mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 01:48:29 -04:00
434 lines
13 KiB
C++
434 lines
13 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include <FastSerial.h>
|
|
#include <AP_InertialNav.h>
|
|
|
|
#if defined(ARDUINO) && ARDUINO >= 100
|
|
#include "Arduino.h"
|
|
#else
|
|
#include <wiring.h>
|
|
#endif
|
|
|
|
// table of user settable parameters
|
|
const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = {
|
|
// @Param: ACORR
|
|
// @DisplayName: Inertial Nav calculated accelerometer corrections
|
|
// @Description: calculated accelerometer corrections
|
|
// @Increment: 1
|
|
AP_GROUPINFO("ACORR", 0, AP_InertialNav, accel_correction, 0),
|
|
|
|
// @Param: TC_XY
|
|
// @DisplayName: Horizontal Time Constant
|
|
// @Description: Time constant for GPS and accel mixing. Higher TC decreases GPS impact on position estimate
|
|
// @Range: 0 10
|
|
// @Increment: 0.1
|
|
AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY),
|
|
|
|
// @Param: TC_Z
|
|
// @DisplayName: Vertical Time Constant
|
|
// @Description: Time constant for baro and accel mixing. Higher TC decreases barometers impact on altitude estimate
|
|
// @Range: 0 10
|
|
// @Increment: 0.1
|
|
AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// init - initialise library
|
|
void AP_InertialNav::init()
|
|
{
|
|
// recalculate the gains
|
|
update_gains();
|
|
}
|
|
|
|
// save_params - save all parameters to eeprom
|
|
void AP_InertialNav::save_params()
|
|
{
|
|
Vector3f accel_corr = accel_correction.get();
|
|
accel_corr.x = constrain(accel_corr.x,-100,100);
|
|
accel_corr.y = constrain(accel_corr.y,-100,100);
|
|
accel_corr.z = constrain(accel_corr.z,-100,100);
|
|
accel_correction.set_and_save(accel_corr);
|
|
}
|
|
|
|
// update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available;
|
|
void AP_InertialNav::update(float dt)
|
|
{
|
|
Vector3f acc_corr = accel_correction.get();
|
|
Vector3f accel_ef;
|
|
Vector3f velocity_increase;
|
|
|
|
// discard samples where dt is too large
|
|
if( dt > 0.1 ) {
|
|
return;
|
|
}
|
|
|
|
// check barometer
|
|
check_baro();
|
|
|
|
// check gps
|
|
check_gps();
|
|
|
|
// convert accelerometer readings to earth frame
|
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
|
accel_ef = _ahrs->get_accel_ef();
|
|
|
|
// remove influence of gravity
|
|
accel_ef.z += AP_INTERTIALNAV_GRAVITY;
|
|
accel_ef *= 100;
|
|
|
|
// remove xy if not enabled
|
|
if( !_xy_enabled ) {
|
|
accel_ef.x = 0;
|
|
accel_ef.y = 0;
|
|
}
|
|
|
|
// get earth frame accelerometer correction
|
|
accel_correction_ef = dcm * acc_corr;
|
|
|
|
// calculate velocity increase adding new acceleration from accelerometers
|
|
velocity_increase = (-accel_ef + accel_correction_ef) * dt;
|
|
|
|
// calculate new estimate of position
|
|
_position_base += (_velocity + velocity_increase*0.5) * dt;
|
|
|
|
// calculate new velocity
|
|
_velocity += velocity_increase;
|
|
|
|
// store 3rd order estimate (i.e. estimated vertical position) for future use
|
|
_hist_position_estimate_z.add(_position_base.z);
|
|
|
|
// store 3rd order estimate (i.e. horizontal position) for future use at 10hz
|
|
_historic_xy_counter++;
|
|
if( _historic_xy_counter >= AP_INTERTIALNAV_SAVE_POS_AFTER_ITERATIONS ) {
|
|
_historic_xy_counter = 0;
|
|
_hist_position_estimate_x.add(_position_base.x);
|
|
_hist_position_estimate_y.add(_position_base.y);
|
|
}
|
|
}
|
|
|
|
//
|
|
// XY Axis specific methods
|
|
//
|
|
|
|
// set time constant - set timeconstant used by complementary filter
|
|
void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds )
|
|
{
|
|
// ensure it's a reasonable value
|
|
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
|
_time_constant_xy = time_constant_in_seconds;
|
|
update_gains();
|
|
}
|
|
}
|
|
|
|
// position_ok - return true if position has been initialised and have received gps data within 3 seconds
|
|
bool AP_InertialNav::position_ok()
|
|
{
|
|
return _xy_enabled && (millis() - _gps_last_update < 3000);
|
|
}
|
|
|
|
// check_gps - check if new gps readings have arrived and use them to correct position estimates
|
|
void AP_InertialNav::check_gps()
|
|
{
|
|
uint32_t gps_time;
|
|
uint32_t now;
|
|
|
|
if( _gps_ptr == NULL || *_gps_ptr == NULL )
|
|
return;
|
|
|
|
// get time according to the gps
|
|
gps_time = (*_gps_ptr)->time;
|
|
|
|
// compare gps time to previous reading
|
|
if( gps_time != _gps_last_time ) {
|
|
|
|
// calculate time since last gps reading
|
|
now = millis();
|
|
float dt = (float)(now - _gps_last_update) / 1000.0;
|
|
|
|
// call position correction method
|
|
correct_with_gps((*_gps_ptr)->longitude, (*_gps_ptr)->latitude, dt);
|
|
|
|
// record gps time and system time of this update
|
|
_gps_last_time = gps_time;
|
|
_gps_last_update = now;
|
|
}
|
|
}
|
|
|
|
// correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update
|
|
void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt)
|
|
{
|
|
float x,y;
|
|
float hist_position_base_x, hist_position_base_y;
|
|
|
|
// discard samples where dt is too large
|
|
if( dt > 1.0 || dt == 0 || !_xy_enabled) {
|
|
return;
|
|
}
|
|
|
|
// calculate distance from base location
|
|
//x = (float)(lat - _base_lat) * 1.113195;
|
|
//y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195;
|
|
x = (float)(lat - _base_lat);
|
|
y = (float)(lon - _base_lon) * _lon_to_m_scaling;
|
|
|
|
// convert accelerometer readings to earth frame
|
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
|
|
|
// correct accelerometer offsets using gps
|
|
|
|
// ublox gps positions are delayed by 400ms
|
|
// we store historical position at 10hz so 4 iterations ago
|
|
if( _hist_position_estimate_x.num_items() >= AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS ) {
|
|
hist_position_base_x = _hist_position_estimate_x.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1);
|
|
hist_position_base_y = _hist_position_estimate_y.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1);
|
|
}else{
|
|
hist_position_base_x = _position_base.x;
|
|
hist_position_base_y = _position_base.y;
|
|
}
|
|
|
|
// calculate error in position from gps with our historical estimate
|
|
// To-Do: check why x and y are reversed
|
|
float err_x = -x - (hist_position_base_x + _position_correction.x);
|
|
float err_y = -y - (hist_position_base_y + _position_correction.y);
|
|
|
|
// calculate correction to accelerometers and apply in the body frame
|
|
Vector3f accel_corr = accel_correction.get();
|
|
accel_corr += dcm.mul_transpose(Vector3f((err_x*_k3_xy)*dt,(err_y*_k3_xy)*dt,0));
|
|
accel_correction.set(accel_corr);
|
|
|
|
// correct velocity
|
|
_velocity.x += (err_x*_k2_xy) * dt;
|
|
_velocity.y += (err_y*_k2_xy) * dt;
|
|
|
|
// correct position
|
|
_position_correction.x += err_x*_k1_xy * dt;
|
|
_position_correction.y += err_y*_k1_xy * dt;
|
|
}
|
|
|
|
// get accel based latitude
|
|
int32_t AP_InertialNav::get_latitude()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
//return _base_lat - (int32_t)(_position.x / 1.113195);
|
|
return _base_lat - (int32_t)(_position_base.x + _position_correction.x);
|
|
}
|
|
|
|
// get accel based longitude
|
|
int32_t AP_InertialNav::get_longitude()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
//return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) );
|
|
return _base_lon - (int32_t)((_position_base.y+_position_correction.y) / _lon_to_m_scaling );
|
|
}
|
|
|
|
// set_current_position - all internal calculations are recorded as the distances from this point
|
|
void AP_InertialNav::set_current_position(int32_t lon, int32_t lat)
|
|
{
|
|
// set base location
|
|
_base_lon = lon;
|
|
_base_lat = lat;
|
|
|
|
// set longitude->meters scaling
|
|
// this is used to offset the shrinking longitude as we go towards the poles
|
|
_lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925);
|
|
|
|
// reset corrections to base position to zero
|
|
_position_base.x = 0;
|
|
_position_base.y = 0;
|
|
_position_correction.x = 0;
|
|
_position_correction.y = 0;
|
|
|
|
// clear historic estimates
|
|
_hist_position_estimate_x.clear();
|
|
_hist_position_estimate_y.clear();
|
|
|
|
// set xy as enabled
|
|
_xy_enabled = true;
|
|
}
|
|
|
|
// get accel based latitude
|
|
float AP_InertialNav::get_latitude_diff()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
//return _base_lat + (int32_t)_position.x;
|
|
//return -_position.x / 1.113195;
|
|
return -(_position_base.x+_position_correction.x);
|
|
}
|
|
|
|
// get accel based longitude
|
|
float AP_InertialNav::get_longitude_diff()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
//return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling);
|
|
//return -_position.y / (_lon_to_m_scaling * 1.113195);
|
|
return -(_position_base.y+_position_correction.y) / _lon_to_m_scaling;
|
|
}
|
|
|
|
// get velocity in latitude & longitude directions
|
|
float AP_InertialNav::get_latitude_velocity()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
return -_velocity.x;
|
|
// Note: is +_velocity.x the output velocity in logs is in reverse direction from accel lat
|
|
}
|
|
|
|
float AP_InertialNav::get_longitude_velocity()
|
|
{
|
|
// make sure we've been initialised
|
|
if( !_xy_enabled ) {
|
|
return 0;
|
|
}
|
|
|
|
return -_velocity.y;
|
|
}
|
|
|
|
// set_velocity_xy - set velocity in latitude & longitude directions (in cm/s)
|
|
void AP_InertialNav::set_velocity_xy(float x, float y)
|
|
{
|
|
_velocity.x = x;
|
|
_velocity.y = y;
|
|
}
|
|
|
|
//
|
|
// Z Axis methods
|
|
//
|
|
|
|
// set time constant - set timeconstant used by complementary filter
|
|
void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds )
|
|
{
|
|
// ensure it's a reasonable value
|
|
if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) {
|
|
_time_constant_z = time_constant_in_seconds;
|
|
update_gains();
|
|
}
|
|
}
|
|
|
|
// check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets
|
|
void AP_InertialNav::check_baro()
|
|
{
|
|
uint32_t baro_update_time;
|
|
|
|
if( _baro == NULL )
|
|
return;
|
|
|
|
// calculate time since last baro reading
|
|
baro_update_time = _baro->get_last_update();
|
|
if( baro_update_time != _baro_last_update ) {
|
|
float dt = (float)(baro_update_time - _baro_last_update) / 1000.0;
|
|
// call correction method
|
|
correct_with_baro(_baro->get_altitude()*100, dt);
|
|
_baro_last_update = baro_update_time;
|
|
}
|
|
}
|
|
|
|
|
|
// correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading
|
|
void AP_InertialNav::correct_with_baro(float baro_alt, float dt)
|
|
{
|
|
static uint8_t first_reads = 0;
|
|
float hist_position_base_z;
|
|
float accel_ef_z_correction;
|
|
|
|
// discard samples where dt is too large
|
|
if( dt > 0.2 ) {
|
|
return;
|
|
}
|
|
|
|
// discard first 10 reads but perform some initialisation
|
|
if( first_reads <= 10 ) {
|
|
set_altitude(baro_alt);
|
|
first_reads++;
|
|
}
|
|
|
|
// get dcm matrix
|
|
Matrix3f dcm = _ahrs->get_dcm_matrix();
|
|
|
|
// 3rd order samples (i.e. position from baro) are delayed by 150ms (15 iterations at 100hz)
|
|
// so we should calculate error using historical estimates
|
|
if( _hist_position_estimate_z.num_items() >= 15 ) {
|
|
hist_position_base_z = _hist_position_estimate_z.peek(14);
|
|
}else{
|
|
hist_position_base_z = _position_base.z;
|
|
}
|
|
|
|
// calculate error in position from baro with our estimate
|
|
float err = baro_alt - (hist_position_base_z + _position_correction.z);
|
|
|
|
// retrieve the existing accelerometer corrections
|
|
Vector3f accel_corr = accel_correction.get();
|
|
|
|
// calculate the accelerometer correction from this iteration in the earth frame
|
|
accel_ef_z_correction = err * _k3_z * dt;
|
|
|
|
// rotate the correction into the body frame (note: this is a shortened form of dcm.mul_transpose(..) because we have only one axis
|
|
accel_corr.x += accel_ef_z_correction * dcm.c.x;
|
|
accel_corr.y += accel_ef_z_correction * dcm.c.y;
|
|
accel_corr.z += accel_ef_z_correction * dcm.c.z;
|
|
accel_correction.set(accel_corr);
|
|
|
|
// correct velocity
|
|
_velocity.z += (err*_k2_z) * dt;
|
|
|
|
// correct position
|
|
_position_correction.z += err*_k1_z * dt;
|
|
}
|
|
|
|
// set_altitude - set base altitude estimate in cm
|
|
void AP_InertialNav::set_altitude( float new_altitude)
|
|
{
|
|
_position_base.z = new_altitude;
|
|
_position_correction.z = 0;
|
|
}
|
|
|
|
//
|
|
// Private methods
|
|
//
|
|
|
|
// update_gains - update gains from time constant (given in seconds)
|
|
void AP_InertialNav::update_gains()
|
|
{
|
|
// X & Y axis time constant
|
|
if( _time_constant_xy == 0 ) {
|
|
_k1_xy = _k2_xy = _k3_xy = 0;
|
|
}else{
|
|
_k1_xy = 3 / _time_constant_xy;
|
|
_k2_xy = 3 / (_time_constant_xy*_time_constant_xy);
|
|
_k3_xy = 1 / (_time_constant_xy*_time_constant_xy*_time_constant_xy);
|
|
}
|
|
|
|
// Z axis time constant
|
|
if( _time_constant_z == 0 ) {
|
|
_k1_z = _k2_z = _k3_z = 0;
|
|
}else{
|
|
_k1_z = 3 / _time_constant_z;
|
|
_k2_z = 3 / (_time_constant_z*_time_constant_z);
|
|
_k3_z = 1 / (_time_constant_z*_time_constant_z*_time_constant_z);
|
|
}
|
|
}
|
|
|
|
// set_velocity_z - get latest climb rate (in cm/s)
|
|
void AP_InertialNav::set_velocity_z(float z )
|
|
{
|
|
_velocity.z = z;
|
|
}
|