ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_PX4.cpp

169 lines
4.3 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_InertialSensor_PX4.h"
const extern AP_HAL::HAL& hal;
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) {
uint16_t rate_hz;
int fd;
switch (sample_rate) {
case RATE_50HZ:
rate_hz = 50;
break;
case RATE_100HZ:
rate_hz = 100;
break;
case RATE_200HZ:
default:
rate_hz = 200;
break;
}
// init accelerometers
fd = open(ACCEL_DEVICE_PATH, 0);
if (fd < 0) {
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
}
/* set the accel internal sampling rate */
ioctl(fd, ACCELIOCSSAMPLERATE, rate_hz);
/* set the driver poll rate */
ioctl(fd, SENSORIOCSPOLLRATE, rate_hz);
close(fd);
_accel_sub = orb_subscribe(ORB_ID(sensor_accel));
// init gyros
fd = open(GYRO_DEVICE_PATH, 0);
if (fd < 0) {
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
}
/* set the gyro internal sampling rate */
ioctl(fd, GYROIOCSSAMPLERATE, rate_hz);
/* set the driver poll rate */
ioctl(fd, SENSORIOCSPOLLRATE, rate_hz);
close(fd);
_gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
return AP_PRODUCT_ID_PX4;
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
bool AP_InertialSensor_PX4::update(void)
{
while (num_samples_available() == 0) {
hal.scheduler->delay_microseconds(1);
}
uint32_t now = hal.scheduler->micros();
_delta_time_usec = now - _last_update_usec;
_last_update_usec = now;
Vector3f accel_scale = _accel_scale.get();
_accel.x = accel_scale.x * _raw_sensors.accelerometer_m_s2[0] / _raw_sensors.accelerometer_counter;
_accel.y = - accel_scale.y * _raw_sensors.accelerometer_m_s2[1] / _raw_sensors.accelerometer_counter;
_accel.z = - accel_scale.z * _raw_sensors.accelerometer_m_s2[2] / _raw_sensors.accelerometer_counter;
_accel -= _accel_offset;
_gyro.x = _raw_sensors.gyro_rad_s[0] / _raw_sensors.gyro_counter;
_gyro.y = - _raw_sensors.gyro_rad_s[1] / _raw_sensors.gyro_counter;
_gyro.z = - _raw_sensors.gyro_rad_s[2] / _raw_sensors.gyro_counter;
_gyro -= _gyro_offset;
memset(&_raw_sensors, 0, sizeof(_raw_sensors));
return true;
}
bool AP_InertialSensor_PX4::new_data_available(void)
{
return num_samples_available() > 0;
}
float AP_InertialSensor_PX4::temperature(void)
{
return 0.0;
}
uint32_t AP_InertialSensor_PX4::get_delta_time_micros(void)
{
return _delta_time_usec;
}
uint32_t AP_InertialSensor_PX4::get_last_sample_time_micros(void)
{
return _last_update_usec;
}
float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
{
// 0.5 degrees/second/minute
return ToRad(0.5/60);
}
uint16_t AP_InertialSensor_PX4::num_samples_available(void)
{
bool accel_updated=false;
bool gyro_updated =false;
orb_check(_accel_sub, &accel_updated);
if (accel_updated) {
struct accel_report accel_report;
orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report);
_raw_sensors.accelerometer_m_s2[0] += accel_report.x;
_raw_sensors.accelerometer_m_s2[1] += accel_report.y;
_raw_sensors.accelerometer_m_s2[2] += accel_report.z;
_raw_sensors.accelerometer_raw[0] = accel_report.x_raw;
_raw_sensors.accelerometer_raw[1] = accel_report.y_raw;
_raw_sensors.accelerometer_raw[2] = accel_report.z_raw;
_raw_sensors.accelerometer_counter++;
}
orb_check(_gyro_sub, &gyro_updated);
if (gyro_updated) {
struct gyro_report gyro_report;
orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report);
_raw_sensors.gyro_rad_s[0] += gyro_report.x;
_raw_sensors.gyro_rad_s[1] += gyro_report.y;
_raw_sensors.gyro_rad_s[2] += gyro_report.z;
_raw_sensors.gyro_raw[0] = gyro_report.x_raw;
_raw_sensors.gyro_raw[1] = gyro_report.y_raw;
_raw_sensors.gyro_raw[2] = gyro_report.z_raw;
_raw_sensors.gyro_counter++;
}
return min(_raw_sensors.accelerometer_counter, _raw_sensors.gyro_counter);
}
#endif // CONFIG_HAL_BOARD