) s++;
*sPtr = s;
u = PyUnicode_DecodeUTF8(t, s - t, NULL);
if (u == NULL)
return NULL;
v = PyUnicode_AsEncodedString(u, encoding, NULL);
Py_DECREF(u);
return v;
#endif
}
static PyObject *
parsestr(struct compiling *com, char *s)
1990-11-18 13:27:39 -04:00
{
PyObject *v;
size_t len;
1990-11-18 13:27:39 -04:00
char *buf;
char *p;
char *end;
1990-11-18 13:27:39 -04:00
int c;
int first = *s;
int quote = first;
int rawmode = 0;
char* encoding = ((com == NULL) ? NULL : com->c_encoding);
int need_encoding;
int unicode = 0;
if (isalpha(quote) || quote == '_') {
if (quote == 'u' || quote == 'U') {
quote = *++s;
unicode = 1;
}
if (quote == 'r' || quote == 'R') {
quote = *++s;
rawmode = 1;
}
}
if (quote != '\'' && quote != '\"') {
PyErr_BadInternalCall();
1990-11-18 13:27:39 -04:00
return NULL;
}
s++;
len = strlen(s);
if (len > INT_MAX) {
com_error(com, PyExc_OverflowError,
"string to parse is too long");
return NULL;
}
if (s[--len] != quote) {
PyErr_BadInternalCall();
1990-11-18 13:27:39 -04:00
return NULL;
}
if (len >= 4 && s[0] == quote && s[1] == quote) {
s += 2;
len -= 2;
if (s[--len] != quote || s[--len] != quote) {
PyErr_BadInternalCall();
return NULL;
}
}
#ifdef Py_USING_UNICODE
if (unicode || Py_UnicodeFlag) {
PyObject *u, *w;
if (encoding == NULL) {
buf = s;
u = NULL;
} else if (strcmp(encoding, "iso-8859-1") == 0) {
buf = s;
u = NULL;
} else {
/* "\XX" may become "\u005c\uHHLL" (12 bytes) */
u = PyString_FromStringAndSize((char *)NULL, len * 4);
if (u == NULL)
return NULL;
p = buf = PyString_AsString(u);
end = s + len;
while (s < end) {
if (*s == '\\') {
*p++ = *s++;
if (*s & 0x80) {
strcpy(p, "u005c");
p += 5;
}
}
if (*s & 0x80) { /* XXX inefficient */
char *r;
int rn, i;
w = decode_utf8(&s, end, "utf-16-be");
if (w == NULL) {
Py_DECREF(u);
return NULL;
}
r = PyString_AsString(w);
rn = PyString_Size(w);
assert(rn % 2 == 0);
for (i = 0; i < rn; i += 2) {
sprintf(p, "\\u%02x%02x",
r[i + 0] & 0xFF,
r[i + 1] & 0xFF);
p += 6;
}
Py_DECREF(w);
} else {
*p++ = *s++;
}
}
len = p - buf;
}
if (rawmode)
v = PyUnicode_DecodeRawUnicodeEscape(buf, len, NULL);
else
v = PyUnicode_DecodeUnicodeEscape(buf, len, NULL);
Py_XDECREF(u);
if (v == NULL)
PyErr_SyntaxLocation(com->c_filename, com->c_lineno);
return v;
}
#endif
need_encoding = (encoding != NULL &&
strcmp(encoding, "utf-8") != 0 &&
strcmp(encoding, "iso-8859-1") != 0);
if (rawmode || strchr(s, '\\') == NULL) {
if (need_encoding) {
#ifndef Py_USING_UNICODE
/* This should not happen - we never see any other
encoding. */
2002-08-07 12:18:57 -03:00
Py_FatalError("cannot deal with encodings in this build.");
#else
PyObject* u = PyUnicode_DecodeUTF8(s, len, NULL);
if (u == NULL)
return NULL;
v = PyUnicode_AsEncodedString(u, encoding, NULL);
Py_DECREF(u);
return v;
#endif
} else {
return PyString_FromStringAndSize(s, len);
}
}
v = PyString_FromStringAndSize((char *)NULL, /* XXX 4 is enough? */
need_encoding ? len * 4 : len);
if (v == NULL)
return NULL;
p = buf = PyString_AsString(v);
end = s + len;
while (s < end) {
1990-11-18 13:27:39 -04:00
if (*s != '\\') {
ORDINAL:
if (need_encoding && (*s & 0x80)) {
char *r;
int rn;
PyObject* w = decode_utf8(&s, end, encoding);
if (w == NULL)
return NULL;
r = PyString_AsString(w);
rn = PyString_Size(w);
memcpy(p, r, rn);
p += rn;
Py_DECREF(w);
} else {
*p++ = *s++;
}
1990-11-18 13:27:39 -04:00
continue;
}
s++;
switch (*s++) {
/* XXX This assumes ASCII! */
case '\n': break;
1990-11-18 13:27:39 -04:00
case '\\': *p++ = '\\'; break;
case '\'': *p++ = '\''; break;
case '\"': *p++ = '\"'; break;
1990-11-18 13:27:39 -04:00
case 'b': *p++ = '\b'; break;
case 'f': *p++ = '\014'; break; /* FF */
case 't': *p++ = '\t'; break;
case 'n': *p++ = '\n'; break;
case 'r': *p++ = '\r'; break;
case 'v': *p++ = '\013'; break; /* VT */
case 'a': *p++ = '\007'; break; /* BEL, not classic C */
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
c = s[-1] - '0';
if ('0' <= *s && *s <= '7') {
c = (c<<3) + *s++ - '0';
if ('0' <= *s && *s <= '7')
c = (c<<3) + *s++ - '0';
}
*p++ = c;
break;
case 'x':
if (isxdigit(Py_CHARMASK(s[0]))
&& isxdigit(Py_CHARMASK(s[1]))) {
unsigned int x = 0;
c = Py_CHARMASK(*s);
s++;
if (isdigit(c))
x = c - '0';
else if (islower(c))
x = 10 + c - 'a';
else
x = 10 + c - 'A';
x = x << 4;
c = Py_CHARMASK(*s);
s++;
if (isdigit(c))
x += c - '0';
else if (islower(c))
x += 10 + c - 'a';
else
x += 10 + c - 'A';
*p++ = x;
1990-11-18 13:27:39 -04:00
break;
}
Py_DECREF(v);
com_error(com, PyExc_ValueError,
"invalid \\x escape");
return NULL;
#ifndef Py_USING_UNICODE
case 'u':
case 'U':
case 'N':
if (unicode) {
Py_DECREF(v);
com_error(com, PyExc_ValueError,
"Unicode escapes not legal "
"when Unicode disabled");
return NULL;
}
#endif
default:
*p++ = '\\';
s--;
goto ORDINAL;
1990-11-18 13:27:39 -04:00
}
}
_PyString_Resize(&v, (int)(p - buf));
1990-11-18 13:27:39 -04:00
return v;
}
static PyObject *
parsestrplus(struct compiling* c, node *n)
{
PyObject *v;
int i;
REQ(CHILD(n, 0), STRING);
if ((v = parsestr(c, STR(CHILD(n, 0)))) != NULL) {
/* String literal concatenation */
for (i = 1; i < NCH(n); i++) {
PyObject *s;
s = parsestr(c, STR(CHILD(n, i)));
if (s == NULL)
goto onError;
if (PyString_Check(v) && PyString_Check(s)) {
PyString_ConcatAndDel(&v, s);
if (v == NULL)
goto onError;
}
#ifdef Py_USING_UNICODE
else {
PyObject *temp;
temp = PyUnicode_Concat(v, s);
Py_DECREF(s);
if (temp == NULL)
goto onError;
Py_DECREF(v);
v = temp;
}
#endif
}
}
return v;
onError:
Py_XDECREF(v);
return NULL;
}
1990-11-18 13:27:39 -04:00
static void
com_list_for(struct compiling *c, node *n, node *e, char *t)
1990-11-18 13:27:39 -04:00
{
int anchor = 0;
int save_begin = c->c_begin;
/* list_iter: for v in expr [list_iter] */
com_node(c, CHILD(n, 3)); /* expr */
com_addbyte(c, GET_ITER);
c->c_begin = c->c_nexti;
com_addfwref(c, FOR_ITER, &anchor);
com_push(c, 1);
com_assign(c, CHILD(n, 1), OP_ASSIGN, NULL);
c->c_loops++;
com_list_iter(c, n, e, t);
c->c_loops--;
com_addoparg(c, JUMP_ABSOLUTE, c->c_begin);
c->c_begin = save_begin;
com_backpatch(c, anchor);
com_pop(c, 1); /* FOR_ITER has popped this */
}
static void
com_list_if(struct compiling *c, node *n, node *e, char *t)
{
int anchor = 0;
int a = 0;
/* list_iter: 'if' test [list_iter] */
com_node(c, CHILD(n, 1));
com_addfwref(c, JUMP_IF_FALSE, &a);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
com_list_iter(c, n, e, t);
com_addfwref(c, JUMP_FORWARD, &anchor);
com_backpatch(c, a);
/* We jump here with an extra entry which we now pop */
com_addbyte(c, POP_TOP);
com_backpatch(c, anchor);
}
static void
com_list_iter(struct compiling *c,
node *p, /* parent of list_iter node */
node *e, /* element expression node */
char *t /* name of result list temp local */)
{
/* list_iter is the last child in a listmaker, list_for, or list_if */
node *n = CHILD(p, NCH(p)-1);
if (TYPE(n) == list_iter) {
n = CHILD(n, 0);
switch (TYPE(n)) {
case list_for:
com_list_for(c, n, e, t);
break;
case list_if:
com_list_if(c, n, e, t);
break;
default:
com_error(c, PyExc_SystemError,
"invalid list_iter node type");
}
}
else {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_LOAD, t);
com_push(c, 1);
com_node(c, e);
com_addoparg(c, CALL_FUNCTION, 1);
com_addbyte(c, POP_TOP);
com_pop(c, 2);
}
}
static void
com_list_comprehension(struct compiling *c, node *n)
{
/* listmaker: test list_for */
char tmpname[30];
PyOS_snprintf(tmpname, sizeof(tmpname), "_[%d]", ++c->c_tmpname);
com_addoparg(c, BUILD_LIST, 0);
com_addbyte(c, DUP_TOP); /* leave the result on the stack */
com_push(c, 2);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(c, LOAD_ATTR, "append");
com_addop_varname(c, VAR_STORE, tmpname);
com_pop(c, 1);
com_list_for(c, CHILD(n, 1), CHILD(n, 0), tmpname);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_DELETE, tmpname);
--c->c_tmpname;
}
static void
com_listmaker(struct compiling *c, node *n)
{
/* listmaker: test ( list_for | (',' test)* [','] ) */
if (NCH(n) > 1 && TYPE(CHILD(n, 1)) == list_for)
com_list_comprehension(c, n);
else {
int len = 0;
int i;
for (i = 0; i < NCH(n); i += 2, len++)
com_node(c, CHILD(n, i));
com_addoparg(c, BUILD_LIST, len);
com_pop(c, len-1);
}
1990-11-18 13:27:39 -04:00
}
static void
com_dictmaker(struct compiling *c, node *n)
{
int i;
/* dictmaker: test ':' test (',' test ':' value)* [','] */
for (i = 0; i+2 < NCH(n); i += 4) {
/* We must arrange things just right for STORE_SUBSCR.
It wants the stack to look like (value) (dict) (key) */
com_addbyte(c, DUP_TOP);
com_push(c, 1);
com_node(c, CHILD(n, i+2)); /* value */
com_addbyte(c, ROT_TWO);
com_node(c, CHILD(n, i)); /* key */
com_addbyte(c, STORE_SUBSCR);
com_pop(c, 3);
}
}
1990-11-18 13:27:39 -04:00
static void
com_atom(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
node *ch;
PyObject *v;
1990-11-18 13:27:39 -04:00
int i;
REQ(n, atom);
ch = CHILD(n, 0);
switch (TYPE(ch)) {
case LPAR:
if (TYPE(CHILD(n, 1)) == RPAR) {
1990-11-18 13:27:39 -04:00
com_addoparg(c, BUILD_TUPLE, 0);
com_push(c, 1);
}
1990-11-18 13:27:39 -04:00
else
com_node(c, CHILD(n, 1));
break;
case LSQB: /* '[' [listmaker] ']' */
if (TYPE(CHILD(n, 1)) == RSQB) {
1990-11-18 13:27:39 -04:00
com_addoparg(c, BUILD_LIST, 0);
com_push(c, 1);
}
1990-11-18 13:27:39 -04:00
else
com_listmaker(c, CHILD(n, 1));
1990-11-18 13:27:39 -04:00
break;
case LBRACE: /* '{' [dictmaker] '}' */
1990-11-18 13:27:39 -04:00
com_addoparg(c, BUILD_MAP, 0);
com_push(c, 1);
if (TYPE(CHILD(n, 1)) == dictmaker)
com_dictmaker(c, CHILD(n, 1));
1990-11-18 13:27:39 -04:00
break;
case BACKQUOTE:
com_node(c, CHILD(n, 1));
com_addbyte(c, UNARY_CONVERT);
break;
case NUMBER:
if ((v = parsenumber(c, STR(ch))) == NULL) {
1990-11-18 13:27:39 -04:00
i = 255;
}
else {
i = com_addconst(c, v);
Py_DECREF(v);
1990-11-18 13:27:39 -04:00
}
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
1990-11-18 13:27:39 -04:00
break;
case STRING:
v = parsestrplus(c, n);
if (v == NULL) {
1990-11-18 13:27:39 -04:00
c->c_errors++;
i = 255;
}
else {
i = com_addconst(c, v);
Py_DECREF(v);
1990-11-18 13:27:39 -04:00
}
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
1990-11-18 13:27:39 -04:00
break;
case NAME:
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_LOAD, STR(ch));
com_push(c, 1);
1990-11-18 13:27:39 -04:00
break;
default:
com_error(c, PyExc_SystemError,
"com_atom: unexpected node type");
1990-11-18 13:27:39 -04:00
}
}
static void
com_slice(struct compiling *c, node *n, int op)
1990-11-18 13:27:39 -04:00
{
if (NCH(n) == 1) {
com_addbyte(c, op);
}
else if (NCH(n) == 2) {
if (TYPE(CHILD(n, 0)) != COLON) {
com_node(c, CHILD(n, 0));
com_addbyte(c, op+1);
}
else {
com_node(c, CHILD(n, 1));
com_addbyte(c, op+2);
}
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
else {
com_node(c, CHILD(n, 0));
com_node(c, CHILD(n, 2));
com_addbyte(c, op+3);
com_pop(c, 2);
1990-11-18 13:27:39 -04:00
}
}
static void
com_augassign_slice(struct compiling *c, node *n, int opcode, node *augn)
{
if (NCH(n) == 1) {
com_addbyte(c, DUP_TOP);
com_push(c, 1);
com_addbyte(c, SLICE);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_addbyte(c, ROT_TWO);
com_addbyte(c, STORE_SLICE);
com_pop(c, 2);
} else if (NCH(n) == 2 && TYPE(CHILD(n, 0)) != COLON) {
com_node(c, CHILD(n, 0));
com_addoparg(c, DUP_TOPX, 2);
com_push(c, 2);
com_addbyte(c, SLICE+1);
com_pop(c, 1);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_addbyte(c, ROT_THREE);
com_addbyte(c, STORE_SLICE+1);
com_pop(c, 3);
} else if (NCH(n) == 2) {
com_node(c, CHILD(n, 1));
com_addoparg(c, DUP_TOPX, 2);
com_push(c, 2);
com_addbyte(c, SLICE+2);
com_pop(c, 1);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_addbyte(c, ROT_THREE);
com_addbyte(c, STORE_SLICE+2);
com_pop(c, 3);
} else {
com_node(c, CHILD(n, 0));
com_node(c, CHILD(n, 2));
com_addoparg(c, DUP_TOPX, 3);
com_push(c, 3);
com_addbyte(c, SLICE+3);
com_pop(c, 2);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_addbyte(c, ROT_FOUR);
com_addbyte(c, STORE_SLICE+3);
com_pop(c, 4);
}
}
static void
com_argument(struct compiling *c, node *n, PyObject **pkeywords)
{
node *m;
REQ(n, argument); /* [test '='] test; really [keyword '='] test */
if (NCH(n) == 1) {
if (*pkeywords != NULL) {
com_error(c, PyExc_SyntaxError,
"non-keyword arg after keyword arg");
}
else {
com_node(c, CHILD(n, 0));
}
return;
}
m = n;
do {
m = CHILD(m, 0);
} while (NCH(m) == 1);
if (TYPE(m) != NAME) {
/* f(lambda x: x[0] = 3) ends up getting parsed with
* LHS test = lambda x: x[0], and RHS test = 3.
* SF bug 132313 points out that complaining about a keyword
* then is very confusing.
*/
com_error(c, PyExc_SyntaxError,
TYPE(m) == lambdef ?
"lambda cannot contain assignment" :
"keyword can't be an expression");
}
else {
PyObject *v = PyString_InternFromString(STR(m));
if (v != NULL && *pkeywords == NULL)
*pkeywords = PyDict_New();
if (v == NULL)
c->c_errors++;
else if (*pkeywords == NULL) {
c->c_errors++;
Py_DECREF(v);
} else {
if (PyDict_GetItem(*pkeywords, v) != NULL)
com_error(c, PyExc_SyntaxError,
"duplicate keyword argument");
else
if (PyDict_SetItem(*pkeywords, v, v) != 0)
c->c_errors++;
com_addoparg(c, LOAD_CONST, com_addconst(c, v));
com_push(c, 1);
Py_DECREF(v);
}
}
com_node(c, CHILD(n, 2));
}
1990-11-18 13:27:39 -04:00
static void
com_call_function(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
if (TYPE(n) == RPAR) {
com_addoparg(c, CALL_FUNCTION, 0);
1990-11-18 13:27:39 -04:00
}
else {
PyObject *keywords = NULL;
int i, na, nk;
int lineno = n->n_lineno;
int star_flag = 0;
int starstar_flag = 0;
int opcode;
REQ(n, arglist);
na = 0;
nk = 0;
for (i = 0; i < NCH(n); i += 2) {
node *ch = CHILD(n, i);
if (TYPE(ch) == STAR ||
TYPE(ch) == DOUBLESTAR)
break;
if (ch->n_lineno != lineno) {
lineno = ch->n_lineno;
com_addoparg(c, SET_LINENO, lineno);
}
com_argument(c, ch, &keywords);
if (keywords == NULL)
na++;
else
nk++;
}
Py_XDECREF(keywords);
while (i < NCH(n)) {
node *tok = CHILD(n, i);
node *ch = CHILD(n, i+1);
i += 3;
switch (TYPE(tok)) {
case STAR: star_flag = 1; break;
case DOUBLESTAR: starstar_flag = 1; break;
}
com_node(c, ch);
}
if (na > 255 || nk > 255) {
com_error(c, PyExc_SyntaxError,
"more than 255 arguments");
}
if (star_flag || starstar_flag)
opcode = CALL_FUNCTION_VAR - 1 +
star_flag + (starstar_flag << 1);
else
opcode = CALL_FUNCTION;
com_addoparg(c, opcode, na | (nk << 8));
com_pop(c, na + 2*nk + star_flag + starstar_flag);
1990-11-18 13:27:39 -04:00
}
}
static void
com_select_member(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
com_addopname(c, LOAD_ATTR, n);
}
1996-07-30 13:49:37 -03:00
static void
com_sliceobj(struct compiling *c, node *n)
1996-07-30 13:49:37 -03:00
{
int i=0;
int ns=2; /* number of slice arguments */
node *ch;
/* first argument */
if (TYPE(CHILD(n,i)) == COLON) {
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
1996-07-30 13:49:37 -03:00
i++;
}
else {
com_node(c, CHILD(n,i));
i++;
REQ(CHILD(n,i),COLON);
i++;
}
/* second argument */
if (i < NCH(n) && TYPE(CHILD(n,i)) == test) {
com_node(c, CHILD(n,i));
i++;
}
else {
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
}
1996-07-30 13:49:37 -03:00
/* remaining arguments */
for (; i < NCH(n); i++) {
ns++;
ch=CHILD(n,i);
REQ(ch, sliceop);
if (NCH(ch) == 1) {
/* right argument of ':' missing */
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
1996-07-30 13:49:37 -03:00
}
else
com_node(c, CHILD(ch,1));
}
com_addoparg(c, BUILD_SLICE, ns);
com_pop(c, 1 + (ns == 3));
1996-07-30 13:49:37 -03:00
}
static void
com_subscript(struct compiling *c, node *n)
1996-07-30 13:49:37 -03:00
{
node *ch;
REQ(n, subscript);
ch = CHILD(n,0);
/* check for rubber index */
if (TYPE(ch) == DOT && TYPE(CHILD(n,1)) == DOT) {
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_Ellipsis));
com_push(c, 1);
}
1996-07-30 13:49:37 -03:00
else {
/* check for slice */
if ((TYPE(ch) == COLON || NCH(n) > 1))
com_sliceobj(c, n);
else {
REQ(ch, test);
com_node(c, ch);
}
}
}
static void
com_subscriptlist(struct compiling *c, node *n, int assigning, node *augn)
1996-07-30 13:49:37 -03:00
{
int i, op;
REQ(n, subscriptlist);
/* Check to make backward compatible slice behavior for '[i:j]' */
if (NCH(n) == 1) {
node *sub = CHILD(n, 0); /* subscript */
/* 'Basic' slice, should have exactly one colon. */
if ((TYPE(CHILD(sub, 0)) == COLON
|| (NCH(sub) > 1 && TYPE(CHILD(sub, 1)) == COLON))
&& (TYPE(CHILD(sub,NCH(sub)-1)) != sliceop))
{
switch (assigning) {
case OP_DELETE:
op = DELETE_SLICE;
break;
case OP_ASSIGN:
op = STORE_SLICE;
break;
case OP_APPLY:
1996-07-30 13:49:37 -03:00
op = SLICE;
break;
default:
com_augassign_slice(c, sub, assigning, augn);
return;
}
1996-07-30 13:49:37 -03:00
com_slice(c, sub, op);
if (op == STORE_SLICE)
com_pop(c, 2);
else if (op == DELETE_SLICE)
com_pop(c, 1);
1996-07-30 13:49:37 -03:00
return;
}
}
/* Else normal subscriptlist. Compile each subscript. */
for (i = 0; i < NCH(n); i += 2)
com_subscript(c, CHILD(n, i));
/* Put multiple subscripts into a tuple */
if (NCH(n) > 1) {
i = (NCH(n)+1) / 2;
com_addoparg(c, BUILD_TUPLE, i);
com_pop(c, i-1);
}
switch (assigning) {
case OP_DELETE:
op = DELETE_SUBSCR;
i = 2;
break;
default:
case OP_ASSIGN:
op = STORE_SUBSCR;
i = 3;
break;
case OP_APPLY:
op = BINARY_SUBSCR;
i = 1;
break;
}
if (assigning > OP_APPLY) {
com_addoparg(c, DUP_TOPX, 2);
com_push(c, 2);
com_addbyte(c, BINARY_SUBSCR);
com_pop(c, 1);
com_node(c, augn);
com_addbyte(c, assigning);
com_pop(c, 1);
com_addbyte(c, ROT_THREE);
}
1996-07-30 13:49:37 -03:00
com_addbyte(c, op);
com_pop(c, i);
1996-07-30 13:49:37 -03:00
}
1990-11-18 13:27:39 -04:00
static void
com_apply_trailer(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, trailer);
switch (TYPE(CHILD(n, 0))) {
case LPAR:
com_call_function(c, CHILD(n, 1));
break;
case DOT:
com_select_member(c, CHILD(n, 1));
break;
case LSQB:
com_subscriptlist(c, CHILD(n, 1), OP_APPLY, NULL);
1990-11-18 13:27:39 -04:00
break;
default:
com_error(c, PyExc_SystemError,
"com_apply_trailer: unknown trailer type");
1990-11-18 13:27:39 -04:00
}
}
static void
com_power(struct compiling *c, node *n)
{
int i;
REQ(n, power);
com_atom(c, CHILD(n, 0));
for (i = 1; i < NCH(n); i++) {
if (TYPE(CHILD(n, i)) == DOUBLESTAR) {
com_factor(c, CHILD(n, i+1));
com_addbyte(c, BINARY_POWER);
com_pop(c, 1);
break;
}
else
com_apply_trailer(c, CHILD(n, i));
}
}
static void
com_invert_constant(struct compiling *c, node *n)
{
/* Compute the inverse of int and longs and use them directly,
but be prepared to generate code for all other
possibilities (invalid numbers, floats, complex).
*/
PyObject *num, *inv = NULL;
int i;
REQ(n, NUMBER);
num = parsenumber(c, STR(n));
if (num == NULL)
i = 255;
else {
inv = PyNumber_Invert(num);
if (inv == NULL) {
PyErr_Clear();
i = com_addconst(c, num);
} else {
i = com_addconst(c, inv);
Py_DECREF(inv);
}
Py_DECREF(num);
}
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
if (num != NULL && inv == NULL)
com_addbyte(c, UNARY_INVERT);
}
static int
is_float_zero(const char *p)
{
int found_radix_point = 0;
int ch;
while ((ch = Py_CHARMASK(*p++)) != '\0') {
switch (ch) {
case '0':
/* no reason to believe it's not 0 -- continue */
break;
case 'e': case 'E': case 'j': case 'J':
/* If this was a hex constant, we already would have
returned 0 due to the 'x' or 'X', so 'e' or 'E'
must be an exponent marker, and we haven't yet
seen a non-zero digit, and it doesn't matter what
the exponent is then. For 'j' or 'J' similarly,
except that this is an imaginary 0 then. */
return 1;
case '.':
found_radix_point = 1;
break;
default:
return 0;
}
}
return found_radix_point;
}
1990-11-18 13:27:39 -04:00
static void
com_factor(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int childtype = TYPE(CHILD(n, 0));
node *pfactor, *ppower, *patom, *pnum;
1990-11-18 13:27:39 -04:00
REQ(n, factor);
/* If the unary +, -, or ~ operator is applied to a constant,
don't generate a UNARY_xxx opcode. Just store the
approriate value as a constant. If the value is negative,
extend the string containing the constant and insert a
negative in the 0th position -- unless we're doing unary minus
of a floating zero! In that case the sign is significant, but
the const dict can't distinguish +0.0 from -0.0.
*/
if ((childtype == PLUS || childtype == MINUS || childtype == TILDE)
&& NCH(n) == 2
&& TYPE((pfactor = CHILD(n, 1))) == factor
&& NCH(pfactor) == 1
&& TYPE((ppower = CHILD(pfactor, 0))) == power
&& NCH(ppower) == 1
&& TYPE((patom = CHILD(ppower, 0))) == atom
&& TYPE((pnum = CHILD(patom, 0))) == NUMBER
&& !(childtype == MINUS && is_float_zero(STR(pnum)))) {
if (childtype == TILDE) {
com_invert_constant(c, pnum);
return;
}
if (childtype == MINUS) {
char *s = PyObject_MALLOC(strlen(STR(pnum)) + 2);
if (s == NULL) {
com_error(c, PyExc_MemoryError, "");
com_addbyte(c, 255);
return;
}
s[0] = '-';
strcpy(s + 1, STR(pnum));
PyObject_FREE(STR(pnum));
STR(pnum) = s;
}
com_atom(c, patom);
}
else if (childtype == PLUS) {
1990-11-18 13:27:39 -04:00
com_factor(c, CHILD(n, 1));
com_addbyte(c, UNARY_POSITIVE);
}
else if (childtype == MINUS) {
1990-11-18 13:27:39 -04:00
com_factor(c, CHILD(n, 1));
com_addbyte(c, UNARY_NEGATIVE);
}
else if (childtype == TILDE) {
1991-10-24 11:59:31 -03:00
com_factor(c, CHILD(n, 1));
com_addbyte(c, UNARY_INVERT);
}
1990-11-18 13:27:39 -04:00
else {
com_power(c, CHILD(n, 0));
1990-11-18 13:27:39 -04:00
}
}
static void
com_term(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
int op;
REQ(n, term);
com_factor(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_factor(c, CHILD(n, i));
switch (TYPE(CHILD(n, i-1))) {
case STAR:
op = BINARY_MULTIPLY;
break;
case SLASH:
if (c->c_flags & CO_FUTURE_DIVISION)
op = BINARY_TRUE_DIVIDE;
else
op = BINARY_DIVIDE;
1990-11-18 13:27:39 -04:00
break;
case PERCENT:
op = BINARY_MODULO;
break;
case DOUBLESLASH:
op = BINARY_FLOOR_DIVIDE;
break;
1990-11-18 13:27:39 -04:00
default:
com_error(c, PyExc_SystemError,
"com_term: operator not *, /, // or %");
1990-11-18 13:27:39 -04:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
}
static void
com_arith_expr(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
int op;
1991-10-24 11:59:31 -03:00
REQ(n, arith_expr);
1990-11-18 13:27:39 -04:00
com_term(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_term(c, CHILD(n, i));
switch (TYPE(CHILD(n, i-1))) {
case PLUS:
op = BINARY_ADD;
break;
case MINUS:
op = BINARY_SUBTRACT;
break;
default:
com_error(c, PyExc_SystemError,
"com_arith_expr: operator not + or -");
1991-10-24 11:59:31 -03:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1991-10-24 11:59:31 -03:00
}
}
static void
com_shift_expr(struct compiling *c, node *n)
1991-10-24 11:59:31 -03:00
{
int i;
int op;
REQ(n, shift_expr);
com_arith_expr(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_arith_expr(c, CHILD(n, i));
switch (TYPE(CHILD(n, i-1))) {
case LEFTSHIFT:
op = BINARY_LSHIFT;
break;
case RIGHTSHIFT:
op = BINARY_RSHIFT;
break;
default:
com_error(c, PyExc_SystemError,
"com_shift_expr: operator not << or >>");
1991-10-24 11:59:31 -03:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1991-10-24 11:59:31 -03:00
}
}
static void
com_and_expr(struct compiling *c, node *n)
1991-10-24 11:59:31 -03:00
{
int i;
int op;
REQ(n, and_expr);
com_shift_expr(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_shift_expr(c, CHILD(n, i));
if (TYPE(CHILD(n, i-1)) == AMPER) {
op = BINARY_AND;
}
else {
com_error(c, PyExc_SystemError,
"com_and_expr: operator not &");
1991-10-24 11:59:31 -03:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1991-10-24 11:59:31 -03:00
}
}
static void
com_xor_expr(struct compiling *c, node *n)
1991-10-24 11:59:31 -03:00
{
int i;
int op;
REQ(n, xor_expr);
com_and_expr(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_and_expr(c, CHILD(n, i));
if (TYPE(CHILD(n, i-1)) == CIRCUMFLEX) {
op = BINARY_XOR;
}
else {
com_error(c, PyExc_SystemError,
"com_xor_expr: operator not ^");
1991-10-24 11:59:31 -03:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1991-10-24 11:59:31 -03:00
}
}
static void
com_expr(struct compiling *c, node *n)
1991-10-24 11:59:31 -03:00
{
int i;
int op;
REQ(n, expr);
com_xor_expr(c, CHILD(n, 0));
for (i = 2; i < NCH(n); i += 2) {
com_xor_expr(c, CHILD(n, i));
if (TYPE(CHILD(n, i-1)) == VBAR) {
op = BINARY_OR;
}
else {
com_error(c, PyExc_SystemError,
"com_expr: expr operator not |");
1990-11-18 13:27:39 -04:00
op = 255;
}
com_addbyte(c, op);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
}
static enum cmp_op
cmp_type(node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, comp_op);
/* comp_op: '<' | '>' | '=' | '>=' | '<=' | '<>' | '!=' | '=='
1990-11-18 13:27:39 -04:00
| 'in' | 'not' 'in' | 'is' | 'is' not' */
if (NCH(n) == 1) {
n = CHILD(n, 0);
switch (TYPE(n)) {
case LESS: return PyCmp_LT;
case GREATER: return PyCmp_GT;
case EQEQUAL: /* == */
case EQUAL: return PyCmp_EQ;
case LESSEQUAL: return PyCmp_LE;
case GREATEREQUAL: return PyCmp_GE;
case NOTEQUAL: return PyCmp_NE; /* <> or != */
case NAME: if (strcmp(STR(n), "in") == 0) return PyCmp_IN;
if (strcmp(STR(n), "is") == 0) return PyCmp_IS;
1990-11-18 13:27:39 -04:00
}
}
else if (NCH(n) == 2) {
switch (TYPE(CHILD(n, 0))) {
case NAME: if (strcmp(STR(CHILD(n, 1)), "in") == 0)
return PyCmp_NOT_IN;
1990-11-18 13:27:39 -04:00
if (strcmp(STR(CHILD(n, 0)), "is") == 0)
return PyCmp_IS_NOT;
1990-11-18 13:27:39 -04:00
}
}
return PyCmp_BAD;
1990-11-18 13:27:39 -04:00
}
static void
com_comparison(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
enum cmp_op op;
int anchor;
REQ(n, comparison); /* comparison: expr (comp_op expr)* */
com_expr(c, CHILD(n, 0));
if (NCH(n) == 1)
return;
/****************************************************************
The following code is generated for all but the last
comparison in a chain:
label: on stack: opcode: jump to:
a <code to load b>
a, b DUP_TOP
a, b, b ROT_THREE
b, a, b COMPARE_OP
b, 0-or-1 JUMP_IF_FALSE L1
b, 1 POP_TOP
b
We are now ready to repeat this sequence for the next
comparison in the chain.
For the last we generate:
b <code to load c>
b, c COMPARE_OP
0-or-1
If there were any jumps to L1 (i.e., there was more than one
comparison), we generate:
0-or-1 JUMP_FORWARD L2
L1: b, 0 ROT_TWO
0, b POP_TOP
0
L2: 0-or-1
1990-11-18 13:27:39 -04:00
****************************************************************/
anchor = 0;
for (i = 2; i < NCH(n); i += 2) {
com_expr(c, CHILD(n, i));
if (i+2 < NCH(n)) {
com_addbyte(c, DUP_TOP);
com_push(c, 1);
1990-11-18 13:27:39 -04:00
com_addbyte(c, ROT_THREE);
}
op = cmp_type(CHILD(n, i-1));
if (op == PyCmp_BAD) {
com_error(c, PyExc_SystemError,
"com_comparison: unknown comparison op");
1990-11-18 13:27:39 -04:00
}
com_addoparg(c, COMPARE_OP, op);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
if (i+2 < NCH(n)) {
com_addfwref(c, JUMP_IF_FALSE, &anchor);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
}
if (anchor) {
int anchor2 = 0;
com_addfwref(c, JUMP_FORWARD, &anchor2);
com_backpatch(c, anchor);
com_addbyte(c, ROT_TWO);
com_addbyte(c, POP_TOP);
com_backpatch(c, anchor2);
}
}
static void
com_not_test(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, not_test); /* 'not' not_test | comparison */
if (NCH(n) == 1) {
com_comparison(c, CHILD(n, 0));
}
else {
com_not_test(c, CHILD(n, 1));
com_addbyte(c, UNARY_NOT);
}
}
static void
com_and_test(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
int anchor;
REQ(n, and_test); /* not_test ('and' not_test)* */
anchor = 0;
i = 0;
for (;;) {
com_not_test(c, CHILD(n, i));
if ((i += 2) >= NCH(n))
break;
com_addfwref(c, JUMP_IF_FALSE, &anchor);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
if (anchor)
com_backpatch(c, anchor);
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int
com_make_closure(struct compiling *c, PyCodeObject *co)
{
int i, free = PyCode_GetNumFree(co);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (free == 0)
return 0;
for (i = 0; i < free; ++i) {
/* Bypass com_addop_varname because it will generate
LOAD_DEREF but LOAD_CLOSURE is needed.
*/
PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
int arg, reftype;
/* Special case: If a class contains a method with a
free variable that has the same name as a method,
the name will be considered free *and* local in the
class. It should be handled by the closure, as
well as by the normal name loookup logic.
*/
reftype = get_ref_type(c, PyString_AS_STRING(name));
if (reftype == CELL)
arg = com_lookup_arg(c->c_cellvars, name);
else /* (reftype == FREE) */
arg = com_lookup_arg(c->c_freevars, name);
if (arg == -1) {
fprintf(stderr, "lookup %s in %s %d %d\n"
"freevars of %s: %s\n",
PyObject_REPR(name),
c->c_name,
reftype, arg,
PyString_AS_STRING(co->co_name),
PyObject_REPR(co->co_freevars));
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_FatalError("com_make_closure()");
}
com_addoparg(c, LOAD_CLOSURE, arg);
}
com_push(c, free);
return 1;
}
1990-11-18 13:27:39 -04:00
static void
com_test(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, test); /* and_test ('or' and_test)* | lambdef */
if (NCH(n) == 1 && TYPE(CHILD(n, 0)) == lambdef) {
PyCodeObject *co;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int i, closure;
1995-07-18 11:51:37 -03:00
int ndefs = com_argdefs(c, CHILD(n, 0));
symtable_enter_scope(c->c_symtable, "lambda", lambdef,
n->n_lineno);
co = icompile(CHILD(n, 0), c);
if (co == NULL) {
c->c_errors++;
return;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_exit_scope(c->c_symtable);
i = com_addconst(c, (PyObject *)co);
closure = com_make_closure(c, co);
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
if (closure) {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
com_addoparg(c, MAKE_CLOSURE, ndefs);
com_pop(c, PyCode_GetNumFree(co));
} else
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
com_addoparg(c, MAKE_FUNCTION, ndefs);
Py_DECREF(co);
com_pop(c, ndefs);
}
else {
int anchor = 0;
int i = 0;
for (;;) {
com_and_test(c, CHILD(n, i));
if ((i += 2) >= NCH(n))
break;
com_addfwref(c, JUMP_IF_TRUE, &anchor);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
}
if (anchor)
com_backpatch(c, anchor);
1990-11-18 13:27:39 -04:00
}
}
static void
com_list(struct compiling *c, node *n, int toplevel)
1990-11-18 13:27:39 -04:00
{
/* exprlist: expr (',' expr)* [',']; likewise for testlist */
1991-12-16 09:05:10 -04:00
if (NCH(n) == 1 && !toplevel) {
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 0));
}
else {
int i;
int len;
len = (NCH(n) + 1) / 2;
for (i = 0; i < NCH(n); i += 2)
com_node(c, CHILD(n, i));
com_addoparg(c, BUILD_TUPLE, len);
com_pop(c, len-1);
1990-11-18 13:27:39 -04:00
}
}
/* Begin of assignment compilation */
static void
com_augassign_attr(struct compiling *c, node *n, int opcode, node *augn)
{
com_addbyte(c, DUP_TOP);
com_push(c, 1);
com_addopname(c, LOAD_ATTR, n);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_addbyte(c, ROT_TWO);
com_addopname(c, STORE_ATTR, n);
com_pop(c, 2);
}
1990-11-18 13:27:39 -04:00
static void
com_assign_attr(struct compiling *c, node *n, int assigning)
1990-11-18 13:27:39 -04:00
{
com_addopname(c, assigning ? STORE_ATTR : DELETE_ATTR, n);
com_pop(c, assigning ? 2 : 1);
1990-11-18 13:27:39 -04:00
}
static void
com_assign_trailer(struct compiling *c, node *n, int assigning, node *augn)
1990-11-18 13:27:39 -04:00
{
REQ(n, trailer);
switch (TYPE(CHILD(n, 0))) {
case LPAR: /* '(' [exprlist] ')' */
if (assigning == OP_DELETE)
com_error(c, PyExc_SyntaxError,
"can't delete function call");
else
com_error(c, PyExc_SyntaxError,
"can't assign to function call");
1990-11-18 13:27:39 -04:00
break;
case DOT: /* '.' NAME */
if (assigning > OP_APPLY)
com_augassign_attr(c, CHILD(n, 1), assigning, augn);
else
com_assign_attr(c, CHILD(n, 1), assigning);
1990-11-18 13:27:39 -04:00
break;
1996-07-30 13:49:37 -03:00
case LSQB: /* '[' subscriptlist ']' */
com_subscriptlist(c, CHILD(n, 1), assigning, augn);
1990-11-18 13:27:39 -04:00
break;
default:
com_error(c, PyExc_SystemError, "unknown trailer type");
1990-11-18 13:27:39 -04:00
}
}
static void
com_assign_sequence(struct compiling *c, node *n, int assigning)
1990-11-18 13:27:39 -04:00
{
int i;
if (TYPE(n) != testlist && TYPE(n) != listmaker)
1990-11-18 13:27:39 -04:00
REQ(n, exprlist);
if (assigning) {
i = (NCH(n)+1)/2;
com_addoparg(c, UNPACK_SEQUENCE, i);
com_push(c, i-1);
}
1990-11-18 13:27:39 -04:00
for (i = 0; i < NCH(n); i += 2)
com_assign(c, CHILD(n, i), assigning, NULL);
}
static void
com_augassign_name(struct compiling *c, node *n, int opcode, node *augn)
{
REQ(n, NAME);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_LOAD, STR(n));
com_push(c, 1);
com_node(c, augn);
com_addbyte(c, opcode);
com_pop(c, 1);
com_assign_name(c, n, OP_ASSIGN);
1990-11-18 13:27:39 -04:00
}
static void
com_assign_name(struct compiling *c, node *n, int assigning)
1990-11-18 13:27:39 -04:00
{
REQ(n, NAME);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, assigning ? VAR_STORE : VAR_DELETE, STR(n));
if (assigning)
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
static void
com_assign(struct compiling *c, node *n, int assigning, node *augn)
1990-11-18 13:27:39 -04:00
{
/* Loop to avoid trivial recursion */
for (;;) {
switch (TYPE(n)) {
1990-11-18 13:27:39 -04:00
case exprlist:
case testlist:
case testlist1:
1990-11-18 13:27:39 -04:00
if (NCH(n) > 1) {
if (assigning > OP_APPLY) {
com_error(c, PyExc_SyntaxError,
"augmented assign to tuple not possible");
return;
}
com_assign_sequence(c, n, assigning);
1990-11-18 13:27:39 -04:00
return;
}
n = CHILD(n, 0);
break;
1990-11-18 13:27:39 -04:00
case test:
case and_test:
case not_test:
case comparison:
case expr:
1991-10-24 11:59:31 -03:00
case xor_expr:
case and_expr:
case shift_expr:
case arith_expr:
1990-11-18 13:27:39 -04:00
case term:
case factor:
1990-11-18 13:27:39 -04:00
if (NCH(n) > 1) {
com_error(c, PyExc_SyntaxError,
"can't assign to operator");
1990-11-18 13:27:39 -04:00
return;
}
n = CHILD(n, 0);
break;
case power: /* atom trailer* ('**' power)*
('+'|'-'|'~') factor | atom trailer* */
if (TYPE(CHILD(n, 0)) != atom) {
com_error(c, PyExc_SyntaxError,
"can't assign to operator");
1990-11-18 13:27:39 -04:00
return;
}
if (NCH(n) > 1) { /* trailer or exponent present */
1990-11-18 13:27:39 -04:00
int i;
com_node(c, CHILD(n, 0));
for (i = 1; i+1 < NCH(n); i++) {
if (TYPE(CHILD(n, i)) == DOUBLESTAR) {
com_error(c, PyExc_SyntaxError,
"can't assign to operator");
return;
}
1990-11-18 13:27:39 -04:00
com_apply_trailer(c, CHILD(n, i));
} /* NB i is still alive */
com_assign_trailer(c,
CHILD(n, i), assigning, augn);
1990-11-18 13:27:39 -04:00
return;
}
n = CHILD(n, 0);
break;
1990-11-18 13:27:39 -04:00
case atom:
switch (TYPE(CHILD(n, 0))) {
case LPAR:
n = CHILD(n, 1);
if (TYPE(n) == RPAR) {
/* XXX Should allow () = () ??? */
com_error(c, PyExc_SyntaxError,
"can't assign to ()");
1990-11-18 13:27:39 -04:00
return;
}
if (assigning > OP_APPLY) {
com_error(c, PyExc_SyntaxError,
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
"augmented assign to tuple not possible");
return;
}
1990-11-18 13:27:39 -04:00
break;
case LSQB:
n = CHILD(n, 1);
if (TYPE(n) == RSQB) {
com_error(c, PyExc_SyntaxError,
"can't assign to []");
1990-11-18 13:27:39 -04:00
return;
}
if (assigning > OP_APPLY) {
com_error(c, PyExc_SyntaxError,
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
"augmented assign to list not possible");
return;
}
if (NCH(n) > 1
&& TYPE(CHILD(n, 1)) == list_for) {
com_error(c, PyExc_SyntaxError,
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
"can't assign to list comprehension");
return;
}
com_assign_sequence(c, n, assigning);
1990-11-18 13:27:39 -04:00
return;
case NAME:
if (assigning > OP_APPLY)
com_augassign_name(c, CHILD(n, 0),
assigning, augn);
else
com_assign_name(c, CHILD(n, 0),
assigning);
1990-11-18 13:27:39 -04:00
return;
default:
com_error(c, PyExc_SyntaxError,
"can't assign to literal");
1990-11-18 13:27:39 -04:00
return;
}
break;
case lambdef:
com_error(c, PyExc_SyntaxError,
"can't assign to lambda");
return;
1990-11-18 13:27:39 -04:00
default:
com_error(c, PyExc_SystemError,
"com_assign: bad node");
1990-11-18 13:27:39 -04:00
return;
1990-11-18 13:27:39 -04:00
}
}
}
static void
com_augassign(struct compiling *c, node *n)
{
int opcode;
switch (STR(CHILD(CHILD(n, 1), 0))[0]) {
case '+': opcode = INPLACE_ADD; break;
case '-': opcode = INPLACE_SUBTRACT; break;
case '/':
if (STR(CHILD(CHILD(n, 1), 0))[1] == '/')
opcode = INPLACE_FLOOR_DIVIDE;
else if (c->c_flags & CO_FUTURE_DIVISION)
opcode = INPLACE_TRUE_DIVIDE;
else
opcode = INPLACE_DIVIDE;
break;
case '%': opcode = INPLACE_MODULO; break;
case '<': opcode = INPLACE_LSHIFT; break;
case '>': opcode = INPLACE_RSHIFT; break;
case '&': opcode = INPLACE_AND; break;
case '^': opcode = INPLACE_XOR; break;
case '|': opcode = INPLACE_OR; break;
case '*':
if (STR(CHILD(CHILD(n, 1), 0))[1] == '*')
opcode = INPLACE_POWER;
else
opcode = INPLACE_MULTIPLY;
break;
default:
com_error(c, PyExc_SystemError, "com_augassign: bad operator");
return;
}
com_assign(c, CHILD(n, 0), opcode, CHILD(n, 2));
}
1990-11-18 13:27:39 -04:00
static void
com_expr_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, expr_stmt);
/* testlist (('=' testlist)* | augassign testlist) */
/* Forget it if we have just a doc string here */
if (!c->c_interactive && NCH(n) == 1 && get_rawdocstring(n) != NULL)
return;
if (NCH(n) == 1) {
com_node(c, CHILD(n, NCH(n)-1));
if (c->c_interactive)
com_addbyte(c, PRINT_EXPR);
else
com_addbyte(c, POP_TOP);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
else if (TYPE(CHILD(n,1)) == augassign)
com_augassign(c, n);
1990-11-18 13:27:39 -04:00
else {
int i;
com_node(c, CHILD(n, NCH(n)-1));
for (i = 0; i < NCH(n)-2; i+=2) {
if (i+2 < NCH(n)-2) {
1990-11-18 13:27:39 -04:00
com_addbyte(c, DUP_TOP);
com_push(c, 1);
}
com_assign(c, CHILD(n, i), OP_ASSIGN, NULL);
1990-11-18 13:27:39 -04:00
}
}
}
1997-04-02 01:24:36 -04:00
static void
com_assert_stmt(struct compiling *c, node *n)
1997-04-02 01:24:36 -04:00
{
int a = 0;
1997-04-02 01:24:36 -04:00
int i;
REQ(n, assert_stmt); /* 'assert' test [',' test] */
if (Py_OptimizeFlag)
return;
/* Generate code like
1997-04-02 01:24:36 -04:00
if not <test>:
1997-04-02 01:24:36 -04:00
raise AssertionError [, <message>]
where <message> is the second test, if present.
*/
com_node(c, CHILD(n, 1));
com_addfwref(c, JUMP_IF_TRUE, &a);
1997-04-02 01:24:36 -04:00
com_addbyte(c, POP_TOP);
com_pop(c, 1);
/* Raise that exception! */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(c, LOAD_GLOBAL, "AssertionError");
1997-04-02 01:24:36 -04:00
com_push(c, 1);
i = NCH(n)/2; /* Either 2 or 4 */
if (i > 1)
com_node(c, CHILD(n, 3));
com_addoparg(c, RAISE_VARARGS, i);
com_pop(c, i);
/* The interpreter does not fall through */
/* Jump ends up here */
1997-04-02 01:24:36 -04:00
com_backpatch(c, a);
com_addbyte(c, POP_TOP);
}
1990-11-18 13:27:39 -04:00
static void
com_print_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i = 1;
node* stream = NULL;
REQ(n, print_stmt); /* 'print' (test ',')* [test] */
/* are we using the extended print form? */
if (NCH(n) >= 2 && TYPE(CHILD(n, 1)) == RIGHTSHIFT) {
stream = CHILD(n, 2);
com_node(c, stream);
/* stack: [...] => [... stream] */
com_push(c, 1);
if (NCH(n) > 3 && TYPE(CHILD(n, 3)) == COMMA)
i = 4;
else
i = 3;
}
for (; i < NCH(n); i += 2) {
if (stream != NULL) {
com_addbyte(c, DUP_TOP);
/* stack: [stream] => [stream stream] */
com_push(c, 1);
com_node(c, CHILD(n, i));
/* stack: [stream stream] => [stream stream obj] */
com_addbyte(c, ROT_TWO);
/* stack: [stream stream obj] => [stream obj stream] */
com_addbyte(c, PRINT_ITEM_TO);
/* stack: [stream obj stream] => [stream] */
com_pop(c, 2);
}
else {
com_node(c, CHILD(n, i));
/* stack: [...] => [... obj] */
com_addbyte(c, PRINT_ITEM);
com_pop(c, 1);
}
}
/* XXX Alternatively, LOAD_CONST '\n' and then PRINT_ITEM */
if (TYPE(CHILD(n, NCH(n)-1)) == COMMA) {
if (stream != NULL) {
/* must pop the extra stream object off the stack */
com_addbyte(c, POP_TOP);
/* stack: [... stream] => [...] */
com_pop(c, 1);
}
}
else {
if (stream != NULL) {
/* this consumes the last stream object on stack */
com_addbyte(c, PRINT_NEWLINE_TO);
/* stack: [... stream] => [...] */
com_pop(c, 1);
}
else
com_addbyte(c, PRINT_NEWLINE);
1990-11-18 13:27:39 -04:00
}
}
static void
com_return_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, return_stmt); /* 'return' [testlist] */
1990-12-20 11:06:42 -04:00
if (!c->c_infunction) {
com_error(c, PyExc_SyntaxError, "'return' outside function");
1990-12-20 11:06:42 -04:00
}
if (c->c_flags & CO_GENERATOR) {
if (NCH(n) > 1) {
com_error(c, PyExc_SyntaxError,
"'return' with argument inside generator");
}
}
if (NCH(n) < 2) {
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
}
else
com_node(c, CHILD(n, 1));
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
}
static void
com_yield_stmt(struct compiling *c, node *n)
{
int i;
REQ(n, yield_stmt); /* 'yield' testlist */
if (!c->c_infunction) {
com_error(c, PyExc_SyntaxError, "'yield' outside function");
}
for (i = 0; i < c->c_nblocks; ++i) {
if (c->c_block[i] == SETUP_FINALLY) {
com_error(c, PyExc_SyntaxError,
"'yield' not allowed in a 'try' block "
"with a 'finally' clause");
return;
}
}
com_node(c, CHILD(n, 1));
com_addbyte(c, YIELD_VALUE);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
static void
com_raise_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
1998-04-09 18:39:57 -03:00
REQ(n, raise_stmt); /* 'raise' [test [',' test [',' test]]] */
if (NCH(n) > 1) {
com_node(c, CHILD(n, 1));
if (NCH(n) > 3) {
com_node(c, CHILD(n, 3));
if (NCH(n) > 5)
com_node(c, CHILD(n, 5));
}
}
i = NCH(n)/2;
com_addoparg(c, RAISE_VARARGS, i);
com_pop(c, i);
1990-11-18 13:27:39 -04:00
}
static void
com_from_import(struct compiling *c, node *n)
{
com_addopname(c, IMPORT_FROM, CHILD(n, 0));
com_push(c, 1);
if (NCH(n) > 1) {
if (strcmp(STR(CHILD(n, 1)), "as") != 0) {
com_error(c, PyExc_SyntaxError, "invalid syntax");
return;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE, STR(CHILD(n, 2)));
} else
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE, STR(CHILD(n, 0)));
com_pop(c, 1);
}
1990-11-18 13:27:39 -04:00
static void
com_import_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
REQ(n, import_stmt);
/* 'import' dotted_name (',' dotted_name)* |
'from' dotted_name 'import' ('*' | NAME (',' NAME)*) */
1990-11-18 13:27:39 -04:00
if (STR(CHILD(n, 0))[0] == 'f') {
PyObject *tup;
/* 'from' dotted_name 'import' ... */
REQ(CHILD(n, 1), dotted_name);
if (TYPE(CHILD(n, 3)) == STAR) {
tup = Py_BuildValue("(s)", "*");
} else {
tup = PyTuple_New((NCH(n) - 2)/2);
for (i = 3; i < NCH(n); i += 2) {
PyTuple_SET_ITEM(tup, (i-3)/2,
PyString_FromString(STR(
CHILD(CHILD(n, i), 0))));
}
}
com_addoparg(c, LOAD_CONST, com_addconst(c, tup));
Py_DECREF(tup);
com_push(c, 1);
com_addopname(c, IMPORT_NAME, CHILD(n, 1));
if (TYPE(CHILD(n, 3)) == STAR)
com_addbyte(c, IMPORT_STAR);
else {
for (i = 3; i < NCH(n); i += 2)
com_from_import(c, CHILD(n, i));
com_addbyte(c, POP_TOP);
}
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
else {
/* 'import' ... */
1990-11-18 13:27:39 -04:00
for (i = 1; i < NCH(n); i += 2) {
node *subn = CHILD(n, i);
REQ(subn, dotted_as_name);
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
com_addopname(c, IMPORT_NAME, CHILD(subn, 0));
if (NCH(subn) > 1) {
int j;
if (strcmp(STR(CHILD(subn, 1)), "as") != 0) {
com_error(c, PyExc_SyntaxError,
"invalid syntax");
return;
}
for (j=2 ; j < NCH(CHILD(subn, 0)); j += 2)
com_addopname(c, LOAD_ATTR,
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
CHILD(CHILD(subn, 0),
j));
com_addop_varname(c, VAR_STORE,
STR(CHILD(subn, 2)));
} else
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE,
STR(CHILD(CHILD(subn, 0),
0)));
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
}
}
static void
com_exec_stmt(struct compiling *c, node *n)
{
REQ(n, exec_stmt);
/* exec_stmt: 'exec' expr ['in' expr [',' expr]] */
com_node(c, CHILD(n, 1));
if (NCH(n) >= 4)
com_node(c, CHILD(n, 3));
else {
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
}
if (NCH(n) >= 6)
com_node(c, CHILD(n, 5));
else {
com_addbyte(c, DUP_TOP);
com_push(c, 1);
}
com_addbyte(c, EXEC_STMT);
com_pop(c, 3);
}
static int
is_constant_false(struct compiling *c, node *n)
{
PyObject *v;
int i;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* argument c will be NULL when called from symtable_node() */
/* Label to avoid tail recursion */
next:
switch (TYPE(n)) {
case suite:
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto next;
}
/* Fall through */
case file_input:
for (i = 0; i < NCH(n); i++) {
node *ch = CHILD(n, i);
if (TYPE(ch) == stmt) {
n = ch;
goto next;
}
}
break;
case stmt:
case simple_stmt:
case small_stmt:
n = CHILD(n, 0);
goto next;
case expr_stmt:
case testlist:
case testlist1:
case test:
case and_test:
case not_test:
case comparison:
case expr:
case xor_expr:
case and_expr:
case shift_expr:
case arith_expr:
case term:
case factor:
case power:
case atom:
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto next;
}
break;
case NAME:
if (Py_OptimizeFlag && strcmp(STR(n), "__debug__") == 0)
return 1;
break;
case NUMBER:
v = parsenumber(c, STR(n));
if (v == NULL) {
PyErr_Clear();
break;
}
i = PyObject_IsTrue(v);
Py_DECREF(v);
return i == 0;
case STRING:
v = parsestr(c, STR(n));
if (v == NULL) {
PyErr_Clear();
break;
}
i = PyObject_IsTrue(v);
Py_DECREF(v);
return i == 0;
}
return 0;
}
/* Look under n for a return stmt with an expression.
* This hack is used to find illegal returns under "if 0:" blocks in
* functions already known to be generators (as determined by the symtable
* pass).
* Return the offending return node if found, else NULL.
*/
static node *
look_for_offending_return(node *n)
{
int i;
for (i = 0; i < NCH(n); ++i) {
node *kid = CHILD(n, i);
switch (TYPE(kid)) {
case classdef:
case funcdef:
case lambdef:
/* Stuff in nested functions & classes doesn't
affect the code block we started in. */
return NULL;
case return_stmt:
if (NCH(kid) > 1)
return kid;
break;
default: {
node *bad = look_for_offending_return(kid);
if (bad != NULL)
return bad;
}
}
}
return NULL;
}
1990-11-18 13:27:39 -04:00
static void
com_if_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
int anchor = 0;
REQ(n, if_stmt);
/*'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite] */
for (i = 0; i+3 < NCH(n); i+=4) {
int a = 0;
1990-12-20 11:06:42 -04:00
node *ch = CHILD(n, i+1);
if (is_constant_false(c, ch)) {
/* We're going to skip this block. However, if this
is a generator, we have to check the dead code
anyway to make sure there aren't any return stmts
with expressions, in the same scope. */
if (c->c_flags & CO_GENERATOR) {
node *p = look_for_offending_return(n);
if (p != NULL) {
int savelineno = c->c_lineno;
c->c_lineno = p->n_lineno;
com_error(c, PyExc_SyntaxError,
"'return' with argument "
"inside generator");
c->c_lineno = savelineno;
}
}
continue;
}
1990-12-20 11:06:42 -04:00
if (i > 0)
com_addoparg(c, SET_LINENO, ch->n_lineno);
com_node(c, ch);
1990-11-18 13:27:39 -04:00
com_addfwref(c, JUMP_IF_FALSE, &a);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, i+3));
com_addfwref(c, JUMP_FORWARD, &anchor);
com_backpatch(c, a);
/* We jump here with an extra entry which we now pop */
1990-11-18 13:27:39 -04:00
com_addbyte(c, POP_TOP);
}
if (i+2 < NCH(n))
com_node(c, CHILD(n, i+2));
if (anchor)
com_backpatch(c, anchor);
1990-11-18 13:27:39 -04:00
}
static void
com_while_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int break_anchor = 0;
int anchor = 0;
int save_begin = c->c_begin;
1990-11-18 13:27:39 -04:00
REQ(n, while_stmt); /* 'while' test ':' suite ['else' ':' suite] */
com_addfwref(c, SETUP_LOOP, &break_anchor);
block_push(c, SETUP_LOOP);
c->c_begin = c->c_nexti;
1990-12-20 11:06:42 -04:00
com_addoparg(c, SET_LINENO, n->n_lineno);
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 1));
com_addfwref(c, JUMP_IF_FALSE, &anchor);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
1990-12-20 11:06:42 -04:00
c->c_loops++;
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 3));
1990-12-20 11:06:42 -04:00
c->c_loops--;
com_addoparg(c, JUMP_ABSOLUTE, c->c_begin);
c->c_begin = save_begin;
1990-11-18 13:27:39 -04:00
com_backpatch(c, anchor);
/* We jump here with one entry more on the stack */
1990-11-18 13:27:39 -04:00
com_addbyte(c, POP_TOP);
com_addbyte(c, POP_BLOCK);
block_pop(c, SETUP_LOOP);
1990-11-18 13:27:39 -04:00
if (NCH(n) > 4)
com_node(c, CHILD(n, 6));
com_backpatch(c, break_anchor);
}
static void
com_for_stmt(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int break_anchor = 0;
int anchor = 0;
int save_begin = c->c_begin;
1990-11-18 13:27:39 -04:00
REQ(n, for_stmt);
/* 'for' exprlist 'in' exprlist ':' suite ['else' ':' suite] */
com_addfwref(c, SETUP_LOOP, &break_anchor);
block_push(c, SETUP_LOOP);
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 3));
com_addbyte(c, GET_ITER);
c->c_begin = c->c_nexti;
1990-12-20 11:06:42 -04:00
com_addoparg(c, SET_LINENO, n->n_lineno);
com_addfwref(c, FOR_ITER, &anchor);
com_push(c, 1);
com_assign(c, CHILD(n, 1), OP_ASSIGN, NULL);
1990-12-20 11:06:42 -04:00
c->c_loops++;
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 5));
1990-12-20 11:06:42 -04:00
c->c_loops--;
com_addoparg(c, JUMP_ABSOLUTE, c->c_begin);
c->c_begin = save_begin;
1990-11-18 13:27:39 -04:00
com_backpatch(c, anchor);
com_pop(c, 1); /* FOR_ITER has popped this */
1990-11-18 13:27:39 -04:00
com_addbyte(c, POP_BLOCK);
block_pop(c, SETUP_LOOP);
1990-11-18 13:27:39 -04:00
if (NCH(n) > 8)
com_node(c, CHILD(n, 8));
com_backpatch(c, break_anchor);
}
/* Code generated for "try: S finally: Sf" is as follows:
SETUP_FINALLY L
<code for S>
POP_BLOCK
LOAD_CONST <nil>
L: <code for Sf>
END_FINALLY
The special instructions use the block stack. Each block
stack entry contains the instruction that created it (here
SETUP_FINALLY), the level of the value stack at the time the
block stack entry was created, and a label (here L).
SETUP_FINALLY:
Pushes the current value stack level and the label
onto the block stack.
POP_BLOCK:
Pops en entry from the block stack, and pops the value
stack until its level is the same as indicated on the
block stack. (The label is ignored.)
END_FINALLY:
1990-12-20 11:06:42 -04:00
Pops a variable number of entries from the *value* stack
and re-raises the exception they specify. The number of
entries popped depends on the (pseudo) exception type.
The block stack is unwound when an exception is raised:
when a SETUP_FINALLY entry is found, the exception is pushed
onto the value stack (and the exception condition is cleared),
and the interpreter jumps to the label gotten from the block
stack.
Code generated for "try: S except E1, V1: S1 except E2, V2: S2 ...":
1990-12-20 11:06:42 -04:00
(The contents of the value stack is shown in [], with the top
at the right; 'tb' is trace-back info, 'val' the exception's
associated value, and 'exc' the exception.)
Value stack Label Instruction Argument
[] SETUP_EXCEPT L1
[] <code for S>
[] POP_BLOCK
[] JUMP_FORWARD L0
1990-12-20 11:06:42 -04:00
[tb, val, exc] L1: DUP )
[tb, val, exc, exc] <evaluate E1> )
[tb, val, exc, exc, E1] COMPARE_OP EXC_MATCH ) only if E1
[tb, val, exc, 1-or-0] JUMP_IF_FALSE L2 )
[tb, val, exc, 1] POP )
[tb, val, exc] POP
[tb, val] <assign to V1> (or POP if no V1)
[tb] POP
[] <code for S1>
JUMP_FORWARD L0
1990-12-20 11:06:42 -04:00
[tb, val, exc, 0] L2: POP
[tb, val, exc] DUP
.............................etc.......................
1990-12-20 11:06:42 -04:00
[tb, val, exc, 0] Ln+1: POP
[tb, val, exc] END_FINALLY # re-raise exception
[] L0: <next statement>
Of course, parts are not generated if Vi or Ei is not present.
*/
1990-11-18 13:27:39 -04:00
static void
com_try_except(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int except_anchor = 0;
int end_anchor = 0;
int else_anchor = 0;
int i;
node *ch;
com_addfwref(c, SETUP_EXCEPT, &except_anchor);
block_push(c, SETUP_EXCEPT);
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 2));
com_addbyte(c, POP_BLOCK);
block_pop(c, SETUP_EXCEPT);
com_addfwref(c, JUMP_FORWARD, &else_anchor);
com_backpatch(c, except_anchor);
for (i = 3;
i < NCH(n) && TYPE(ch = CHILD(n, i)) == except_clause;
i += 3) {
/* except_clause: 'except' [expr [',' var]] */
if (except_anchor == 0) {
com_error(c, PyExc_SyntaxError,
"default 'except:' must be last");
break;
}
except_anchor = 0;
com_push(c, 3); /* tb, val, exc pushed by exception */
com_addoparg(c, SET_LINENO, ch->n_lineno);
if (NCH(ch) > 1) {
com_addbyte(c, DUP_TOP);
com_push(c, 1);
com_node(c, CHILD(ch, 1));
com_addoparg(c, COMPARE_OP, PyCmp_EXC_MATCH);
com_pop(c, 1);
com_addfwref(c, JUMP_IF_FALSE, &except_anchor);
com_addbyte(c, POP_TOP);
com_pop(c, 1);
}
com_addbyte(c, POP_TOP);
com_pop(c, 1);
if (NCH(ch) > 3)
com_assign(c, CHILD(ch, 3), OP_ASSIGN, NULL);
else {
1990-11-18 13:27:39 -04:00
com_addbyte(c, POP_TOP);
com_pop(c, 1);
}
com_addbyte(c, POP_TOP);
com_pop(c, 1);
com_node(c, CHILD(n, i+2));
com_addfwref(c, JUMP_FORWARD, &end_anchor);
if (except_anchor) {
com_backpatch(c, except_anchor);
/* We come in with [tb, val, exc, 0] on the
stack; one pop and it's the same as
expected at the start of the loop */
1990-12-20 11:06:42 -04:00
com_addbyte(c, POP_TOP);
1990-11-18 13:27:39 -04:00
}
}
/* We actually come in here with [tb, val, exc] but the
END_FINALLY will zap those and jump around.
The c_stacklevel does not reflect them so we need not pop
anything. */
com_addbyte(c, END_FINALLY);
com_backpatch(c, else_anchor);
if (i < NCH(n))
com_node(c, CHILD(n, i+2));
com_backpatch(c, end_anchor);
}
static void
com_try_finally(struct compiling *c, node *n)
{
int finally_anchor = 0;
node *ch;
com_addfwref(c, SETUP_FINALLY, &finally_anchor);
block_push(c, SETUP_FINALLY);
com_node(c, CHILD(n, 2));
com_addbyte(c, POP_BLOCK);
block_pop(c, SETUP_FINALLY);
block_push(c, END_FINALLY);
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
/* While the generated code pushes only one item,
the try-finally handling can enter here with
up to three items. OK, here are the details:
3 for an exception, 2 for RETURN, 1 for BREAK. */
com_push(c, 3);
com_backpatch(c, finally_anchor);
ch = CHILD(n, NCH(n)-1);
com_addoparg(c, SET_LINENO, ch->n_lineno);
com_node(c, ch);
com_addbyte(c, END_FINALLY);
block_pop(c, END_FINALLY);
com_pop(c, 3); /* Matches the com_push above */
}
static void
com_try_stmt(struct compiling *c, node *n)
{
REQ(n, try_stmt);
/* 'try' ':' suite (except_clause ':' suite)+ ['else' ':' suite]
| 'try' ':' suite 'finally' ':' suite */
if (TYPE(CHILD(n, 3)) != except_clause)
com_try_finally(c, n);
else
com_try_except(c, n);
1990-11-18 13:27:39 -04:00
}
static node *
get_rawdocstring(node *n)
{
1995-01-25 20:40:09 -04:00
int i;
/* Label to avoid tail recursion */
next:
switch (TYPE(n)) {
case suite:
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto next;
}
/* Fall through */
1995-01-25 20:40:09 -04:00
case file_input:
for (i = 0; i < NCH(n); i++) {
node *ch = CHILD(n, i);
if (TYPE(ch) == stmt) {
n = ch;
goto next;
}
1995-01-25 20:40:09 -04:00
}
break;
case stmt:
case simple_stmt:
case small_stmt:
n = CHILD(n, 0);
goto next;
case expr_stmt:
case testlist:
case testlist1:
case test:
case and_test:
case not_test:
case comparison:
case expr:
case xor_expr:
case and_expr:
case shift_expr:
case arith_expr:
case term:
case factor:
case power:
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto next;
}
break;
case atom:
if (TYPE(CHILD(n, 0)) == STRING)
return n;
break;
}
return NULL;
}
static PyObject *
get_docstring(struct compiling *c, node *n)
{
/* Don't generate doc-strings if run with -OO */
if (Py_OptimizeFlag > 1)
return NULL;
n = get_rawdocstring(n);
if (n == NULL)
return NULL;
return parsestrplus(c, n);
}
1990-11-18 13:27:39 -04:00
static void
com_suite(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, suite);
/* simple_stmt | NEWLINE INDENT NEWLINE* (stmt NEWLINE*)+ DEDENT */
if (NCH(n) == 1) {
com_node(c, CHILD(n, 0));
}
else {
int i;
for (i = 0; i < NCH(n) && c->c_errors == 0; i++) {
1990-11-18 13:27:39 -04:00
node *ch = CHILD(n, i);
if (TYPE(ch) == stmt)
com_node(c, ch);
}
}
}
1992-03-27 13:28:26 -04:00
/* ARGSUSED */
static void
com_continue_stmt(struct compiling *c, node *n)
{
int i = c->c_nblocks;
if (i-- > 0 && c->c_block[i] == SETUP_LOOP) {
com_addoparg(c, JUMP_ABSOLUTE, c->c_begin);
}
else if (i <= 0) {
/* at the outer level */
com_error(c, PyExc_SyntaxError,
"'continue' not properly in loop");
}
else {
int j;
for (j = i-1; j >= 0; --j) {
if (c->c_block[j] == SETUP_LOOP)
break;
}
if (j >= 0) {
/* there is a loop, but something interferes */
for (; i > j; --i) {
if (c->c_block[i] == SETUP_EXCEPT ||
c->c_block[i] == SETUP_FINALLY) {
com_addoparg(c, CONTINUE_LOOP,
c->c_begin);
return;
}
if (c->c_block[i] == END_FINALLY) {
com_error(c, PyExc_SyntaxError,
"'continue' not supported inside 'finally' clause");
return;
}
}
}
com_error(c, PyExc_SyntaxError,
"'continue' not properly in loop");
}
/* XXX Could allow it inside a 'finally' clause
XXX if we could pop the exception still on the stack */
}
static int
com_argdefs(struct compiling *c, node *n)
{
1995-07-18 11:51:37 -03:00
int i, nch, nargs, ndefs;
if (TYPE(n) == lambdef) {
/* lambdef: 'lambda' [varargslist] ':' test */
n = CHILD(n, 1);
}
else {
REQ(n, funcdef); /* funcdef: 'def' NAME parameters ... */
n = CHILD(n, 2);
REQ(n, parameters); /* parameters: '(' [varargslist] ')' */
n = CHILD(n, 1);
}
if (TYPE(n) != varargslist)
1995-07-18 11:51:37 -03:00
return 0;
/* varargslist:
1995-07-18 11:51:37 -03:00
(fpdef ['=' test] ',')* '*' ....... |
fpdef ['=' test] (',' fpdef ['=' test])* [','] */
nch = NCH(n);
nargs = 0;
ndefs = 0;
for (i = 0; i < nch; i++) {
int t;
if (TYPE(CHILD(n, i)) == STAR ||
TYPE(CHILD(n, i)) == DOUBLESTAR)
break;
nargs++;
i++;
if (i >= nch)
t = RPAR; /* Anything except EQUAL or COMMA */
else
t = TYPE(CHILD(n, i));
if (t == EQUAL) {
i++;
ndefs++;
com_node(c, CHILD(n, i));
i++;
if (i >= nch)
break;
t = TYPE(CHILD(n, i));
}
else {
/* Treat "(a=1, b)" as an error */
if (ndefs)
com_error(c, PyExc_SyntaxError,
"non-default argument follows default argument");
}
if (t != COMMA)
break;
}
return ndefs;
}
1990-11-18 13:27:39 -04:00
static void
com_funcdef(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyObject *co;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
int ndefs;
1990-11-18 13:27:39 -04:00
REQ(n, funcdef); /* funcdef: 'def' NAME parameters ':' suite */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
ndefs = com_argdefs(c, n);
symtable_enter_scope(c->c_symtable, STR(CHILD(n, 1)), TYPE(n),
n->n_lineno);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
co = (PyObject *)icompile(n, c);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_exit_scope(c->c_symtable);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (co == NULL)
1990-11-18 13:27:39 -04:00
c->c_errors++;
else {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int closure = com_make_closure(c, (PyCodeObject *)co);
int i = com_addconst(c, co);
1990-11-18 13:27:39 -04:00
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (closure)
com_addoparg(c, MAKE_CLOSURE, ndefs);
else
com_addoparg(c, MAKE_FUNCTION, ndefs);
com_pop(c, ndefs);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE, STR(CHILD(n, 1)));
com_pop(c, 1);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_DECREF(co);
1990-11-18 13:27:39 -04:00
}
}
static void
com_bases(struct compiling *c, node *n)
{
1992-03-27 13:28:26 -04:00
int i;
REQ(n, testlist);
/* testlist: test (',' test)* [','] */
for (i = 0; i < NCH(n); i += 2)
com_node(c, CHILD(n, i));
i = (NCH(n)+1) / 2;
com_addoparg(c, BUILD_TUPLE, i);
com_pop(c, i-1);
}
1990-11-18 13:27:39 -04:00
static void
com_classdef(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
PyObject *v;
PyCodeObject *co;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
char *name;
1990-11-18 13:27:39 -04:00
REQ(n, classdef);
/* classdef: class NAME ['(' testlist ')'] ':' suite */
if ((v = PyString_InternFromString(STR(CHILD(n, 1)))) == NULL) {
c->c_errors++;
return;
}
/* Push the class name on the stack */
i = com_addconst(c, v);
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
Py_DECREF(v);
/* Push the tuple of base classes on the stack */
if (TYPE(CHILD(n, 2)) != LPAR) {
com_addoparg(c, BUILD_TUPLE, 0);
com_push(c, 1);
}
else
com_bases(c, CHILD(n, 3));
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
name = STR(CHILD(n, 1));
symtable_enter_scope(c->c_symtable, name, TYPE(n), n->n_lineno);
co = icompile(n, c);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_exit_scope(c->c_symtable);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (co == NULL)
c->c_errors++;
else {
int closure = com_make_closure(c, co);
i = com_addconst(c, (PyObject *)co);
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
if (closure) {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
com_addoparg(c, MAKE_CLOSURE, 0);
com_pop(c, PyCode_GetNumFree(co));
} else
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
com_addoparg(c, MAKE_FUNCTION, 0);
1995-07-18 11:51:37 -03:00
com_addoparg(c, CALL_FUNCTION, 0);
com_addbyte(c, BUILD_CLASS);
com_pop(c, 2);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE, STR(CHILD(n, 1)));
com_pop(c, 1);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_DECREF(co);
}
1990-11-18 13:27:39 -04:00
}
static void
com_node(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
loop:
if (c->c_errors)
return;
1990-11-18 13:27:39 -04:00
switch (TYPE(n)) {
/* Definition nodes */
case funcdef:
com_funcdef(c, n);
break;
case classdef:
com_classdef(c, n);
break;
/* Trivial parse tree nodes */
case stmt:
case small_stmt:
1990-11-18 13:27:39 -04:00
case flow_stmt:
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
n = CHILD(n, 0);
goto loop;
1990-12-20 11:06:42 -04:00
case simple_stmt:
/* small_stmt (';' small_stmt)* [';'] NEWLINE */
com_addoparg(c, SET_LINENO, n->n_lineno);
{
int i;
for (i = 0; i < NCH(n)-1; i += 2)
com_node(c, CHILD(n, i));
}
break;
1990-11-18 13:27:39 -04:00
case compound_stmt:
1990-12-20 11:06:42 -04:00
com_addoparg(c, SET_LINENO, n->n_lineno);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
n = CHILD(n, 0);
goto loop;
1990-11-18 13:27:39 -04:00
/* Statement nodes */
case expr_stmt:
com_expr_stmt(c, n);
break;
case print_stmt:
com_print_stmt(c, n);
break;
case del_stmt: /* 'del' exprlist */
com_assign(c, CHILD(n, 1), OP_DELETE, NULL);
1990-11-18 13:27:39 -04:00
break;
case pass_stmt:
break;
case break_stmt:
1990-12-20 11:06:42 -04:00
if (c->c_loops == 0) {
com_error(c, PyExc_SyntaxError,
"'break' outside loop");
1990-12-20 11:06:42 -04:00
}
1990-11-18 13:27:39 -04:00
com_addbyte(c, BREAK_LOOP);
break;
case continue_stmt:
com_continue_stmt(c, n);
break;
1990-11-18 13:27:39 -04:00
case return_stmt:
com_return_stmt(c, n);
break;
case yield_stmt:
com_yield_stmt(c, n);
break;
1990-11-18 13:27:39 -04:00
case raise_stmt:
com_raise_stmt(c, n);
break;
case import_stmt:
com_import_stmt(c, n);
break;
case global_stmt:
break;
case exec_stmt:
com_exec_stmt(c, n);
break;
1997-04-02 01:24:36 -04:00
case assert_stmt:
com_assert_stmt(c, n);
break;
1990-11-18 13:27:39 -04:00
case if_stmt:
com_if_stmt(c, n);
break;
case while_stmt:
com_while_stmt(c, n);
break;
case for_stmt:
com_for_stmt(c, n);
break;
case try_stmt:
com_try_stmt(c, n);
break;
case suite:
com_suite(c, n);
break;
/* Expression nodes */
case testlist:
case testlist1:
case testlist_safe:
1991-12-16 09:05:10 -04:00
com_list(c, n, 0);
1990-11-18 13:27:39 -04:00
break;
case test:
com_test(c, n);
break;
case and_test:
com_and_test(c, n);
break;
case not_test:
com_not_test(c, n);
break;
case comparison:
com_comparison(c, n);
break;
case exprlist:
1991-12-16 09:05:10 -04:00
com_list(c, n, 0);
1990-11-18 13:27:39 -04:00
break;
case expr:
com_expr(c, n);
break;
1991-10-24 11:59:31 -03:00
case xor_expr:
com_xor_expr(c, n);
break;
case and_expr:
com_and_expr(c, n);
break;
case shift_expr:
com_shift_expr(c, n);
break;
case arith_expr:
com_arith_expr(c, n);
break;
1990-11-18 13:27:39 -04:00
case term:
com_term(c, n);
break;
case factor:
com_factor(c, n);
break;
case power:
com_power(c, n);
break;
1990-11-18 13:27:39 -04:00
case atom:
com_atom(c, n);
break;
default:
com_error(c, PyExc_SystemError,
"com_node: unexpected node type");
1990-11-18 13:27:39 -04:00
}
}
static void com_fplist(struct compiling *, node *);
1990-11-18 13:27:39 -04:00
static void
com_fpdef(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
REQ(n, fpdef); /* fpdef: NAME | '(' fplist ')' */
if (TYPE(CHILD(n, 0)) == LPAR)
com_fplist(c, CHILD(n, 1));
else {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_varname(c, VAR_STORE, STR(CHILD(n, 0)));
com_pop(c, 1);
}
1990-11-18 13:27:39 -04:00
}
static void
com_fplist(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
1991-12-31 09:13:35 -04:00
REQ(n, fplist); /* fplist: fpdef (',' fpdef)* [','] */
1990-11-18 13:27:39 -04:00
if (NCH(n) == 1) {
com_fpdef(c, CHILD(n, 0));
}
else {
int i = (NCH(n)+1)/2;
com_addoparg(c, UNPACK_SEQUENCE, i);
com_push(c, i-1);
1990-11-18 13:27:39 -04:00
for (i = 0; i < NCH(n); i += 2)
com_fpdef(c, CHILD(n, i));
}
}
1992-01-14 14:30:26 -04:00
static void
com_arglist(struct compiling *c, node *n)
1992-01-14 14:30:26 -04:00
{
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int nch, i, narg;
1995-07-18 11:51:37 -03:00
int complex = 0;
char nbuf[30];
1992-01-14 14:30:26 -04:00
REQ(n, varargslist);
/* varargslist:
1995-07-18 11:51:37 -03:00
(fpdef ['=' test] ',')* (fpdef ['=' test] | '*' .....) */
nch = NCH(n);
1995-07-18 11:51:37 -03:00
/* Enter all arguments in table of locals */
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
for (i = 0, narg = 0; i < nch; i++) {
1995-07-18 11:51:37 -03:00
node *ch = CHILD(n, i);
node *fp;
if (TYPE(ch) == STAR || TYPE(ch) == DOUBLESTAR)
break;
1995-07-18 11:51:37 -03:00
REQ(ch, fpdef); /* fpdef: NAME | '(' fplist ')' */
fp = CHILD(ch, 0);
if (TYPE(fp) != NAME) {
PyOS_snprintf(nbuf, sizeof(nbuf), ".%d", i);
complex = 1;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
narg++;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* all name updates handled by symtable */
1995-07-18 11:51:37 -03:00
if (++i >= nch)
1992-01-14 14:30:26 -04:00
break;
1995-07-18 11:51:37 -03:00
ch = CHILD(n, i);
if (TYPE(ch) == EQUAL)
i += 2;
1995-07-18 11:51:37 -03:00
else
REQ(ch, COMMA);
}
if (complex) {
/* Generate code for complex arguments only after
having counted the simple arguments */
int ilocal = 0;
for (i = 0; i < nch; i++) {
node *ch = CHILD(n, i);
node *fp;
if (TYPE(ch) == STAR || TYPE(ch) == DOUBLESTAR)
break;
1995-07-18 11:51:37 -03:00
REQ(ch, fpdef); /* fpdef: NAME | '(' fplist ')' */
fp = CHILD(ch, 0);
if (TYPE(fp) != NAME) {
com_addoparg(c, LOAD_FAST, ilocal);
com_push(c, 1);
1995-07-18 11:51:37 -03:00
com_fpdef(c, ch);
}
ilocal++;
if (++i >= nch)
break;
ch = CHILD(n, i);
if (TYPE(ch) == EQUAL)
i += 2;
else
REQ(ch, COMMA);
}
}
1992-01-14 14:30:26 -04:00
}
1990-11-18 13:27:39 -04:00
static void
com_file_input(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
int i;
PyObject *doc;
1990-11-18 13:27:39 -04:00
REQ(n, file_input); /* (NEWLINE | stmt)* ENDMARKER */
doc = get_docstring(c, n);
if (doc != NULL) {
int i = com_addconst(c, doc);
Py_DECREF(doc);
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(c, STORE_NAME, "__doc__");
com_pop(c, 1);
}
1990-11-18 13:27:39 -04:00
for (i = 0; i < NCH(n); i++) {
node *ch = CHILD(n, i);
if (TYPE(ch) != ENDMARKER && TYPE(ch) != NEWLINE)
com_node(c, ch);
}
}
/* Top-level compile-node interface */
static void
compile_funcdef(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
PyObject *doc;
1990-11-18 13:27:39 -04:00
node *ch;
REQ(n, funcdef); /* funcdef: 'def' NAME parameters ':' suite */
c->c_name = STR(CHILD(n, 1));
doc = get_docstring(c, CHILD(n, 4));
if (doc != NULL) {
(void) com_addconst(c, doc);
Py_DECREF(doc);
}
1995-07-18 11:51:37 -03:00
else
(void) com_addconst(c, Py_None); /* No docstring */
1992-01-14 14:30:26 -04:00
ch = CHILD(n, 2); /* parameters: '(' [varargslist] ')' */
ch = CHILD(ch, 1); /* ')' | varargslist */
1995-07-18 11:51:37 -03:00
if (TYPE(ch) == varargslist)
1992-01-14 14:30:26 -04:00
com_arglist(c, ch);
1990-12-20 11:06:42 -04:00
c->c_infunction = 1;
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 4));
1990-12-20 11:06:42 -04:00
c->c_infunction = 0;
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
}
static void
compile_lambdef(struct compiling *c, node *n)
{
node *ch;
1995-07-18 11:51:37 -03:00
REQ(n, lambdef); /* lambdef: 'lambda' [varargslist] ':' test */
c->c_name = "<lambda>";
ch = CHILD(n, 1);
(void) com_addconst(c, Py_None); /* No docstring */
1995-07-18 11:51:37 -03:00
if (TYPE(ch) == varargslist) {
com_arglist(c, ch);
1995-07-18 11:51:37 -03:00
ch = CHILD(n, 3);
}
1995-07-18 11:51:37 -03:00
else
ch = CHILD(n, 2);
com_node(c, ch);
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
}
static void
compile_classdef(struct compiling *c, node *n)
{
node *ch;
PyObject *doc;
REQ(n, classdef);
/* classdef: 'class' NAME ['(' testlist ')'] ':' suite */
c->c_name = STR(CHILD(n, 1));
1996-08-24 03:21:31 -03:00
c->c_private = c->c_name;
/* Initialize local __module__ from global __name__ */
com_addop_name(c, LOAD_GLOBAL, "__name__");
com_addop_name(c, STORE_NAME, "__module__");
ch = CHILD(n, NCH(n)-1); /* The suite */
doc = get_docstring(c, ch);
if (doc != NULL) {
int i = com_addconst(c, doc);
Py_DECREF(doc);
com_addoparg(c, LOAD_CONST, i);
com_push(c, 1);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_addop_name(c, STORE_NAME, "__doc__");
com_pop(c, 1);
}
else
(void) com_addconst(c, Py_None);
com_node(c, ch);
com_addbyte(c, LOAD_LOCALS);
com_push(c, 1);
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
}
1990-11-18 13:27:39 -04:00
static void
compile_node(struct compiling *c, node *n)
1990-11-18 13:27:39 -04:00
{
1990-12-20 11:06:42 -04:00
com_addoparg(c, SET_LINENO, n->n_lineno);
1990-11-18 13:27:39 -04:00
switch (TYPE(n)) {
case single_input: /* One interactive command */
1990-11-18 13:27:39 -04:00
/* NEWLINE | simple_stmt | compound_stmt NEWLINE */
c->c_interactive++;
1990-11-18 13:27:39 -04:00
n = CHILD(n, 0);
if (TYPE(n) != NEWLINE)
com_node(c, n);
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
1990-12-20 11:06:42 -04:00
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
c->c_interactive--;
1990-11-18 13:27:39 -04:00
break;
case file_input: /* A whole file, or built-in function exec() */
1990-11-18 13:27:39 -04:00
com_file_input(c, n);
com_addoparg(c, LOAD_CONST, com_addconst(c, Py_None));
com_push(c, 1);
1990-12-20 11:06:42 -04:00
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
break;
case eval_input: /* Built-in function input() */
1990-11-18 13:27:39 -04:00
com_node(c, CHILD(n, 0));
1990-12-20 11:06:42 -04:00
com_addbyte(c, RETURN_VALUE);
com_pop(c, 1);
1990-11-18 13:27:39 -04:00
break;
case lambdef: /* anonymous function definition */
compile_lambdef(c, n);
break;
case funcdef: /* A function definition */
1990-11-18 13:27:39 -04:00
compile_funcdef(c, n);
break;
case classdef: /* A class definition */
compile_classdef(c, n);
break;
1990-11-18 13:27:39 -04:00
default:
com_error(c, PyExc_SystemError,
"compile_node: unexpected node type");
1990-11-18 13:27:39 -04:00
}
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static PyObject *
dict_keys_inorder(PyObject *dict, int offset)
{
PyObject *tuple, *k, *v;
int i, pos = 0, size = PyDict_Size(dict);
tuple = PyTuple_New(size);
if (tuple == NULL)
return NULL;
while (PyDict_Next(dict, &pos, &k, &v)) {
i = PyInt_AS_LONG(v);
Py_INCREF(k);
assert((i - offset) < size);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyTuple_SET_ITEM(tuple, i - offset, k);
}
return tuple;
}
PyCodeObject *
PyNode_Compile(node *n, char *filename)
1996-08-24 03:21:31 -03:00
{
return PyNode_CompileFlags(n, filename, NULL);
}
PyCodeObject *
PyNode_CompileFlags(node *n, char *filename, PyCompilerFlags *flags)
{
return jcompile(n, filename, NULL, flags);
1996-08-24 03:21:31 -03:00
}
struct symtable *
PyNode_CompileSymtable(node *n, char *filename)
{
struct symtable *st;
PyFutureFeatures *ff;
ff = PyNode_Future(n, filename);
if (ff == NULL)
return NULL;
st = symtable_init();
if (st == NULL) {
PyObject_FREE((void *)ff);
return NULL;
}
st->st_future = ff;
symtable_enter_scope(st, TOP, TYPE(n), n->n_lineno);
if (st->st_errors > 0)
goto fail;
symtable_node(st, n);
if (st->st_errors > 0)
goto fail;
return st;
fail:
PyObject_FREE((void *)ff);
st->st_future = NULL;
PySymtable_Free(st);
return NULL;
}
static PyCodeObject *
icompile(node *n, struct compiling *base)
1996-08-24 03:21:31 -03:00
{
return jcompile(n, base->c_filename, base, NULL);
1996-08-24 03:21:31 -03:00
}
static PyCodeObject *
jcompile(node *n, char *filename, struct compiling *base,
PyCompilerFlags *flags)
1990-11-18 13:27:39 -04:00
{
struct compiling sc;
PyCodeObject *co;
if (!com_init(&sc, filename))
1990-11-18 13:27:39 -04:00
return NULL;
if (TYPE(n) == encoding_decl) {
sc.c_encoding = STR(n);
n = CHILD(n, 0);
} else {
sc.c_encoding = NULL;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (base) {
1996-08-24 03:21:31 -03:00
sc.c_private = base->c_private;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
sc.c_symtable = base->c_symtable;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
/* c_symtable still points to parent's symbols */
if (base->c_nested
|| (sc.c_symtable->st_cur->ste_type == TYPE_FUNCTION))
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
sc.c_nested = 1;
sc.c_flags |= base->c_flags & PyCF_MASK;
if (base->c_encoding != NULL) {
assert(sc.c_encoding == NULL);
sc.c_encoding = base->c_encoding;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
} else {
1996-08-24 03:21:31 -03:00
sc.c_private = NULL;
sc.c_future = PyNode_Future(n, filename);
if (sc.c_future == NULL) {
com_free(&sc);
return NULL;
}
if (flags) {
int merged = sc.c_future->ff_features |
flags->cf_flags;
sc.c_future->ff_features = merged;
flags->cf_flags = merged;
}
if (symtable_build(&sc, n) < 0) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
com_free(&sc);
return NULL;
}
1995-07-18 11:51:37 -03:00
}
co = NULL;
if (symtable_load_symbols(&sc) < 0) {
sc.c_errors++;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
goto exit;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
compile_node(&sc, n);
com_done(&sc);
if (sc.c_errors == 0) {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyObject *consts, *names, *varnames, *filename, *name,
*freevars, *cellvars;
consts = PyList_AsTuple(sc.c_consts);
names = PyList_AsTuple(sc.c_names);
varnames = PyList_AsTuple(sc.c_varnames);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
cellvars = dict_keys_inorder(sc.c_cellvars, 0);
freevars = dict_keys_inorder(sc.c_freevars,
PyTuple_GET_SIZE(cellvars));
filename = PyString_InternFromString(sc.c_filename);
name = PyString_InternFromString(sc.c_name);
if (!PyErr_Occurred())
co = PyCode_New(sc.c_argcount,
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
sc.c_nlocals,
sc.c_maxstacklevel,
sc.c_flags,
sc.c_code,
consts,
names,
varnames,
freevars,
cellvars,
filename,
name,
sc.c_firstlineno,
sc.c_lnotab);
Py_XDECREF(consts);
Py_XDECREF(names);
Py_XDECREF(varnames);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_XDECREF(freevars);
Py_XDECREF(cellvars);
Py_XDECREF(filename);
Py_XDECREF(name);
}
else if (!PyErr_Occurred()) {
/* This could happen if someone called PyErr_Clear() after an
error was reported above. That's not supposed to happen,
but I just plugged one case and I'm not sure there can't be
others. In that case, raise SystemError so that at least
it gets reported instead dumping core. */
PyErr_SetString(PyExc_SystemError, "lost syntax error");
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
exit:
if (base == NULL) {
PySymtable_Free(sc.c_symtable);
sc.c_symtable = NULL;
}
1990-11-18 13:27:39 -04:00
com_free(&sc);
return co;
}
int
PyCode_Addr2Line(PyCodeObject *co, int addrq)
{
int size = PyString_Size(co->co_lnotab) / 2;
unsigned char *p = (unsigned char*)PyString_AsString(co->co_lnotab);
int line = co->co_firstlineno;
int addr = 0;
while (--size >= 0) {
addr += *p++;
if (addr > addrq)
break;
line += *p++;
}
return line;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
/* The test for LOCAL must come before the test for FREE in order to
handle classes where name is both local and free. The local var is
a method and the free var is a free var referenced within a method.
*/
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static int
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
get_ref_type(struct compiling *c, char *name)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
char buf[350];
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
PyObject *v;
if (PyDict_GetItemString(c->c_cellvars, name) != NULL)
return CELL;
if (PyDict_GetItemString(c->c_locals, name) != NULL)
return LOCAL;
if (PyDict_GetItemString(c->c_freevars, name) != NULL)
return FREE;
v = PyDict_GetItemString(c->c_globals, name);
if (v) {
if (v == Py_None)
return GLOBAL_EXPLICIT;
else {
return GLOBAL_IMPLICIT;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
}
PyOS_snprintf(buf, sizeof(buf),
"unknown scope for %.100s in %.100s(%s) "
"in %s\nsymbols: %s\nlocals: %s\nglobals: %s\n",
name, c->c_name,
PyObject_REPR(c->c_symtable->st_cur->ste_id),
c->c_filename,
PyObject_REPR(c->c_symtable->st_cur->ste_symbols),
PyObject_REPR(c->c_locals),
PyObject_REPR(c->c_globals)
);
Py_FatalError(buf);
return -1;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
/* Helper functions to issue warnings */
static int
issue_warning(char *msg, char *filename, int lineno)
{
if (PyErr_WarnExplicit(PyExc_SyntaxWarning, msg, filename,
lineno, NULL, NULL) < 0) {
if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
PyErr_SetString(PyExc_SyntaxError, msg);
PyErr_SyntaxLocation(filename, lineno);
}
return -1;
}
return 0;
}
static int
symtable_warn(struct symtable *st, char *msg)
{
if (issue_warning(msg, st->st_filename, st->st_cur->ste_lineno) < 0) {
st->st_errors++;
return -1;
}
return 0;
}
/* Helper function for setting lineno and filename */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static int
symtable_build(struct compiling *c, node *n)
{
if ((c->c_symtable = symtable_init()) == NULL)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
c->c_symtable->st_future = c->c_future;
c->c_symtable->st_filename = c->c_filename;
symtable_enter_scope(c->c_symtable, TOP, TYPE(n), n->n_lineno);
if (c->c_symtable->st_errors > 0)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
symtable_node(c->c_symtable, n);
if (c->c_symtable->st_errors > 0)
return -1;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* reset for second pass */
c->c_symtable->st_nscopes = 1;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_symtable->st_pass = 2;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return 0;
}
static int
symtable_init_compiling_symbols(struct compiling *c)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
PyObject *varnames;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
varnames = c->c_symtable->st_cur->ste_varnames;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (varnames == NULL) {
varnames = PyList_New(0);
if (varnames == NULL)
return -1;
c->c_symtable->st_cur->ste_varnames = varnames;
Py_INCREF(varnames);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
} else
Py_INCREF(varnames);
c->c_varnames = varnames;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_globals = PyDict_New();
if (c->c_globals == NULL)
return -1;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_freevars = PyDict_New();
if (c->c_freevars == NULL)
return -1;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c->c_cellvars = PyDict_New();
if (c->c_cellvars == NULL)
return -1;
return 0;
}
struct symbol_info {
int si_nlocals;
int si_ncells;
int si_nfrees;
int si_nimplicit;
};
static void
symtable_init_info(struct symbol_info *si)
{
si->si_nlocals = 0;
si->si_ncells = 0;
si->si_nfrees = 0;
si->si_nimplicit = 0;
}
static int
symtable_resolve_free(struct compiling *c, PyObject *name, int flags,
struct symbol_info *si)
{
PyObject *dict, *v;
/* Seperate logic for DEF_FREE. If it occurs in a function,
it indicates a local that we must allocate storage for (a
cell var). If it occurs in a class, then the class has a
method and a free variable with the same name.
*/
if (c->c_symtable->st_cur->ste_type == TYPE_FUNCTION) {
/* If it isn't declared locally, it can't be a cell. */
if (!(flags & (DEF_LOCAL | DEF_PARAM)))
return 0;
v = PyInt_FromLong(si->si_ncells++);
dict = c->c_cellvars;
} else {
/* If it is free anyway, then there is no need to do
anything here.
*/
if (is_free(flags ^ DEF_FREE_CLASS)
|| (flags == DEF_FREE_CLASS))
return 0;
v = PyInt_FromLong(si->si_nfrees++);
dict = c->c_freevars;
}
if (v == NULL)
return -1;
if (PyDict_SetItem(dict, name, v) < 0) {
Py_DECREF(v);
return -1;
}
Py_DECREF(v);
return 0;
}
/* If a variable is a cell and an argument, make sure that appears in
co_cellvars before any variable to its right in varnames.
*/
static int
symtable_cellvar_offsets(PyObject **cellvars, int argcount,
PyObject *varnames, int flags)
{
PyObject *v, *w, *d, *list = NULL;
int i, pos;
if (flags & CO_VARARGS)
argcount++;
if (flags & CO_VARKEYWORDS)
argcount++;
for (i = argcount; --i >= 0; ) {
v = PyList_GET_ITEM(varnames, i);
if (PyDict_GetItem(*cellvars, v)) {
if (list == NULL) {
list = PyList_New(1);
if (list == NULL)
return -1;
PyList_SET_ITEM(list, 0, v);
Py_INCREF(v);
} else
PyList_Insert(list, 0, v);
}
}
if (list == NULL || PyList_GET_SIZE(list) == 0)
return 0;
/* There are cellvars that are also arguments. Create a dict
to replace cellvars and put the args at the front.
*/
d = PyDict_New();
for (i = PyList_GET_SIZE(list); --i >= 0; ) {
v = PyInt_FromLong(i);
if (v == NULL)
goto fail;
if (PyDict_SetItem(d, PyList_GET_ITEM(list, i), v) < 0)
goto fail;
if (PyDict_DelItem(*cellvars, PyList_GET_ITEM(list, i)) < 0)
goto fail;
}
pos = 0;
i = PyList_GET_SIZE(list);
Py_DECREF(list);
while (PyDict_Next(*cellvars, &pos, &v, &w)) {
w = PyInt_FromLong(i++); /* don't care about the old key */
if (PyDict_SetItem(d, v, w) < 0) {
Py_DECREF(w);
goto fail;
}
Py_DECREF(w);
}
Py_DECREF(*cellvars);
*cellvars = d;
return 1;
fail:
Py_DECREF(d);
return -1;
}
static int
symtable_freevar_offsets(PyObject *freevars, int offset)
{
PyObject *name, *v;
int pos;
/* The cell vars are the first elements of the closure,
followed by the free vars. Update the offsets in
c_freevars to account for number of cellvars. */
pos = 0;
while (PyDict_Next(freevars, &pos, &name, &v)) {
int i = PyInt_AS_LONG(v) + offset;
PyObject *o = PyInt_FromLong(i);
if (o == NULL)
return -1;
if (PyDict_SetItem(freevars, name, o) < 0) {
Py_DECREF(o);
return -1;
}
Py_DECREF(o);
}
return 0;
}
static int
symtable_check_unoptimized(struct compiling *c,
PySymtableEntryObject *ste,
struct symbol_info *si)
{
char buf[300];
if (!(si->si_ncells || si->si_nfrees || ste->ste_child_free
|| (ste->ste_nested && si->si_nimplicit)))
return 0;
#define ILLEGAL_CONTAINS "contains a nested function with free variables"
#define ILLEGAL_IS "is a nested function"
#define ILLEGAL_IMPORT_STAR \
"import * is not allowed in function '%.100s' because it %s"
#define ILLEGAL_BARE_EXEC \
"unqualified exec is not allowed in function '%.100s' it %s"
#define ILLEGAL_EXEC_AND_IMPORT_STAR \
"function '%.100s' uses import * and bare exec, which are illegal " \
"because it %s"
/* XXX perhaps the linenos for these opt-breaking statements
should be stored so the exception can point to them. */
if (ste->ste_child_free) {
if (ste->ste_optimized == OPT_IMPORT_STAR)
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_IMPORT_STAR,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_CONTAINS);
else if (ste->ste_optimized == (OPT_BARE_EXEC | OPT_EXEC))
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_BARE_EXEC,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_CONTAINS);
else {
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_EXEC_AND_IMPORT_STAR,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_CONTAINS);
}
} else {
if (ste->ste_optimized == OPT_IMPORT_STAR)
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_IMPORT_STAR,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_IS);
else if (ste->ste_optimized == (OPT_BARE_EXEC | OPT_EXEC))
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_BARE_EXEC,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_IS);
else {
PyOS_snprintf(buf, sizeof(buf),
ILLEGAL_EXEC_AND_IMPORT_STAR,
PyString_AS_STRING(ste->ste_name),
ILLEGAL_IS);
}
}
PyErr_SetString(PyExc_SyntaxError, buf);
PyErr_SyntaxLocation(c->c_symtable->st_filename,
ste->ste_opt_lineno);
return -1;
}
static int
symtable_update_flags(struct compiling *c, PySymtableEntryObject *ste,
struct symbol_info *si)
{
if (c->c_future)
c->c_flags |= c->c_future->ff_features;
if (ste->ste_generator)
c->c_flags |= CO_GENERATOR;
if (ste->ste_type != TYPE_MODULE)
c->c_flags |= CO_NEWLOCALS;
if (ste->ste_type == TYPE_FUNCTION) {
c->c_nlocals = si->si_nlocals;
if (ste->ste_optimized == 0)
c->c_flags |= CO_OPTIMIZED;
else if (ste->ste_optimized != OPT_EXEC)
return symtable_check_unoptimized(c, ste, si);
}
return 0;
}
static int
symtable_load_symbols(struct compiling *c)
{
static PyObject *implicit = NULL;
struct symtable *st = c->c_symtable;
PySymtableEntryObject *ste = st->st_cur;
PyObject *name, *varnames, *v;
int i, flags, pos;
struct symbol_info si;
if (implicit == NULL) {
implicit = PyInt_FromLong(1);
if (implicit == NULL)
return -1;
}
v = NULL;
if (symtable_init_compiling_symbols(c) < 0)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
symtable_init_info(&si);
varnames = st->st_cur->ste_varnames;
si.si_nlocals = PyList_GET_SIZE(varnames);
c->c_argcount = si.si_nlocals;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
for (i = 0; i < si.si_nlocals; ++i) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
v = PyInt_FromLong(i);
if (PyDict_SetItem(c->c_locals,
PyList_GET_ITEM(varnames, i), v) < 0)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
Py_DECREF(v);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
/* XXX The cases below define the rules for whether a name is
local or global. The logic could probably be clearer. */
pos = 0;
while (PyDict_Next(ste->ste_symbols, &pos, &name, &v)) {
flags = PyInt_AS_LONG(v);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (flags & DEF_FREE_GLOBAL)
/* undo the original DEF_FREE */
flags &= ~(DEF_FREE | DEF_FREE_CLASS);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
/* Deal with names that need two actions:
1. Cell variables that are also locals.
2. Free variables in methods that are also class
variables or declared global.
*/
if (flags & (DEF_FREE | DEF_FREE_CLASS))
symtable_resolve_free(c, name, flags, &si);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (flags & DEF_STAR) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
c->c_argcount--;
c->c_flags |= CO_VARARGS;
} else if (flags & DEF_DOUBLESTAR) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
c->c_argcount--;
c->c_flags |= CO_VARKEYWORDS;
} else if (flags & DEF_INTUPLE)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
c->c_argcount--;
else if (flags & DEF_GLOBAL) {
if (flags & DEF_PARAM) {
PyErr_Format(PyExc_SyntaxError, LOCAL_GLOBAL,
PyString_AS_STRING(name));
PyErr_SyntaxLocation(st->st_filename,
ste->ste_lineno);
st->st_errors++;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (PyDict_SetItem(c->c_globals, name, Py_None) < 0)
goto fail;
} else if (flags & DEF_FREE_GLOBAL) {
si.si_nimplicit++;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (PyDict_SetItem(c->c_globals, name, implicit) < 0)
goto fail;
} else if ((flags & DEF_LOCAL) && !(flags & DEF_PARAM)) {
v = PyInt_FromLong(si.si_nlocals++);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (v == NULL)
goto fail;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (PyDict_SetItem(c->c_locals, name, v) < 0)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
Py_DECREF(v);
if (ste->ste_type != TYPE_CLASS)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (PyList_Append(c->c_varnames, name) < 0)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
} else if (is_free(flags)) {
if (ste->ste_nested) {
v = PyInt_FromLong(si.si_nfrees++);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (v == NULL)
goto fail;
if (PyDict_SetItem(c->c_freevars, name, v) < 0)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
goto fail;
Py_DECREF(v);
} else {
si.si_nimplicit++;
if (PyDict_SetItem(c->c_globals, name,
implicit) < 0)
goto fail;
if (st->st_nscopes != 1) {
v = PyInt_FromLong(flags);
if (PyDict_SetItem(st->st_global,
name, v))
goto fail;
Py_DECREF(v);
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
}
assert(PyDict_Size(c->c_freevars) == si.si_nfrees);
if (si.si_ncells > 1) { /* one cell is always in order */
if (symtable_cellvar_offsets(&c->c_cellvars, c->c_argcount,
c->c_varnames, c->c_flags) < 0)
return -1;
}
if (symtable_freevar_offsets(c->c_freevars, si.si_ncells) < 0)
return -1;
return symtable_update_flags(c, ste, &si);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
fail:
/* is this always the right thing to do? */
Py_XDECREF(v);
return -1;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
static struct symtable *
symtable_init()
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
struct symtable *st;
st = (struct symtable *)PyObject_MALLOC(sizeof(struct symtable));
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (st == NULL)
return NULL;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
st->st_pass = 1;
st->st_filename = NULL;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if ((st->st_stack = PyList_New(0)) == NULL)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
goto fail;
if ((st->st_symbols = PyDict_New()) == NULL)
goto fail;
st->st_cur = NULL;
st->st_nscopes = 0;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
st->st_errors = 0;
st->st_tmpname = 0;
st->st_private = NULL;
return st;
fail:
PySymtable_Free(st);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return NULL;
}
void
PySymtable_Free(struct symtable *st)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
Py_XDECREF(st->st_symbols);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
Py_XDECREF(st->st_stack);
Py_XDECREF(st->st_cur);
PyObject_FREE((void *)st);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
/* When the compiler exits a scope, it must should update the scope's
free variable information with the list of free variables in its
children.
Variables that are free in children and defined in the current
scope are cellvars.
If the scope being exited is defined at the top-level (ste_nested is
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
false), free variables in children that are not defined here are
implicit globals.
*/
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static int
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
symtable_update_free_vars(struct symtable *st)
{
int i, j, def;
PyObject *o, *name, *list = NULL;
PySymtableEntryObject *child, *ste = st->st_cur;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (ste->ste_type == TYPE_CLASS)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
def = DEF_FREE_CLASS;
else
def = DEF_FREE;
for (i = 0; i < PyList_GET_SIZE(ste->ste_children); ++i) {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int pos = 0;
if (list)
PyList_SetSlice(list, 0,
((PyVarObject*)list)->ob_size, 0);
child = (PySymtableEntryObject *)
PyList_GET_ITEM(ste->ste_children, i);
while (PyDict_Next(child->ste_symbols, &pos, &name, &o)) {
int flags = PyInt_AS_LONG(o);
if (!(is_free(flags)))
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
continue; /* avoids indentation */
if (list == NULL) {
list = PyList_New(0);
if (list == NULL)
return -1;
}
ste->ste_child_free = 1;
if (PyList_Append(list, name) < 0) {
Py_DECREF(list);
return -1;
}
}
for (j = 0; list && j < PyList_GET_SIZE(list); j++) {
PyObject *v;
name = PyList_GET_ITEM(list, j);
v = PyDict_GetItem(ste->ste_symbols, name);
/* If a name N is declared global in scope A and
referenced in scope B contained (perhaps
indirectly) in A and there are no scopes
with bindings for N between B and A, then N
is global in B. Unless A is a class scope,
because class scopes are not considered for
nested scopes.
*/
if (v && (ste->ste_type != TYPE_CLASS)) {
int flags = PyInt_AS_LONG(v);
if (flags & DEF_GLOBAL) {
symtable_undo_free(st, child->ste_id,
name);
continue;
}
}
if (ste->ste_nested) {
if (symtable_add_def_o(st, ste->ste_symbols,
name, def) < 0) {
Py_DECREF(list);
return -1;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
} else {
if (symtable_check_global(st, child->ste_id,
name) < 0) {
Py_DECREF(list);
return -1;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
}
}
Py_XDECREF(list);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return 0;
}
/* If the current scope is a non-nested class or if name is not
defined in the current, non-nested scope, then it is an implicit
global in all nested scopes.
*/
static int
symtable_check_global(struct symtable *st, PyObject *child, PyObject *name)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
PyObject *o;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
int v;
PySymtableEntryObject *ste = st->st_cur;
if (ste->ste_type == TYPE_CLASS)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return symtable_undo_free(st, child, name);
o = PyDict_GetItem(ste->ste_symbols, name);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (o == NULL)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return symtable_undo_free(st, child, name);
v = PyInt_AS_LONG(o);
if (is_free(v) || (v & DEF_GLOBAL))
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return symtable_undo_free(st, child, name);
else
return symtable_add_def_o(st, ste->ste_symbols,
name, DEF_FREE);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
static int
symtable_undo_free(struct symtable *st, PyObject *id,
PyObject *name)
{
int i, v, x;
PyObject *info;
PySymtableEntryObject *ste;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
ste = (PySymtableEntryObject *)PyDict_GetItem(st->st_symbols, id);
if (ste == NULL)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
info = PyDict_GetItem(ste->ste_symbols, name);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (info == NULL)
return 0;
v = PyInt_AS_LONG(info);
if (is_free(v)) {
if (symtable_add_def_o(st, ste->ste_symbols, name,
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
DEF_FREE_GLOBAL) < 0)
return -1;
} else
/* If the name is defined here or declared global,
then the recursion stops. */
return 0;
for (i = 0; i < PyList_GET_SIZE(ste->ste_children); ++i) {
PySymtableEntryObject *child;
child = (PySymtableEntryObject *)
PyList_GET_ITEM(ste->ste_children, i);
x = symtable_undo_free(st, child->ste_id, name);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (x < 0)
return x;
}
return 0;
}
/* symtable_enter_scope() gets a reference via PySymtableEntry_New().
This reference is released when the scope is exited, via the DECREF
in symtable_exit_scope().
*/
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
static int
symtable_exit_scope(struct symtable *st)
{
int end;
if (st->st_pass == 1)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
symtable_update_free_vars(st);
Py_DECREF(st->st_cur);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
end = PyList_GET_SIZE(st->st_stack) - 1;
st->st_cur = (PySymtableEntryObject *)PyList_GET_ITEM(st->st_stack,
end);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (PySequence_DelItem(st->st_stack, end) < 0)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
return 0;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
static void
symtable_enter_scope(struct symtable *st, char *name, int type,
int lineno)
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
{
PySymtableEntryObject *prev = NULL;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (st->st_cur) {
prev = st->st_cur;
if (PyList_Append(st->st_stack, (PyObject *)st->st_cur) < 0) {
Py_DECREF(st->st_cur);
st->st_errors++;
return;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
st->st_cur = (PySymtableEntryObject *)
PySymtableEntry_New(st, name, type, lineno);
if (strcmp(name, TOP) == 0)
st->st_global = st->st_cur->ste_symbols;
if (prev && st->st_pass == 1) {
if (PyList_Append(prev->ste_children,
(PyObject *)st->st_cur) < 0)
st->st_errors++;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
static int
symtable_lookup(struct symtable *st, char *name)
{
char buffer[MANGLE_LEN];
PyObject *v;
int flags;
if (_Py_Mangle(st->st_private, name, buffer, sizeof(buffer)))
name = buffer;
v = PyDict_GetItemString(st->st_cur->ste_symbols, name);
if (v == NULL) {
if (PyErr_Occurred())
return -1;
else
return 0;
}
flags = PyInt_AS_LONG(v);
return flags;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static int
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
symtable_add_def(struct symtable *st, char *name, int flag)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
PyObject *s;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
char buffer[MANGLE_LEN];
int ret;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (_Py_Mangle(st->st_private, name, buffer, sizeof(buffer)))
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
name = buffer;
if ((s = PyString_InternFromString(name)) == NULL)
return -1;
ret = symtable_add_def_o(st, st->st_cur->ste_symbols, s, flag);
Py_DECREF(s);
return ret;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
/* Must only be called with mangled names */
static int
symtable_add_def_o(struct symtable *st, PyObject *dict,
PyObject *name, int flag)
{
PyObject *o;
int val;
if ((o = PyDict_GetItem(dict, name))) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
val = PyInt_AS_LONG(o);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if ((flag & DEF_PARAM) && (val & DEF_PARAM)) {
PyErr_Format(PyExc_SyntaxError, DUPLICATE_ARGUMENT,
PyString_AsString(name));
PyErr_SyntaxLocation(st->st_filename,
st->st_cur->ste_lineno);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
val |= flag;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
} else
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
val = flag;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
o = PyInt_FromLong(val);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (PyDict_SetItem(dict, name, o) < 0) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
Py_DECREF(o);
return -1;
}
Py_DECREF(o);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (flag & DEF_PARAM) {
if (PyList_Append(st->st_cur->ste_varnames, name) < 0)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return -1;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
} else if (flag & DEF_GLOBAL) {
/* XXX need to update DEF_GLOBAL for other flags too;
perhaps only DEF_FREE_GLOBAL */
if ((o = PyDict_GetItem(st->st_global, name))) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
val = PyInt_AS_LONG(o);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
val |= flag;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
} else
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
val = flag;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
o = PyInt_FromLong(val);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (PyDict_SetItem(st->st_global, name, o) < 0) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
Py_DECREF(o);
return -1;
}
Py_DECREF(o);
}
return 0;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
#define symtable_add_use(ST, NAME) symtable_add_def((ST), (NAME), USE)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
/* Look for a yield stmt under n. Return 1 if found, else 0.
This hack is used to look inside "if 0:" blocks (which are normally
ignored) in case those are the only places a yield occurs (so that this
function is a generator). */
static int
look_for_yield(node *n)
{
int i;
for (i = 0; i < NCH(n); ++i) {
node *kid = CHILD(n, i);
switch (TYPE(kid)) {
case classdef:
case funcdef:
case lambdef:
/* Stuff in nested functions and classes can't make
the parent a generator. */
return 0;
case yield_stmt:
return 1;
default:
if (look_for_yield(kid))
return 1;
}
}
return 0;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void
symtable_node(struct symtable *st, node *n)
{
int i;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
loop:
switch (TYPE(n)) {
case funcdef: {
char *func_name = STR(CHILD(n, 1));
symtable_add_def(st, func_name, DEF_LOCAL);
symtable_default_args(st, CHILD(n, 2));
symtable_enter_scope(st, func_name, TYPE(n), n->n_lineno);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_funcdef(st, n);
symtable_exit_scope(st);
break;
}
case lambdef:
if (NCH(n) == 4)
symtable_default_args(st, CHILD(n, 1));
symtable_enter_scope(st, "lambda", TYPE(n), n->n_lineno);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_funcdef(st, n);
symtable_exit_scope(st);
break;
case classdef: {
char *tmp, *class_name = STR(CHILD(n, 1));
symtable_add_def(st, class_name, DEF_LOCAL);
if (TYPE(CHILD(n, 2)) == LPAR) {
node *bases = CHILD(n, 3);
int i;
for (i = 0; i < NCH(bases); i += 2) {
symtable_node(st, CHILD(bases, i));
}
}
symtable_enter_scope(st, class_name, TYPE(n), n->n_lineno);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
tmp = st->st_private;
st->st_private = class_name;
symtable_node(st, CHILD(n, NCH(n) - 1));
st->st_private = tmp;
symtable_exit_scope(st);
break;
}
case if_stmt:
for (i = 0; i + 3 < NCH(n); i += 4) {
if (is_constant_false(NULL, (CHILD(n, i + 1)))) {
if (st->st_cur->ste_generator == 0)
st->st_cur->ste_generator =
look_for_yield(CHILD(n, i+3));
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
continue;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_node(st, CHILD(n, i + 1));
symtable_node(st, CHILD(n, i + 3));
}
if (i + 2 < NCH(n))
symtable_node(st, CHILD(n, i + 2));
break;
case global_stmt:
symtable_global(st, n);
break;
case import_stmt:
symtable_import(st, n);
break;
case exec_stmt: {
st->st_cur->ste_optimized |= OPT_EXEC;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_node(st, CHILD(n, 1));
if (NCH(n) > 2)
symtable_node(st, CHILD(n, 3));
else {
st->st_cur->ste_optimized |= OPT_BARE_EXEC;
st->st_cur->ste_opt_lineno = n->n_lineno;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (NCH(n) > 4)
symtable_node(st, CHILD(n, 5));
break;
}
case assert_stmt:
if (Py_OptimizeFlag)
return;
if (NCH(n) == 2) {
n = CHILD(n, 1);
goto loop;
} else {
symtable_node(st, CHILD(n, 1));
n = CHILD(n, 3);
goto loop;
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
case except_clause:
if (NCH(n) == 4)
symtable_assign(st, CHILD(n, 3), 0);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (NCH(n) > 1) {
n = CHILD(n, 1);
goto loop;
}
break;
case del_stmt:
symtable_assign(st, CHILD(n, 1), 0);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
break;
case yield_stmt:
st->st_cur->ste_generator = 1;
n = CHILD(n, 1);
goto loop;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
case expr_stmt:
if (NCH(n) == 1)
n = CHILD(n, 0);
else {
if (TYPE(CHILD(n, 1)) == augassign) {
symtable_assign(st, CHILD(n, 0), 0);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_node(st, CHILD(n, 2));
break;
} else {
int i;
for (i = 0; i < NCH(n) - 2; i += 2)
symtable_assign(st, CHILD(n, i), 0);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
n = CHILD(n, NCH(n) - 1);
}
}
goto loop;
case list_iter:
n = CHILD(n, 0);
if (TYPE(n) == list_for) {
st->st_tmpname++;
symtable_list_comprehension(st, n);
st->st_tmpname--;
} else {
REQ(n, list_if);
symtable_node(st, CHILD(n, 1));
if (NCH(n) == 3) {
n = CHILD(n, 2);
goto loop;
}
}
break;
case for_stmt:
symtable_assign(st, CHILD(n, 1), 0);
for (i = 3; i < NCH(n); ++i)
if (TYPE(CHILD(n, i)) >= single_input)
symtable_node(st, CHILD(n, i));
break;
/* The remaining cases fall through to default except in
special circumstances. This requires the individual cases
to be coded with great care, even though they look like
rather innocuous. Each case must double-check TYPE(n).
*/
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
case argument:
if (TYPE(n) == argument && NCH(n) == 3) {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
n = CHILD(n, 2);
goto loop;
}
/* fall through */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
case listmaker:
if (NCH(n) > 1 && TYPE(CHILD(n, 1)) == list_for) {
st->st_tmpname++;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_list_comprehension(st, CHILD(n, 1));
symtable_node(st, CHILD(n, 0));
st->st_tmpname--;
break;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
/* fall through */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
case atom:
if (TYPE(n) == atom && TYPE(CHILD(n, 0)) == NAME) {
symtable_add_use(st, STR(CHILD(n, 0)));
break;
}
/* fall through */
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
default:
/* Walk over every non-token child with a special case
for one child.
*/
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto loop;
}
for (i = 0; i < NCH(n); ++i)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (TYPE(CHILD(n, i)) >= single_input)
symtable_node(st, CHILD(n, i));
}
}
static void
symtable_funcdef(struct symtable *st, node *n)
{
node *body;
if (TYPE(n) == lambdef) {
if (NCH(n) == 4)
symtable_params(st, CHILD(n, 1));
} else
symtable_params(st, CHILD(n, 2));
body = CHILD(n, NCH(n) - 1);
symtable_node(st, body);
}
/* The next two functions parse the argument tuple.
symtable_default_arg() checks for names in the default arguments,
which are references in the defining scope. symtable_params()
parses the parameter names, which are defined in the function's
body.
varargslist:
(fpdef ['=' test] ',')* ('*' NAME [',' '**' NAME] | '**' NAME)
| fpdef ['=' test] (',' fpdef ['=' test])* [',']
*/
static void
symtable_default_args(struct symtable *st, node *n)
{
node *c;
int i;
if (TYPE(n) == parameters) {
n = CHILD(n, 1);
if (TYPE(n) == RPAR)
return;
}
REQ(n, varargslist);
for (i = 0; i < NCH(n); i += 2) {
c = CHILD(n, i);
if (TYPE(c) == STAR || TYPE(c) == DOUBLESTAR) {
break;
}
if (i > 0 && (TYPE(CHILD(n, i - 1)) == EQUAL))
symtable_node(st, CHILD(n, i));
}
}
static void
symtable_params(struct symtable *st, node *n)
{
int i, complex = -1, ext = 0;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
node *c = NULL;
if (TYPE(n) == parameters) {
n = CHILD(n, 1);
if (TYPE(n) == RPAR)
return;
}
REQ(n, varargslist);
for (i = 0; i < NCH(n); i += 2) {
c = CHILD(n, i);
if (TYPE(c) == STAR || TYPE(c) == DOUBLESTAR) {
ext = 1;
break;
}
if (TYPE(c) == test) {
continue;
}
if (TYPE(CHILD(c, 0)) == NAME)
symtable_add_def(st, STR(CHILD(c, 0)), DEF_PARAM);
else {
char nbuf[30];
PyOS_snprintf(nbuf, sizeof(nbuf), ".%d", i);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_add_def(st, nbuf, DEF_PARAM);
complex = i;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
}
if (ext) {
c = CHILD(n, i);
if (TYPE(c) == STAR) {
i++;
symtable_add_def(st, STR(CHILD(n, i)),
DEF_PARAM | DEF_STAR);
i += 2;
if (i >= NCH(n))
c = NULL;
else
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
c = CHILD(n, i);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
if (c && TYPE(c) == DOUBLESTAR) {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
i++;
symtable_add_def(st, STR(CHILD(n, i)),
DEF_PARAM | DEF_DOUBLESTAR);
}
}
if (complex >= 0) {
int j;
for (j = 0; j <= complex; j++) {
c = CHILD(n, j);
if (TYPE(c) == COMMA)
c = CHILD(n, ++j);
else if (TYPE(c) == EQUAL)
c = CHILD(n, j += 3);
if (TYPE(CHILD(c, 0)) == LPAR)
symtable_params_fplist(st, CHILD(c, 1));
}
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
static void
symtable_params_fplist(struct symtable *st, node *n)
{
int i;
node *c;
REQ(n, fplist);
for (i = 0; i < NCH(n); i += 2) {
c = CHILD(n, i);
REQ(c, fpdef);
if (NCH(c) == 1)
symtable_add_def(st, STR(CHILD(c, 0)),
DEF_PARAM | DEF_INTUPLE);
else
symtable_params_fplist(st, CHILD(c, 1));
}
}
static void
symtable_global(struct symtable *st, node *n)
{
int i;
/* XXX It might be helpful to warn about module-level global
statements, but it's hard to tell the difference between
module-level and a string passed to exec.
*/
for (i = 1; i < NCH(n); i += 2) {
char *name = STR(CHILD(n, i));
int flags;
flags = symtable_lookup(st, name);
if (flags < 0)
continue;
if (flags && flags != DEF_GLOBAL) {
char buf[500];
if (flags & DEF_PARAM) {
PyErr_Format(PyExc_SyntaxError,
"name '%.400s' is local and global",
name);
PyErr_SyntaxLocation(st->st_filename,
st->st_cur->ste_lineno);
st->st_errors++;
return;
}
else {
if (flags & DEF_LOCAL)
PyOS_snprintf(buf, sizeof(buf),
GLOBAL_AFTER_ASSIGN,
name);
else
PyOS_snprintf(buf, sizeof(buf),
GLOBAL_AFTER_USE, name);
symtable_warn(st, buf);
}
}
symtable_add_def(st, name, DEF_GLOBAL);
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
static void
symtable_list_comprehension(struct symtable *st, node *n)
{
char tmpname[30];
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
PyOS_snprintf(tmpname, sizeof(tmpname), "_[%d]", st->st_tmpname);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_add_def(st, tmpname, DEF_LOCAL);
symtable_assign(st, CHILD(n, 1), 0);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
symtable_node(st, CHILD(n, 3));
if (NCH(n) == 5)
symtable_node(st, CHILD(n, 4));
}
static void
symtable_import(struct symtable *st, node *n)
{
int i;
/* import_stmt: 'import' dotted_as_name (',' dotted_as_name)*
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
| 'from' dotted_name 'import'
('*' | import_as_name (',' import_as_name)*)
import_as_name: NAME [NAME NAME]
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
*/
if (STR(CHILD(n, 0))[0] == 'f') { /* from */
node *dotname = CHILD(n, 1);
if (strcmp(STR(CHILD(dotname, 0)), "__future__") == 0) {
/* check for bogus imports */
if (n->n_lineno >= st->st_future->ff_last_lineno) {
PyErr_SetString(PyExc_SyntaxError,
LATE_FUTURE);
PyErr_SyntaxLocation(st->st_filename,
n->n_lineno);
st->st_errors++;
return;
}
}
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
if (TYPE(CHILD(n, 3)) == STAR) {
if (st->st_cur->ste_type != TYPE_MODULE) {
if (symtable_warn(st,
"import * only allowed at module level") < 0)
return;
}
st->st_cur->ste_optimized |= OPT_IMPORT_STAR;
st->st_cur->ste_opt_lineno = n->n_lineno;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
} else {
for (i = 3; i < NCH(n); i += 2) {
node *c = CHILD(n, i);
if (NCH(c) > 1) /* import as */
symtable_assign(st, CHILD(c, 2),
DEF_IMPORT);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
else
symtable_assign(st, CHILD(c, 0),
DEF_IMPORT);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
}
} else {
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
for (i = 1; i < NCH(n); i += 2) {
symtable_assign(st, CHILD(n, i), DEF_IMPORT);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
}
}
/* The third argument to symatble_assign() is a flag to be passed to
symtable_add_def() if it is eventually called. The flag is useful
to specify the particular type of assignment that should be
recorded, e.g. an assignment caused by import.
*/
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
static void
symtable_assign(struct symtable *st, node *n, int def_flag)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
{
node *tmp;
int i;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
loop:
switch (TYPE(n)) {
case lambdef:
/* invalid assignment, e.g. lambda x:x=2. The next
pass will catch this error. */
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return;
case power:
if (NCH(n) > 2) {
for (i = 2; i < NCH(n); ++i)
if (TYPE(CHILD(n, i)) != DOUBLESTAR)
symtable_node(st, CHILD(n, i));
}
if (NCH(n) > 1) {
symtable_node(st, CHILD(n, 0));
symtable_node(st, CHILD(n, 1));
} else {
n = CHILD(n, 0);
goto loop;
}
return;
case listmaker:
if (NCH(n) > 1 && TYPE(CHILD(n, 1)) == list_for) {
/* XXX This is an error, but the next pass
will catch it. */
return;
} else {
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
for (i = 0; i < NCH(n); i += 2)
symtable_assign(st, CHILD(n, i), def_flag);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
return;
case exprlist:
case testlist:
case testlist1:
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto loop;
}
else {
int i;
for (i = 0; i < NCH(n); i += 2)
symtable_assign(st, CHILD(n, i), def_flag);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return;
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
}
case atom:
tmp = CHILD(n, 0);
if (TYPE(tmp) == LPAR || TYPE(tmp) == LSQB) {
n = CHILD(n, 1);
goto loop;
} else if (TYPE(tmp) == NAME) {
if (strcmp(STR(tmp), "__debug__") == 0) {
PyErr_SetString(PyExc_SyntaxError,
ASSIGN_DEBUG);
PyErr_SyntaxLocation(st->st_filename,
n->n_lineno);
st->st_errors++;
}
symtable_add_def(st, STR(tmp), DEF_LOCAL | def_flag);
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return;
case dotted_as_name:
if (NCH(n) == 3)
symtable_add_def(st, STR(CHILD(n, 2)),
DEF_LOCAL | def_flag);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
else
symtable_add_def(st,
STR(CHILD(CHILD(n,
0), 0)),
DEF_LOCAL | def_flag);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return;
case dotted_name:
symtable_add_def(st, STR(CHILD(n, 0)), DEF_LOCAL | def_flag);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return;
case NAME:
symtable_add_def(st, STR(n), DEF_LOCAL | def_flag);
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-25 16:06:59 -04:00
return;
default:
if (NCH(n) == 0)
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
return;
if (NCH(n) == 1) {
n = CHILD(n, 0);
goto loop;
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
/* Should only occur for errors like x + 1 = 1,
which will be caught in the next pass. */
for (i = 0; i < NCH(n); ++i)
if (TYPE(CHILD(n, i)) >= single_input)
symtable_assign(st, CHILD(n, i), def_flag);
This patch introduces an extra pass to the compiler that generates a symbol table for each top-level compilation unit. The information in the symbol table allows the elimination of the later optimize() pass; the bytecode generation emits the correct opcodes. The current version passes the complete regression test, but may still contain some bugs. It's a fairly substantial revision. The current code adds an assert() and a test that may lead to a Py_FatalError(). I expect to remove these before 2.1 beta 1. The symbol table (struct symtable) is described in comments in the code. The changes affects the several com_XXX() functions that were used to emit LOAD_NAME and its ilk. The primary interface for this bytecode is now com_addop_varname() which takes a kind and a name, where kind is one of VAR_LOAD, VAR_STORE, or VAR_DELETE. There are many other smaller changes: - The name mangling code is no longer contained in ifdefs. There are two functions that expose the mangling logical: com_mangle() and symtable_mangle(). - The com_error() function can accept NULL for its first argument; this is useful with is_constant_false() is called during symbol table generation. - The loop index names used by list comprehensions have been changed from __1__ to [1], so that they can not be accessed by Python code. - in com_funcdef(), com_argdefs() is now called before the body of the function is compiled. This provides consistency with com_lambdef() and symtable_funcdef(). - Helpers do_pad(), dump(), and DUMP() are added to aid in debugging the compiler.
2001-01-18 23:21:30 -04:00
}
}