ardupilot/libraries/AP_HAL_SITL/SITL_Periph_State.cpp

307 lines
9.2 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL && defined(HAL_BUILD_AP_PERIPH)
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "UARTDriver.h"
#include "Scheduler.h"
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/select.h>
#include <AP_Param/AP_Param.h>
#include <SITL/SIM_JSBSim.h>
#include <AP_HAL/utility/Socket.h>
#include <AP_HAL/utility/getopt_cpp.h>
#include <SITL/SITL.h>
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
enum long_options {
CMDLINE_SERIAL0=1,
CMDLINE_SERIAL1,
CMDLINE_SERIAL2,
CMDLINE_SERIAL3,
CMDLINE_SERIAL4,
CMDLINE_SERIAL5,
CMDLINE_SERIAL6,
CMDLINE_SERIAL7,
CMDLINE_SERIAL8,
CMDLINE_SERIAL9,
CMDLINE_DEFAULTS,
};
void SITL_State::init(int argc, char * const argv[]) {
int opt;
const struct GetOptLong::option options[] = {
{"help", false, 0, 'h'},
{"instance", true, 0, 'I'},
{"maintenance", false, 0, 'M'},
{"serial0", true, 0, CMDLINE_SERIAL0},
{"serial1", true, 0, CMDLINE_SERIAL1},
{"serial2", true, 0, CMDLINE_SERIAL2},
{"serial3", true, 0, CMDLINE_SERIAL3},
{"serial4", true, 0, CMDLINE_SERIAL4},
{"serial5", true, 0, CMDLINE_SERIAL5},
{"serial6", true, 0, CMDLINE_SERIAL6},
{"serial7", true, 0, CMDLINE_SERIAL7},
{"serial8", true, 0, CMDLINE_SERIAL8},
{"serial9", true, 0, CMDLINE_SERIAL9},
{"defaults", true, 0, CMDLINE_DEFAULTS},
{0, false, 0, 0}
};
setvbuf(stdout, (char *)0, _IONBF, 0);
setvbuf(stderr, (char *)0, _IONBF, 0);
GetOptLong gopt(argc, argv, "hI:M",
options);
while((opt = gopt.getoption()) != -1) {
switch (opt) {
case 'I':
_instance = atoi(gopt.optarg);
break;
case 'M':
printf("Running in Maintenance Mode\n");
_maintenance = true;
break;
case CMDLINE_SERIAL0:
case CMDLINE_SERIAL1:
case CMDLINE_SERIAL2:
case CMDLINE_SERIAL3:
case CMDLINE_SERIAL4:
case CMDLINE_SERIAL5:
case CMDLINE_SERIAL6:
case CMDLINE_SERIAL7:
case CMDLINE_SERIAL8:
case CMDLINE_SERIAL9: {
static const uint8_t mapping[] = { 0, 2, 3, 1, 4, 5, 6, 7, 8, 9 };
_uart_path[mapping[opt - CMDLINE_SERIAL0]] = gopt.optarg;
break;
}
case CMDLINE_DEFAULTS:
defaults_path = strdup(gopt.optarg);
break;
default:
printf("Options:\n"
"\t--help|-h display this help information\n"
"\t--instance|-I N set instance of SITL Periph\n"
"\t--maintenance|-M run in maintenance mode\n"
"\t--defaults path set param defaults file\n"
"\t--serial0 device set device string for SERIAL0\n"
"\t--serial1 device set device string for SERIAL1\n"
"\t--serial2 device set device string for SERIAL2\n"
"\t--serial3 device set device string for SERIAL3\n"
"\t--serial4 device set device string for SERIAL4\n"
"\t--serial5 device set device string for SERIAL5\n"
"\t--serial6 device set device string for SERIAL6\n"
"\t--serial7 device set device string for SERIAL7\n"
"\t--serial8 device set device string for SERIAL8\n"
"\t--serial9 device set device string for SERIAL9\n"
);
exit(1);
}
}
printf("Running Instance: %d\n", _instance);
sitl_model = new SimMCast("");
_sitl = AP::sitl();
_sitl->i2c_sim.init();
sitl_model->set_i2c(&_sitl->i2c_sim);
}
void SITL_State::wait_clock(uint64_t wait_time_usec)
{
while (AP_HAL::micros64() < wait_time_usec) {
struct sitl_input input {};
sitl_model->update(input);
sim_update();
update_voltage_current(input, 0);
usleep(100);
}
}
/*
open multicast input from main simulator
*/
void SimMCast::multicast_open(void)
{
struct sockaddr_in sockaddr {};
int ret;
#ifdef HAVE_SOCK_SIN_LEN
sockaddr.sin_len = sizeof(sockaddr);
#endif
sockaddr.sin_port = htons(SITL_MCAST_PORT);
sockaddr.sin_family = AF_INET;
sockaddr.sin_addr.s_addr = inet_addr(SITL_MCAST_IP);
mc_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (mc_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
ret = fcntl(mc_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
int one = 1;
if (setsockopt(mc_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
exit(1);
}
#if defined(__CYGWIN__) || defined(__CYGWIN64__) || defined(CYGWIN_BUILD)
/*
on cygwin you need to bind to INADDR_ANY then use the multicast
IP_ADD_MEMBERSHIP to get on the right address
*/
sockaddr.sin_addr.s_addr = htonl(INADDR_ANY);
#endif
ret = bind(mc_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret == -1) {
fprintf(stderr, "multicast bind failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
struct ip_mreq mreq {};
mreq.imr_multiaddr.s_addr = inet_addr(SITL_MCAST_IP);
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
ret = setsockopt(mc_fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq));
if (ret == -1) {
fprintf(stderr, "multicast membership add failed on port %u - %s\n",
(unsigned)ntohs(sockaddr.sin_port),
strerror(errno));
exit(1);
}
::printf("multicast receiver initialised\n");
}
/*
open UDP socket back to master for servo output
*/
void SimMCast::servo_fd_open(void)
{
servo_fd = socket(AF_INET, SOCK_DGRAM, 0);
if (servo_fd == -1) {
fprintf(stderr, "socket failed - %s\n", strerror(errno));
exit(1);
}
int ret = fcntl(servo_fd, F_SETFD, FD_CLOEXEC);
if (ret == -1) {
fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno));
exit(1);
}
int one = 1;
if (setsockopt(servo_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
exit(1);
}
in_addr.sin_port = htons(SITL_SERVO_PORT);
ret = connect(servo_fd, (struct sockaddr *)&in_addr, sizeof(in_addr));
if (ret == -1) {
fprintf(stderr, "multicast servo connect failed\n");
exit(1);
}
}
/*
send servo outputs back to master
*/
void SimMCast::servo_send(void)
{
const auto *_sitl = AP::sitl();
if (_sitl == nullptr) {
return;
}
uint16_t out[SITL_NUM_CHANNELS] {};
hal.rcout->read(out, SITL_NUM_CHANNELS);
float out_float[SITL_NUM_CHANNELS];
const uint32_t mask = uint32_t(_sitl->can_servo_mask.get());
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
out_float[i] = (mask & (1U<<i)) ? out[i] : nanf("");
}
send(servo_fd, (void*)out_float, sizeof(out_float), 0);
}
/*
read state from multicast
*/
void SimMCast::multicast_read(void)
{
auto *_sitl = AP::sitl();
if (_sitl == nullptr) {
return;
}
if (_sitl->state.timestamp_us == 0) {
printf("Waiting for multicast state\n");
}
struct SITL::sitl_fdm state;
socklen_t len = sizeof(in_addr);
while (recvfrom(mc_fd, (void*)&state, sizeof(state), MSG_WAITALL, (sockaddr *)&in_addr, &len) != sizeof(state)) {
// nop
}
if (_sitl->state.timestamp_us == 0) {
printf("Got multicast state input\n");
}
if (state.timestamp_us < _sitl->state.timestamp_us) {
printf("multicast state time reset\n");
// main process has rebooted
base_time_us += (_sitl->state.timestamp_us - state.timestamp_us);
}
_sitl->state = state;
location.lat = state.latitude*1.0e7;
location.lng = state.longitude*1.0e7;
location.alt = state.altitude*1.0e2;
if (home.is_zero()) {
home = location;
}
hal.scheduler->stop_clock(_sitl->state.timestamp_us + base_time_us);
HALSITL::Scheduler::timer_event();
if (servo_fd == -1) {
servo_fd_open();
} else {
servo_send();
}
}
SimMCast::SimMCast(const char *frame_str) :
Aircraft(frame_str)
{
multicast_open();
}
void SimMCast::update(const struct sitl_input &input)
{
multicast_read();
update_home();
update_external_payload(input);
auto *_sitl = AP::sitl();
if (_sitl != nullptr) {
battery_voltage = _sitl->batt_voltage;
}
}
#endif //CONFIG_HAL_BOARD == HAL_BOARD_SITL && defined(HAL_BUILD_AP_PERIPH)