mirror of https://github.com/ArduPilot/ardupilot
156 lines
6.7 KiB
C++
156 lines
6.7 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_Mount_Backend.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// set_angle_targets - sets angle targets in degrees
|
|
void AP_Mount_Backend::set_angle_targets(float roll, float tilt, float pan)
|
|
{
|
|
// set angle targets
|
|
_angle_ef_target_rad.x = radians(roll);
|
|
_angle_ef_target_rad.y = radians(tilt);
|
|
_angle_ef_target_rad.z = radians(pan);
|
|
|
|
// set the mode to mavlink targeting
|
|
_frontend.set_mode(_instance, MAV_MOUNT_MODE_MAVLINK_TARGETING);
|
|
}
|
|
|
|
// set_roi_target - sets target location that mount should attempt to point towards
|
|
void AP_Mount_Backend::set_roi_target(const struct Location &target_loc)
|
|
{
|
|
// set the target gps location
|
|
_state._roi_target = target_loc;
|
|
|
|
// set the mode to GPS tracking mode
|
|
_frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT);
|
|
}
|
|
|
|
// configure_msg - process MOUNT_CONFIGURE messages received from GCS
|
|
void AP_Mount_Backend::configure_msg(mavlink_message_t* msg)
|
|
{
|
|
__mavlink_mount_configure_t packet;
|
|
mavlink_msg_mount_configure_decode(msg, &packet);
|
|
|
|
// set mode
|
|
_frontend.set_mode(_instance,(enum MAV_MOUNT_MODE)packet.mount_mode);
|
|
|
|
// set which axis are stabilized
|
|
_state._stab_roll = packet.stab_roll;
|
|
_state._stab_tilt = packet.stab_pitch;
|
|
_state._stab_pan = packet.stab_yaw;
|
|
}
|
|
|
|
// control_msg - process MOUNT_CONTROL messages received from GCS
|
|
void AP_Mount_Backend::control_msg(mavlink_message_t *msg)
|
|
{
|
|
__mavlink_mount_control_t packet;
|
|
mavlink_msg_mount_control_decode(msg, &packet);
|
|
|
|
// interpret message fields based on mode
|
|
switch (_frontend.get_mode(_instance)) {
|
|
case MAV_MOUNT_MODE_RETRACT:
|
|
case MAV_MOUNT_MODE_NEUTRAL:
|
|
// do nothing with request if mount is retracted or in neutral position
|
|
break;
|
|
|
|
// set earth frame target angles from mavlink message
|
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
|
|
set_angle_targets(packet.input_b*0.01f, packet.input_a*0.01f, packet.input_c*0.01f);
|
|
break;
|
|
|
|
// Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
|
|
case MAV_MOUNT_MODE_RC_TARGETING:
|
|
// do nothing if pilot is controlling the roll, pitch and yaw
|
|
break;
|
|
|
|
// set lat, lon, alt position targets from mavlink message
|
|
case MAV_MOUNT_MODE_GPS_POINT:
|
|
Location target_location;
|
|
memset(&target_location, 0, sizeof(target_location));
|
|
target_location.lat = packet.input_a;
|
|
target_location.lng = packet.input_b;
|
|
target_location.alt = packet.input_c;
|
|
target_location.flags.relative_alt = true;
|
|
set_roi_target(target_location);
|
|
break;
|
|
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update_targets_from_rc - updates angle targets using input from receiver
|
|
void AP_Mount_Backend::update_targets_from_rc()
|
|
{
|
|
#define rc_ch(i) RC_Channel::rc_channel(i-1)
|
|
|
|
uint8_t roll_rc_in = _state._roll_rc_in;
|
|
uint8_t tilt_rc_in = _state._tilt_rc_in;
|
|
uint8_t pan_rc_in = _state._pan_rc_in;
|
|
|
|
// if joystick_speed is defined then pilot input defines a rate of change of the angle
|
|
if (_frontend._joystick_speed) {
|
|
// allow pilot speed position input to come directly from an RC_Channel
|
|
if (roll_rc_in && rc_ch(roll_rc_in)) {
|
|
_angle_ef_target_rad.x += rc_ch(roll_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
|
|
constrain_float(_angle_ef_target_rad.x, radians(_state._roll_angle_min*0.01f), radians(_state._roll_angle_max*0.01f));
|
|
}
|
|
if (tilt_rc_in && (rc_ch(tilt_rc_in))) {
|
|
_angle_ef_target_rad.y += rc_ch(tilt_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
|
|
constrain_float(_angle_ef_target_rad.y, radians(_state._tilt_angle_min*0.01f), radians(_state._tilt_angle_max*0.01f));
|
|
}
|
|
if (pan_rc_in && (rc_ch(pan_rc_in))) {
|
|
_angle_ef_target_rad.z += rc_ch(pan_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
|
|
constrain_float(_angle_ef_target_rad.z, radians(_state._pan_angle_min*0.01f), radians(_state._pan_angle_max*0.01f));
|
|
}
|
|
} else {
|
|
// allow pilot position input to come directly from an RC_Channel
|
|
if (roll_rc_in && (rc_ch(roll_rc_in))) {
|
|
_angle_ef_target_rad.x = angle_input_rad(rc_ch(roll_rc_in), _state._roll_angle_min, _state._roll_angle_max);
|
|
}
|
|
if (tilt_rc_in && (rc_ch(tilt_rc_in))) {
|
|
_angle_ef_target_rad.y = angle_input_rad(rc_ch(tilt_rc_in), _state._tilt_angle_min, _state._tilt_angle_max);
|
|
}
|
|
if (pan_rc_in && (rc_ch(pan_rc_in))) {
|
|
_angle_ef_target_rad.z = angle_input_rad(rc_ch(pan_rc_in), _state._pan_angle_min, _state._pan_angle_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
// returns the angle (degrees*100) that the RC_Channel input is receiving
|
|
int32_t AP_Mount_Backend::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
return (rc->get_reverse() ? -1 : 1) * (rc->radio_in - rc->radio_min) * (int32_t)(angle_max - angle_min) / (rc->radio_max - rc->radio_min) + (rc->get_reverse() ? angle_max : angle_min);
|
|
}
|
|
|
|
// returns the angle (radians) that the RC_Channel input is receiving
|
|
float AP_Mount_Backend::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
return radians(angle_input(rc, angle_min, angle_max)*0.01f);
|
|
}
|
|
|
|
// calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target
|
|
void AP_Mount_Backend::calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan)
|
|
{
|
|
float GPS_vector_x = (target.lng-_frontend._current_loc.lng)*cosf(ToRad((_frontend._current_loc.lat+target.lat)*0.00000005f))*0.01113195f;
|
|
float GPS_vector_y = (target.lat-_frontend._current_loc.lat)*0.01113195f;
|
|
float GPS_vector_z = (target.alt-_frontend._current_loc.alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
|
|
float target_distance = 100.0f*pythagorous2(GPS_vector_x, GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
|
|
|
|
// initialise all angles to zero
|
|
angles_to_target_rad.zero();
|
|
|
|
// tilt calcs
|
|
if (calc_tilt) {
|
|
angles_to_target_rad.y = atan2f(GPS_vector_z, target_distance);
|
|
}
|
|
|
|
// pan calcs
|
|
if (calc_pan) {
|
|
// calc absolute heading and then onvert to vehicle relative yaw
|
|
angles_to_target_rad.z = wrap_PI(atan2f(GPS_vector_x, GPS_vector_y) - _frontend._ahrs.yaw);
|
|
}
|
|
}
|