mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-08 08:58:29 -04:00
353 lines
11 KiB
C++
353 lines
11 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include <AP_Progmem.h>
|
|
#include "Compass.h"
|
|
|
|
const AP_Param::GroupInfo Compass::var_info[] PROGMEM = {
|
|
// index 0 was used for the old orientation matrix
|
|
|
|
// @Param: OFS_X
|
|
// @DisplayName: Compass offsets on the X axis
|
|
// @Description: Offset to be added to the compass x-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
|
|
// @Param: OFS_Y
|
|
// @DisplayName: Compass offsets on the Y axis
|
|
// @Description: Offset to be added to the compass y-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
|
|
// @Param: OFS_Z
|
|
// @DisplayName: Compass offsets on the Z axis
|
|
// @Description: Offset to be added to the compass z-axis values to compensate for metal in the frame
|
|
// @Range: -400 400
|
|
// @Increment: 1
|
|
AP_GROUPINFO("OFS", 1, Compass, _offset, 0),
|
|
|
|
// @Param: DEC
|
|
// @DisplayName: Compass declination
|
|
// @Description: An angle to compensate between the true north and magnetic north
|
|
// @Range: -3.142 3.142
|
|
// @Units: Radians
|
|
// @Increment: 0.01
|
|
// @User: Standard
|
|
AP_GROUPINFO("DEC", 2, Compass, _declination, 0),
|
|
|
|
// @Param: LEARN
|
|
// @DisplayName: Learn compass offsets automatically
|
|
// @Description: Enable or disable the automatic learning of compass offsets
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("LEARN", 3, Compass, _learn, 1), // true if learning calibration
|
|
|
|
// @Param: USE
|
|
// @DisplayName: Use compass for yaw
|
|
// @Description: Enable or disable the use of the compass (instead of the GPS) for determining heading
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("USE", 4, Compass, _use_for_yaw, 1), // true if used for DCM yaw
|
|
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
// @Param: AUTODEC
|
|
// @DisplayName: Auto Declination
|
|
// @Description: Enable or disable the automatic calculation of the declination based on gps location
|
|
// @Values: 0:Disabled,1:Enabled
|
|
// @User: Advanced
|
|
AP_GROUPINFO("AUTODEC",5, Compass, _auto_declination, 1),
|
|
#endif
|
|
|
|
// @Param: MOTCT
|
|
// @DisplayName: Motor interference compensation type
|
|
// @Description: Set motor interference compensation type to disabled, throttle or current
|
|
// @Values: 0:Disabled,1:Use Throttle,2:Use Current
|
|
// @Increment: 1
|
|
AP_GROUPINFO("MOTCT", 6, Compass, _motor_comp_type, AP_COMPASS_MOT_COMP_DISABLED),
|
|
|
|
// @Param: MOT_X
|
|
// @DisplayName: Motor interference compensation for body frame X axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Increment: 1
|
|
|
|
// @Param: MOT_Y
|
|
// @DisplayName: Motor interference compensation for body frame Y axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Increment: 1
|
|
|
|
// @Param: MOT_Z
|
|
// @DisplayName: Motor interference compensation for body frame Z axis
|
|
// @Description: Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference
|
|
// @Range: -1000 1000
|
|
// @Increment: 1
|
|
AP_GROUPINFO("MOT", 7, Compass, _motor_compensation, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
Compass::Compass(void) :
|
|
product_id(AP_COMPASS_TYPE_UNKNOWN),
|
|
_orientation(ROTATION_NONE),
|
|
_null_init_done(false)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
// Default init method, just returns success.
|
|
//
|
|
bool
|
|
Compass::init()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Compass::set_orientation(enum Rotation rotation)
|
|
{
|
|
_orientation = rotation;
|
|
}
|
|
|
|
void
|
|
Compass::set_offsets(const Vector3f &offsets)
|
|
{
|
|
_offset.set(offsets);
|
|
}
|
|
|
|
void
|
|
Compass::save_offsets()
|
|
{
|
|
_offset.save();
|
|
}
|
|
|
|
const Vector3f &
|
|
Compass::get_offsets() const
|
|
{
|
|
return _offset;
|
|
}
|
|
|
|
void
|
|
Compass::set_motor_compensation(const Vector3f &motor_comp_factor)
|
|
{
|
|
_motor_compensation.set(motor_comp_factor);
|
|
}
|
|
|
|
void
|
|
Compass::save_motor_compensation()
|
|
{
|
|
_motor_comp_type.save();
|
|
_motor_compensation.save();
|
|
}
|
|
|
|
void
|
|
Compass::set_initial_location(int32_t latitude, int32_t longitude)
|
|
{
|
|
// if automatic declination is configured, then compute
|
|
// the declination based on the initial GPS fix
|
|
#if !defined( __AVR_ATmega1280__ )
|
|
if (_auto_declination) {
|
|
// Set the declination based on the lat/lng from GPS
|
|
_declination.set(radians(
|
|
AP_Declination::get_declination(
|
|
(float)latitude / 10000000,
|
|
(float)longitude / 10000000)));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
Compass::set_declination(float radians, bool save_to_eeprom)
|
|
{
|
|
if (save_to_eeprom) {
|
|
_declination.set_and_save(radians);
|
|
}else{
|
|
_declination.set(radians);
|
|
}
|
|
}
|
|
|
|
float
|
|
Compass::get_declination()
|
|
{
|
|
return _declination.get();
|
|
}
|
|
|
|
|
|
float
|
|
Compass::calculate_heading(float roll, float pitch)
|
|
{
|
|
// Note - This function implementation is deprecated
|
|
// The alternate implementation of this function using the dcm matrix is preferred
|
|
float headX;
|
|
float headY;
|
|
float cos_roll;
|
|
float sin_roll;
|
|
float cos_pitch;
|
|
float sin_pitch;
|
|
float heading;
|
|
|
|
cos_roll = cosf(roll);
|
|
sin_roll = sinf(roll);
|
|
cos_pitch = cosf(pitch);
|
|
sin_pitch = sinf(pitch);
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch;
|
|
// Tilt compensated magnetic field Y component:
|
|
headY = mag_y*cos_roll - mag_z*sin_roll;
|
|
// magnetic heading
|
|
heading = atan2f(-headY,headX);
|
|
|
|
// Declination correction (if supplied)
|
|
if( fabsf(_declination) > 0.0f )
|
|
{
|
|
heading = heading + _declination;
|
|
if (heading > PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0f * PI);
|
|
else if (heading < -PI)
|
|
heading += (2.0f * PI);
|
|
}
|
|
|
|
return heading;
|
|
}
|
|
|
|
|
|
float
|
|
Compass::calculate_heading(const Matrix3f &dcm_matrix)
|
|
{
|
|
float headX;
|
|
float headY;
|
|
float cos_pitch = safe_sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x));
|
|
float heading;
|
|
|
|
// sinf(pitch) = - dcm_matrix(3,1)
|
|
// cosf(pitch)*sinf(roll) = - dcm_matrix(3,2)
|
|
// cosf(pitch)*cosf(roll) = - dcm_matrix(3,3)
|
|
|
|
if (cos_pitch == 0.0f) {
|
|
// we are pointing straight up or down so don't update our
|
|
// heading using the compass. Wait for the next iteration when
|
|
// we hopefully will have valid values again.
|
|
return 0;
|
|
}
|
|
|
|
// Tilt compensated magnetic field X component:
|
|
headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch;
|
|
// Tilt compensated magnetic field Y component:
|
|
headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch;
|
|
// magnetic heading
|
|
// 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S.
|
|
heading = constrain(atan2f(-headY,headX), -3.15f, 3.15f);
|
|
|
|
// Declination correction (if supplied)
|
|
if( fabsf(_declination) > 0.0f )
|
|
{
|
|
heading = heading + _declination;
|
|
if (heading > PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0f * PI);
|
|
else if (heading < -PI)
|
|
heading += (2.0f * PI);
|
|
}
|
|
|
|
return heading;
|
|
}
|
|
|
|
|
|
/*
|
|
* this offset nulling algorithm is inspired by this paper from Bill Premerlani
|
|
*
|
|
* http://gentlenav.googlecode.com/files/MagnetometerOffsetNullingRevisited.pdf
|
|
*
|
|
* The base algorithm works well, but is quite sensitive to
|
|
* noise. After long discussions with Bill, the following changes were
|
|
* made:
|
|
*
|
|
* 1) we keep a history buffer that effectively divides the mag
|
|
* vectors into a set of N streams. The algorithm is run on the
|
|
* streams separately
|
|
*
|
|
* 2) within each stream we only calculate a change when the mag
|
|
* vector has changed by a significant amount.
|
|
*
|
|
* This gives us the property that we learn quickly if there is no
|
|
* noise, but still learn correctly (and slowly) in the face of lots of
|
|
* noise.
|
|
*/
|
|
void
|
|
Compass::null_offsets(void)
|
|
{
|
|
if (_learn == 0) {
|
|
// auto-calibration is disabled
|
|
return;
|
|
}
|
|
|
|
// this gain is set so we converge on the offsets in about 5
|
|
// minutes with a 10Hz compass
|
|
const float gain = 0.01;
|
|
const float max_change = 10.0;
|
|
const float min_diff = 50.0;
|
|
Vector3f ofs;
|
|
|
|
ofs = _offset.get();
|
|
|
|
if (!_null_init_done) {
|
|
// first time through
|
|
_null_init_done = true;
|
|
for (uint8_t i=0; i<_mag_history_size; i++) {
|
|
// fill the history buffer with the current mag vector,
|
|
// with the offset removed
|
|
_mag_history[i] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z);
|
|
}
|
|
_mag_history_index = 0;
|
|
return;
|
|
}
|
|
|
|
Vector3f b1, b2, diff;
|
|
float length;
|
|
|
|
// get a past element
|
|
b1 = Vector3f(_mag_history[_mag_history_index].x,
|
|
_mag_history[_mag_history_index].y,
|
|
_mag_history[_mag_history_index].z);
|
|
// the history buffer doesn't have the offsets
|
|
b1 += ofs;
|
|
|
|
// get the current vector
|
|
b2 = Vector3f(mag_x, mag_y, mag_z);
|
|
|
|
// calculate the delta for this sample
|
|
diff = b2 - b1;
|
|
length = diff.length();
|
|
if (length < min_diff) {
|
|
// the mag vector hasn't changed enough - we don't get
|
|
// enough information from this vector to use it.
|
|
// Note that we don't put the current vector into the mag
|
|
// history here. We want to wait for a larger rotation to
|
|
// build up before calculating an offset change, as accuracy
|
|
// of the offset change is highly dependent on the size of the
|
|
// rotation.
|
|
_mag_history_index = (_mag_history_index + 1) % _mag_history_size;
|
|
return;
|
|
}
|
|
|
|
// put the vector in the history
|
|
_mag_history[_mag_history_index] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z);
|
|
_mag_history_index = (_mag_history_index + 1) % _mag_history_size;
|
|
|
|
// equation 6 of Bills paper
|
|
diff = diff * (gain * (b2.length() - b1.length()) / length);
|
|
|
|
// limit the change from any one reading. This is to prevent
|
|
// single crazy readings from throwing off the offsets for a long
|
|
// time
|
|
length = diff.length();
|
|
if (length > max_change) {
|
|
diff *= max_change / length;
|
|
}
|
|
|
|
// set the new offsets
|
|
_offset.set(_offset.get() - diff);
|
|
}
|