ardupilot/libraries/AP_NavEKF3/derivation/generate_1.py
Thomas Watson f9fa2565c4 AP_NavEKF3: document provenance of tilt error variance equations
This is also from the older version of the generator.

Note that as documented, some of the equations have been removed and
rearranged slightly as it is assumed their terms are zero. Additionally,
the result is taken as the sum of the diagonal entries of the matrix.
2024-10-01 09:28:54 +10:00

709 lines
29 KiB
Python
Executable File

#!/usr/bin/env python3
# Copied from https://github.com/PX4/ecl/commit/264c8c4e8681704e4719d0a03b848df8617c0863
# and modified for ArduPilot
from sympy import __version__ as __sympy__version__
from sympy import *
from code_gen import *
import numpy as np
# version required to generate the exact code currently present in ArduPilot.
# sympy version upgrades must ensure generated code doesn't pose any problems
# and must not have any other changes to the generator.
assert __sympy__version__ == "1.9", "expected sympy version 1.9, not "+__sympy__version__
# q: quaternion describing rotation from frame 1 to frame 2
# returns a rotation matrix derived form q which describes the same
# rotation
def quat2Rot(q):
q0 = q[0]
q1 = q[1]
q2 = q[2]
q3 = q[3]
# This form is the one normally used in flight dynamics and inertial navigation texts, eg
# Aircraft Control and Simulation, Stevens,B.L, Lewis,F.L, Johnson,E.N, Third Edition, eqn 1.8-18
# It does produce second order terms in the covariance prediction that can be problematic
# with single precision processing.
# It requires the quternion to be unit length.
# Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)],
# [2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)],
# [2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]])
# This form removes q1 from the 0,0, q2 from the 1,1 and q3 from the 2,2 entry and results
# in a covariance prediction that is better conditioned.
# It requires the quaternion to be unit length and is mathematically identical
# to the alternate form when q0**2 + q1**2 + q2**2 + q3**2 = 1
# See https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToMatrix/index.htm
Rot = Matrix([[1 - 2*(q2**2 + q3**2), 2*(q1*q2 - q0*q3) , 2*(q1*q3 + q0*q2) ],
[2*(q1*q2 + q0*q3) , 1 - 2*(q1**2 + q3**2), 2*(q2*q3 - q0*q1) ],
[2*(q1*q3-q0*q2) , 2*(q2*q3 + q0*q1) , 1 - 2*(q1**2 + q2**2)]])
return Rot
def create_cov_matrix(i, j):
if j >= i:
# return Symbol("P(" + str(i) + "," + str(j) + ")", real=True)
# legacy array format
return Symbol("P[" + str(i) + "][" + str(j) + "]", real=True)
else:
return 0
def create_yaw_estimator_cov_matrix():
# define a symbolic covariance matrix
P = Matrix(3,3,create_cov_matrix)
for index in range(3):
for j in range(3):
if index > j:
P[index,j] = P[j,index]
return P
def create_Tbs_matrix(i, j):
# return Symbol("Tbs(" + str(i) + "," + str(j) + ")", real=True)
# legacy array format
return Symbol("Tbs[" + str(i) + "][" + str(j) + "]", real=True)
def quat_mult(p,q):
r = Matrix([p[0] * q[0] - p[1] * q[1] - p[2] * q[2] - p[3] * q[3],
p[0] * q[1] + p[1] * q[0] + p[2] * q[3] - p[3] * q[2],
p[0] * q[2] - p[1] * q[3] + p[2] * q[0] + p[3] * q[1],
p[0] * q[3] + p[1] * q[2] - p[2] * q[1] + p[3] * q[0]])
return r
def create_symmetric_cov_matrix(n):
# define a symbolic covariance matrix
P = Matrix(n,n,create_cov_matrix)
for index in range(n):
for j in range(n):
if index > j:
P[index,j] = P[j,index]
return P
# generate equations for observation vector innovation variances
def generate_observation_vector_innovation_variances(P,state,observation,variance,n_obs):
H = observation.jacobian(state)
innovation_variance = zeros(n_obs,1)
for index in range(n_obs):
H[index,:] = Matrix([observation[index]]).jacobian(state)
innovation_variance[index] = H[index,:] * P * H[index,:].T + Matrix([variance])
IV_simple = cse(innovation_variance, symbols("IV0:1000"), optimizations='basic')
return IV_simple
# generate equations for observation Jacobian and Kalman gain
def generate_observation_equations(P,state,observation,variance,varname="HK"):
H = Matrix([observation]).jacobian(state)
innov_var = H * P * H.T + Matrix([variance])
assert(innov_var.shape[0] == 1)
assert(innov_var.shape[1] == 1)
K = P * H.T / innov_var[0,0]
extension="0:1000"
var_string = varname+extension
HK_simple = cse(Matrix([H.transpose(), K]), symbols(var_string), optimizations='basic')
return HK_simple
# generate equations for observation vector Jacobian and Kalman gain
# n_obs is the vector dimension and must be >= 2
def generate_observation_vector_equations(P,state,observation,variance,n_obs):
K = zeros(24,n_obs)
H = observation.jacobian(state)
HK = zeros(n_obs*48,1)
for index in range(n_obs):
H[index,:] = Matrix([observation[index]]).jacobian(state)
innov_var = H[index,:] * P * H[index,:].T + Matrix([variance])
assert(innov_var.shape[0] == 1)
assert(innov_var.shape[1] == 1)
K[:,index] = P * H[index,:].T / innov_var[0,0]
HK[index*48:(index+1)*48,0] = Matrix([H[index,:].transpose(), K[:,index]])
HK_simple = cse(HK, symbols("HK0:1000"), optimizations='basic')
return HK_simple
# write single observation equations to file
def write_equations_to_file(equations,code_generator_id,n_obs):
if (n_obs < 1):
return
if (n_obs == 1):
code_generator_id.print_string("Sub Expressions")
code_generator_id.write_subexpressions(equations[0])
code_generator_id.print_string("Observation Jacobians")
code_generator_id.write_matrix(Matrix(equations[1][0][0:24]), "Hfusion", False)
code_generator_id.print_string("Kalman gains")
code_generator_id.write_matrix(Matrix(equations[1][0][24:]), "Kfusion", False)
else:
code_generator_id.print_string("Sub Expressions")
code_generator_id.write_subexpressions(equations[0])
for axis_index in range(n_obs):
start_index = axis_index*48
code_generator_id.print_string("Observation Jacobians - axis %i" % axis_index)
code_generator_id.write_matrix(Matrix(equations[1][0][start_index:start_index+24]), "Hfusion", False)
code_generator_id.print_string("Kalman gains - axis %i" % axis_index)
code_generator_id.write_matrix(Matrix(equations[1][0][start_index+24:start_index+48]), "Kfusion", False)
return
# derive equations for sequential fusion of optical flow measurements
def optical_flow_observation(P,state,R_to_body,vx,vy,vz):
flow_code_generator = CodeGenerator("./generated/flow_generated.cpp")
range = symbols("range", real=True) # range from camera focal point to ground along sensor Z axis
obs_var = symbols("R_LOS", real=True) # optical flow line of sight rate measurement noise variance
# Define rotation matrix from body to sensor frame
Tbs = Matrix(3,3,create_Tbs_matrix)
# Calculate earth relative velocity in a non-rotating sensor frame
relVelSensor = Tbs * R_to_body * Matrix([vx,vy,vz])
# Divide by range to get predicted angular LOS rates relative to X and Y
# axes. Note these are rates in a non-rotating sensor frame
losRateSensorX = +relVelSensor[1]/range
losRateSensorY = -relVelSensor[0]/range
# calculate the observation Jacobian and Kalman gains for the X axis
equations = generate_observation_equations(P,state,losRateSensorX,obs_var)
flow_code_generator.print_string("X Axis Equations")
write_equations_to_file(equations,flow_code_generator,1)
# calculate the observation Jacobian and Kalman gains for the Y axis
equations = generate_observation_equations(P,state,losRateSensorY,obs_var)
flow_code_generator.print_string("Y Axis Equations")
write_equations_to_file(equations,flow_code_generator,1)
flow_code_generator.close()
# calculate a combined result for a possible reduction in operations, but will use more stack
observation = Matrix([relVelSensor[1]/range,-relVelSensor[0]/range])
equations = generate_observation_vector_equations(P,state,observation,obs_var,2)
flow_code_generator_alt = CodeGenerator("./generated/flow_generated_alt.cpp")
write_equations_to_file(equations,flow_code_generator_alt,2)
flow_code_generator_alt.close()
return
# Derive equations for sequential fusion of body frame velocity measurements
def body_frame_velocity_observation(P,state,R_to_body,vx,vy,vz):
obs_var = symbols("R_VEL", real=True) # measurement noise variance
# Calculate earth relative velocity in a non-rotating sensor frame
vel_bf = R_to_body * Matrix([vx,vy,vz])
vel_bf_code_generator = CodeGenerator("./generated/vel_bf_generated.cpp")
axes = [0,1,2]
H_obs = vel_bf.jacobian(state) # observation Jacobians
K_gain = zeros(24,3)
for index in axes:
equations = generate_observation_equations(P,state,vel_bf[index],obs_var)
vel_bf_code_generator.print_string("axis %i" % index)
vel_bf_code_generator.write_subexpressions(equations[0])
vel_bf_code_generator.write_matrix(Matrix(equations[1][0][0:24]), "H_VEL", False)
vel_bf_code_generator.write_matrix(Matrix(equations[1][0][24:]), "Kfusion", False)
vel_bf_code_generator.close()
# calculate a combined result for a possible reduction in operations, but will use more stack
equations = generate_observation_vector_equations(P,state,vel_bf,obs_var,3)
vel_bf_code_generator_alt = CodeGenerator("./generated/vel_bf_generated_alt.cpp")
write_equations_to_file(equations,vel_bf_code_generator_alt,3)
vel_bf_code_generator_alt.close()
# derive equations for fusion of dual antenna yaw measurement
def gps_yaw_observation(P,state,R_to_body):
obs_var = symbols("R_YAW", real=True) # measurement noise variance
ant_yaw = symbols("ant_yaw", real=True) # yaw angle of antenna array axis wrt X body axis
# define antenna vector in body frame
ant_vec_bf = Matrix([cos(ant_yaw),sin(ant_yaw),0])
# rotate into earth frame
ant_vec_ef = R_to_body.T * ant_vec_bf
# Calculate the yaw angle from the projection
observation = atan(ant_vec_ef[1]/ant_vec_ef[0])
equations = generate_observation_equations(P,state,observation,obs_var)
gps_yaw_code_generator = CodeGenerator("./generated/gps_yaw_generated.cpp")
write_equations_to_file(equations,gps_yaw_code_generator,1)
gps_yaw_code_generator.close()
return
# derive equations for fusion of declination
def declination_observation(P,state,ix,iy):
obs_var = symbols("R_DECL", real=True) # measurement noise variance
# the predicted measurement is the angle wrt magnetic north of the horizontal
# component of the measured field
observation = atan(iy/ix)
equations = generate_observation_equations(P,state,observation,obs_var)
mag_decl_code_generator = CodeGenerator("./generated/mag_decl_generated.cpp")
write_equations_to_file(equations,mag_decl_code_generator,1)
mag_decl_code_generator.close()
return
# derive equations for fusion of lateral body acceleration (multirotors only)
def body_frame_accel_observation(P,state,R_to_body,vx,vy,vz,wx,wy):
obs_var = symbols("R_ACC", real=True) # measurement noise variance
Kaccx = symbols("Kaccx", real=True) # measurement noise variance
Kaccy = symbols("Kaccy", real=True) # measurement noise variance
# use relationship between airspeed along the X and Y body axis and the
# drag to predict the lateral acceleration for a multirotor vehicle type
# where propulsion forces are generated primarily along the Z body axis
vrel = R_to_body*Matrix([vx-wx,vy-wy,vz]) # predicted wind relative velocity
# Use this nonlinear model for the prediction in the implementation only
# It uses a ballistic coefficient for each axis
# accXpred = -0.5*rho*vrel[0]*vrel[0]*BCXinv # predicted acceleration measured along X body axis
# accYpred = -0.5*rho*vrel[1]*vrel[1]*BCYinv # predicted acceleration measured along Y body axis
# Use a simple viscous drag model for the linear estimator equations
# Use the derivative from speed to acceleration averaged across the
# speed range. This avoids the generation of a dirac function in the derivation
# The nonlinear equation will be used to calculate the predicted measurement in implementation
observation = Matrix([-Kaccx*vrel[0],-Kaccy*vrel[1]])
acc_bf_code_generator = CodeGenerator("./generated/acc_bf_generated.cpp")
H = observation.jacobian(state)
K = zeros(24,2)
axes = [0,1]
for index in axes:
equations = generate_observation_equations(P,state,observation[index],obs_var)
acc_bf_code_generator.print_string("Axis %i equations" % index)
write_equations_to_file(equations,acc_bf_code_generator,1)
acc_bf_code_generator.close()
# calculate a combined result for a possible reduction in operations, but will use more stack
equations = generate_observation_vector_equations(P,state,observation,obs_var,2)
acc_bf_code_generator_alt = CodeGenerator("./generated/acc_bf_generated_alt.cpp")
write_equations_to_file(equations,acc_bf_code_generator_alt,3)
acc_bf_code_generator_alt.close()
return
# yaw fusion
def yaw_observation(P,state,R_to_earth):
yaw_code_generator = CodeGenerator("./generated/yaw_generated.cpp")
# Derive observation Jacobian for fusion of 321 sequence yaw measurement
# Calculate the yaw (first rotation) angle from the 321 rotation sequence
# Provide alternative angle that avoids singularity at +-pi/2 yaw
angMeasA = atan(R_to_earth[1,0]/R_to_earth[0,0])
H_YAW321_A = Matrix([angMeasA]).jacobian(state)
H_YAW321_A_simple = cse(H_YAW321_A, symbols('SA0:200'))
angMeasB = pi/2 - atan(R_to_earth[0,0]/R_to_earth[1,0])
H_YAW321_B = Matrix([angMeasB]).jacobian(state)
H_YAW321_B_simple = cse(H_YAW321_B, symbols('SB0:200'))
yaw_code_generator.print_string("calculate 321 yaw observation matrix - option A")
yaw_code_generator.write_subexpressions(H_YAW321_A_simple[0])
yaw_code_generator.write_matrix(Matrix(H_YAW321_A_simple[1]).T, "H_YAW", False)
yaw_code_generator.print_string("calculate 321 yaw observation matrix - option B")
yaw_code_generator.write_subexpressions(H_YAW321_B_simple[0])
yaw_code_generator.write_matrix(Matrix(H_YAW321_B_simple[1]).T, "H_YAW", False)
# Derive observation Jacobian for fusion of 312 sequence yaw measurement
# Calculate the yaw (first rotation) angle from an Euler 312 sequence
# Provide alternative angle that avoids singularity at +-pi/2 yaw
angMeasA = atan(-R_to_earth[0,1]/R_to_earth[1,1])
H_YAW312_A = Matrix([angMeasA]).jacobian(state)
H_YAW312_A_simple = cse(H_YAW312_A, symbols('SA0:200'))
angMeasB = pi/2 - atan(-R_to_earth[1,1]/R_to_earth[0,1])
H_YAW312_B = Matrix([angMeasB]).jacobian(state)
H_YAW312_B_simple = cse(H_YAW312_B, symbols('SB0:200'))
yaw_code_generator.print_string("calculate 312 yaw observation matrix - option A")
yaw_code_generator.write_subexpressions(H_YAW312_A_simple[0])
yaw_code_generator.write_matrix(Matrix(H_YAW312_A_simple[1]).T, "H_YAW", False)
yaw_code_generator.print_string("calculate 312 yaw observation matrix - option B")
yaw_code_generator.write_subexpressions(H_YAW312_B_simple[0])
yaw_code_generator.write_matrix(Matrix(H_YAW312_B_simple[1]).T, "H_YAW", False)
yaw_code_generator.close()
return
# 3D magnetometer fusion
def mag_observation_variance(P,state,R_to_body,i,ib):
obs_var = symbols("R_MAG", real=True) # magnetometer measurement noise variance
m_mag = R_to_body * i + ib
# separate calculation of innovation variance equations for the y and z axes
m_mag[0]=0
innov_var_equations = generate_observation_vector_innovation_variances(P,state,m_mag,obs_var,3)
mag_innov_var_code_generator = CodeGenerator("./generated/3Dmag_innov_var_generated.cpp")
write_equations_to_file(innov_var_equations,mag_innov_var_code_generator,3)
mag_innov_var_code_generator.close()
return
# 3D magnetometer fusion
def mag_observation(P,state,R_to_body,i,ib):
obs_var = symbols("R_MAG", real=True) # magnetometer measurement noise variance
m_mag = R_to_body * i + ib
# calculate a separate set of equations for each axis
mag_code_generator = CodeGenerator("./generated/3Dmag_generated.cpp")
axes = [0,1,2]
label="HK"
for index in axes:
if (index==0):
label="HKX"
elif (index==1):
label="HKY"
elif (index==2):
label="HKZ"
else:
return
equations = generate_observation_equations(P,state,m_mag[index],obs_var,varname=label)
mag_code_generator.print_string("Axis %i equations" % index)
write_equations_to_file(equations,mag_code_generator,1)
mag_code_generator.close()
# calculate a combined set of equations for a possible reduction in operations, but will use slighlty more stack
equations = generate_observation_vector_equations(P,state,m_mag,obs_var,3)
mag_code_generator_alt = CodeGenerator("./generated/3Dmag_generated_alt.cpp")
write_equations_to_file(equations,mag_code_generator_alt,3)
mag_code_generator_alt.close()
return
# airspeed fusion
def tas_observation(P,state,vx,vy,vz,wx,wy):
obs_var = symbols("R_TAS", real=True) # true airspeed measurement noise variance
observation = sqrt((vx-wx)*(vx-wx)+(vy-wy)*(vy-wy)+vz*vz)
equations = generate_observation_equations(P,state,observation,obs_var)
tas_code_generator = CodeGenerator("./generated/tas_generated.cpp")
write_equations_to_file(equations,tas_code_generator,1)
tas_code_generator.close()
return
# sideslip fusion
def beta_observation(P,state,R_to_body,vx,vy,vz,wx,wy):
obs_var = symbols("R_BETA", real=True) # sideslip measurement noise variance
v_rel_ef = Matrix([vx-wx,vy-wy,vz])
v_rel_bf = R_to_body * v_rel_ef
observation = v_rel_bf[1]/v_rel_bf[0]
equations = generate_observation_equations(P,state,observation,obs_var)
beta_code_generator = CodeGenerator("./generated/beta_generated.cpp")
write_equations_to_file(equations,beta_code_generator,1)
beta_code_generator.close()
return
# yaw estimator prediction and observation code
def yaw_estimator():
dt = symbols("dt", real=True) # dt (sec)
psi = symbols("psi", real=True) # yaw angle of body frame wrt earth frame
vn, ve = symbols("vn ve", real=True) # velocity in world frame (north/east) - m/sec
daz = symbols("daz", real=True) # IMU z axis delta angle measurement in body axes - rad
dazVar = symbols("dazVar", real=True) # IMU Z axis delta angle measurement variance (rad^2)
dvx, dvy = symbols("dvx dvy", real=True) # IMU x and y axis delta velocity measurement in body axes - m/sec
dvxVar, dvyVar = symbols("dvxVar dvyVar", real=True) # IMU x and y axis delta velocity measurement variance (m/s)^2
# derive the body to nav direction transformation matrix
Tbn = Matrix([[cos(psi) , -sin(psi)],
[sin(psi) , cos(psi)]])
# attitude update equation
psiNew = psi + daz
# velocity update equations
velNew = Matrix([vn,ve]) + Tbn*Matrix([dvx,dvy])
# Define the state vectors
stateVector = Matrix([vn,ve,psi])
# Define vector of process equations
newStateVector = Matrix([velNew,psiNew])
# Calculate state transition matrix
F = newStateVector.jacobian(stateVector)
# Derive the covariance prediction equations
# Error growth in the inertial solution is assumed to be driven by 'noise' in the delta angles and
# velocities, after bias effects have been removed.
# derive the control(disturbance) influence matrix from IMU noise to state noise
G = newStateVector.jacobian(Matrix([dvx,dvy,daz]))
# derive the state error matrix
distMatrix = Matrix([[dvxVar , 0 , 0],
[0 , dvyVar , 0],
[0 , 0 , dazVar]])
Q = G * distMatrix * G.T
# propagate covariance matrix
P = create_yaw_estimator_cov_matrix()
P_new = F * P * F.T + Q
P_new_simple = cse(P_new, symbols("S0:1000"), optimizations='basic')
yaw_estimator_covariance_generator = CodeGenerator("./generated/yaw_estimator_covariance_prediction_generated.cpp")
yaw_estimator_covariance_generator.print_string("Equations for covariance matrix prediction")
yaw_estimator_covariance_generator.write_subexpressions(P_new_simple[0])
yaw_estimator_covariance_generator.write_matrix(Matrix(P_new_simple[1]), "_ekf_gsf[model_index].P", True)
yaw_estimator_covariance_generator.close()
# derive the covariance update equation for a NE velocity observation
velObsVar = symbols("velObsVar", real=True) # velocity observation variance (m/s)^2
H = Matrix([[1,0,0],
[0,1,0]])
R = Matrix([[velObsVar , 0],
[0 , velObsVar]])
S = H * P * H.T + R
S_det_inv = 1 / S.det()
S_inv = S.inv()
K = (P * H.T) * S_inv
P_new = P - K * S * K.T
# optimize code
t, [S_det_inv_s, S_inv_s, K_s, P_new_s] = cse([S_det_inv, S_inv, K, P_new], symbols("t0:1000"), optimizations='basic')
yaw_estimator_observation_generator = CodeGenerator("./generated/yaw_estimator_measurement_update_generated.cpp")
yaw_estimator_observation_generator.print_string("Intermediate variables")
yaw_estimator_observation_generator.write_subexpressions(t)
yaw_estimator_observation_generator.print_string("Equations for NE velocity innovation variance's determinante inverse")
yaw_estimator_observation_generator.write_matrix(Matrix([[S_det_inv_s]]), "_ekf_gsf[model_index].S_det_inverse", False)
yaw_estimator_observation_generator.print_string("Equations for NE velocity innovation variance inverse")
yaw_estimator_observation_generator.write_matrix(Matrix(S_inv_s), "_ekf_gsf[model_index].S_inverse", True)
yaw_estimator_observation_generator.print_string("Equations for NE velocity Kalman gain")
yaw_estimator_observation_generator.write_matrix(Matrix(K_s), "K", False)
yaw_estimator_observation_generator.print_string("Equations for covariance matrix update")
yaw_estimator_observation_generator.write_matrix(Matrix(P_new_s), "_ekf_gsf[model_index].P", True)
yaw_estimator_observation_generator.close()
def quaternion_error_propagation():
# define quaternion state vector
q0, q1, q2, q3 = symbols("q0 q1 q2 q3", real=True)
q = Matrix([q0, q1, q2, q3])
# define truth gravity unit vector in body frame
R_to_earth = quat2Rot(q)
R_to_body = R_to_earth.T
gravity_ef = Matrix([0,0,1])
gravity_bf = R_to_body * gravity_ef
# define perturbations to quaternion state vector q
dq0, dq1, dq2, dq3 = symbols("dq0 dq1 dq2 dq3", real=True)
q_delta = Matrix([dq0, dq1, dq2, dq3])
# apply perturbations
q_perturbed = q + q_delta
# gravity unit vector in body frame after quaternion perturbation
R_to_earth_perturbed = quat2Rot(q_perturbed)
R_to_body_perturbed = R_to_earth_perturbed.T
gravity_bf_perturbed = R_to_body_perturbed * gravity_ef
# calculate the angular difference between the perturbed and unperturbed body frame gravity unit vectors
# assuming small angles
tilt_error_bf = gravity_bf.cross(gravity_bf_perturbed)
# calculate the derivative of the perturbation rotation vector wrt the quaternion perturbations
J = tilt_error_bf.jacobian(q_delta)
# remove second order terms
# we don't want the error deltas to appear in the final result
J.subs(dq0,0)
J.subs(dq1,0)
J.subs(dq2,0)
J.subs(dq3,0)
# define covaraince matrix for quaternion states
P = create_symmetric_cov_matrix(4)
# discard off diagonals
P_diag = diag(P[0,0],P[1,1],P[2,2],P[3,3])
# rotate quaternion covariances into rotation vector state space
P_rot_vec = J * P_diag * J.transpose()
P_rot_vec_simple = cse(P_rot_vec, symbols("PS0:400"), optimizations='basic')
quat_code_generator = CodeGenerator("./generated/tilt_error_cov_mat_generated.cpp")
quat_code_generator.write_subexpressions(P_rot_vec_simple[0])
quat_code_generator.write_matrix(Matrix(P_rot_vec_simple[1]), "tiltErrCovMat", False, "[", "]")
quat_code_generator.close()
def generate_code():
print('Starting code generation:')
print('Creating symbolic variables ...')
dt = symbols("dt", real=True) # dt
g = symbols("g", real=True) # gravity constant
r_hor_vel = symbols("R_hor_vel", real=True) # horizontal velocity noise variance
r_ver_vel = symbols("R_vert_vel", real=True) # vertical velocity noise variance
r_hor_pos = symbols("R_hor_pos", real=True) # horizontal position noise variance
# inputs, integrated gyro measurements
# delta angle x y z
d_ang_x, d_ang_y, d_ang_z = symbols("dax day daz", real=True) # delta angle x
d_ang = Matrix([d_ang_x, d_ang_y, d_ang_z])
# inputs, integrated accelerometer measurements
# delta velocity x y z
d_v_x, d_v_y, d_v_z = symbols("dvx dvy dvz", real=True)
d_v = Matrix([d_v_x, d_v_y,d_v_z])
u = Matrix([d_ang, d_v])
# input noise
d_ang_x_var, d_ang_y_var, d_ang_z_var = symbols("daxVar dayVar dazVar", real=True)
d_v_x_var, d_v_y_var, d_v_z_var = symbols("dvxVar dvyVar dvzVar", real=True)
var_u = Matrix.diag(d_ang_x_var, d_ang_y_var, d_ang_z_var, d_v_x_var, d_v_y_var, d_v_z_var)
# define state vector
# attitude quaternion
qw, qx, qy, qz = symbols("q0 q1 q2 q3", real=True)
q = Matrix([qw,qx,qy,qz])
R_to_earth = quat2Rot(q)
R_to_body = R_to_earth.T
# velocity in NED local frame (north, east, down)
vx, vy, vz = symbols("vn ve vd", real=True)
v = Matrix([vx,vy,vz])
# position in NED local frame (north, east, down)
px, py, pz = symbols("pn pe pd", real=True)
p = Matrix([px,py,pz])
# delta angle bias x y z
d_ang_bx, d_ang_by, d_ang_bz = symbols("dax_b day_b daz_b", real=True)
d_ang_b = Matrix([d_ang_bx, d_ang_by, d_ang_bz])
d_ang_true = d_ang - d_ang_b
# delta velocity bias x y z
d_vel_bx, d_vel_by, d_vel_bz = symbols("dvx_b dvy_b dvz_b", real=True)
d_vel_b = Matrix([d_vel_bx, d_vel_by, d_vel_bz])
d_vel_true = d_v - d_vel_b
# earth magnetic field vector x y z
ix, iy, iz = symbols("magN magE magD", real=True)
i = Matrix([ix,iy,iz])
# earth magnetic field bias in body frame
ibx, iby, ibz = symbols("ibx iby ibz", real=True)
ib = Matrix([ibx,iby,ibz])
# wind in local NE frame (north, east)
wx, wy = symbols("vwn, vwe", real=True)
w = Matrix([wx,wy])
# state vector at arbitrary time t
state = Matrix([q, v, p, d_ang_b, d_vel_b, i, ib, w])
print('Defining state propagation ...')
# kinematic processes driven by IMU 'control inputs'
q_new = quat_mult(q, Matrix([1, 0.5 * d_ang_true[0], 0.5 * d_ang_true[1], 0.5 * d_ang_true[2]]))
v_new = v + R_to_earth * d_vel_true + Matrix([0,0,g]) * dt
p_new = p + v * dt
# static processes
d_ang_b_new = d_ang_b
d_vel_b_new = d_vel_b
i_new = i
ib_new = ib
w_new = w
# predicted state vector at time t + dt
state_new = Matrix([q_new, v_new, p_new, d_ang_b_new, d_vel_b_new, i_new, ib_new, w_new])
print('Computing state propagation jacobian ...')
A = state_new.jacobian(state)
G = state_new.jacobian(u)
P = create_symmetric_cov_matrix(24)
print('Computing covariance propagation ...')
P_new = A * P * A.T + G * var_u * G.T
for index in range(24):
for j in range(24):
if index > j:
P_new[index,j] = 0
print('Simplifying covariance propagation ...')
P_new_simple = cse(P_new, symbols("PS0:400"), optimizations='basic')
print('Writing covariance propagation to file ...')
cov_code_generator = CodeGenerator("./generated/covariance_generated.cpp")
cov_code_generator.print_string("Equations for covariance matrix prediction, without process noise!")
cov_code_generator.write_subexpressions(P_new_simple[0])
cov_code_generator.write_matrix(Matrix(P_new_simple[1]), "nextP", True, "[", "]")
cov_code_generator.close()
# derive autocode for other methods
# print('Computing tilt error covariance matrix ...')
# quaternion_error_propagation()
# print('Generating heading observation code ...')
# yaw_observation(P,state,R_to_earth)
print('Generating gps heading observation code ...')
gps_yaw_observation(P,state,R_to_body)
print('Generating mag observation code ...')
mag_observation_variance(P,state,R_to_body,i,ib)
mag_observation(P,state,R_to_body,i,ib)
print('Generating declination observation code ...')
declination_observation(P,state,ix,iy)
print('Generating airspeed observation code ...')
tas_observation(P,state,vx,vy,vz,wx,wy)
print('Generating sideslip observation code ...')
beta_observation(P,state,R_to_body,vx,vy,vz,wx,wy)
print('Generating optical flow observation code ...')
optical_flow_observation(P,state,R_to_body,vx,vy,vz)
print('Generating body frame velocity observation code ...')
body_frame_velocity_observation(P,state,R_to_body,vx,vy,vz)
# print('Generating body frame acceleration observation code ...')
# body_frame_accel_observation(P,state,R_to_body,vx,vy,vz,wx,wy)
print('Generating yaw estimator code ...')
yaw_estimator()
print('Code generation finished!')
if __name__ == "__main__":
generate_code()