/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include "Compass.h" const AP_Param::GroupInfo Compass::var_info[] PROGMEM = { // index 0 was used for the old orientation matrix // @Param: OFS_X // @DisplayName: Compass offsets on the X axis // @Description: Offset to be added to the compass x-axis values to compensate for metal in the frame // @Range: -400 400 // @Increment: 1 // @Param: OFS_Y // @DisplayName: Compass offsets on the Y axis // @Description: Offset to be added to the compass y-axis values to compensate for metal in the frame // @Range: -400 400 // @Increment: 1 // @Param: OFS_Z // @DisplayName: Compass offsets on the Z axis // @Description: Offset to be added to the compass z-axis values to compensate for metal in the frame // @Range: -400 400 // @Increment: 1 AP_GROUPINFO("OFS", 1, Compass, _offset, 0), // @Param: DEC // @DisplayName: Compass declination // @Description: An angle to compensate between the true north and magnetic north // @Range: -3.142 3.142 // @Units: Radians // @Increment: 0.01 // @User: Standard AP_GROUPINFO("DEC", 2, Compass, _declination, 0), // @Param: LEARN // @DisplayName: Learn compass offsets automatically // @Description: Enable or disable the automatic learning of compass offsets // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("LEARN", 3, Compass, _learn, 1), // true if learning calibration // @Param: USE // @DisplayName: Use compass for yaw // @Description: Enable or disable the use of the compass (instead of the GPS) for determining heading // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("USE", 4, Compass, _use_for_yaw, 1), // true if used for DCM yaw #if !defined( __AVR_ATmega1280__ ) // @Param: AUTODEC // @DisplayName: Auto Declination // @Description: Enable or disable the automatic calculation of the declination based on gps location // @Values: 0:Disabled,1:Enabled // @User: Advanced AP_GROUPINFO("AUTODEC",5, Compass, _auto_declination, 1), #endif // @Param: MOTCT // @DisplayName: Motor interference compensation type // @Description: Set motor interference compensation type to disabled, throttle or current // @Values: 0:Disabled,1:Use Throttle,2:Use Current // @Increment: 1 AP_GROUPINFO("MOTCT", 6, Compass, _motor_comp_type, AP_COMPASS_MOT_COMP_DISABLED), // @Param: MOT_X // @DisplayName: Motor interference compensation for body frame X axis // @Description: Multiplied by the current throttle and added to the compass's x-axis values to compensate for motor interference // @Range: -1000 1000 // @Increment: 1 // @Param: MOT_Y // @DisplayName: Motor interference compensation for body frame Y axis // @Description: Multiplied by the current throttle and added to the compass's y-axis values to compensate for motor interference // @Range: -1000 1000 // @Increment: 1 // @Param: MOT_Z // @DisplayName: Motor interference compensation for body frame Z axis // @Description: Multiplied by the current throttle and added to the compass's z-axis values to compensate for motor interference // @Range: -1000 1000 // @Increment: 1 AP_GROUPINFO("MOT", 7, Compass, _motor_compensation, 0), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // Compass::Compass(void) : product_id(AP_COMPASS_TYPE_UNKNOWN), _orientation(ROTATION_NONE), _null_init_done(false) { AP_Param::setup_object_defaults(this, var_info); } // Default init method, just returns success. // bool Compass::init() { return true; } void Compass::set_orientation(enum Rotation rotation) { _orientation = rotation; } void Compass::set_offsets(const Vector3f &offsets) { _offset.set(offsets); } void Compass::save_offsets() { _offset.save(); } const Vector3f & Compass::get_offsets() const { return _offset; } void Compass::set_motor_compensation(const Vector3f &motor_comp_factor) { _motor_compensation.set(motor_comp_factor); } void Compass::save_motor_compensation() { _motor_comp_type.save(); _motor_compensation.save(); } void Compass::set_initial_location(int32_t latitude, int32_t longitude) { // if automatic declination is configured, then compute // the declination based on the initial GPS fix #if !defined( __AVR_ATmega1280__ ) if (_auto_declination) { // Set the declination based on the lat/lng from GPS _declination.set(radians( AP_Declination::get_declination( (float)latitude / 10000000, (float)longitude / 10000000))); } #endif } void Compass::set_declination(float radians, bool save_to_eeprom) { if (save_to_eeprom) { _declination.set_and_save(radians); }else{ _declination.set(radians); } } float Compass::get_declination() { return _declination.get(); } float Compass::calculate_heading(float roll, float pitch) { // Note - This function implementation is deprecated // The alternate implementation of this function using the dcm matrix is preferred float headX; float headY; float cos_roll; float sin_roll; float cos_pitch; float sin_pitch; float heading; cos_roll = cosf(roll); sin_roll = sinf(roll); cos_pitch = cosf(pitch); sin_pitch = sinf(pitch); // Tilt compensated magnetic field X component: headX = mag_x*cos_pitch + mag_y*sin_roll*sin_pitch + mag_z*cos_roll*sin_pitch; // Tilt compensated magnetic field Y component: headY = mag_y*cos_roll - mag_z*sin_roll; // magnetic heading heading = atan2f(-headY,headX); // Declination correction (if supplied) if( fabsf(_declination) > 0.0f ) { heading = heading + _declination; if (heading > PI) // Angle normalization (-180 deg, 180 deg) heading -= (2.0f * PI); else if (heading < -PI) heading += (2.0f * PI); } return heading; } float Compass::calculate_heading(const Matrix3f &dcm_matrix) { float headX; float headY; float cos_pitch = safe_sqrt(1-(dcm_matrix.c.x*dcm_matrix.c.x)); float heading; // sinf(pitch) = - dcm_matrix(3,1) // cosf(pitch)*sinf(roll) = - dcm_matrix(3,2) // cosf(pitch)*cosf(roll) = - dcm_matrix(3,3) if (cos_pitch == 0.0f) { // we are pointing straight up or down so don't update our // heading using the compass. Wait for the next iteration when // we hopefully will have valid values again. return 0; } // Tilt compensated magnetic field X component: headX = mag_x*cos_pitch - mag_y*dcm_matrix.c.y*dcm_matrix.c.x/cos_pitch - mag_z*dcm_matrix.c.z*dcm_matrix.c.x/cos_pitch; // Tilt compensated magnetic field Y component: headY = mag_y*dcm_matrix.c.z/cos_pitch - mag_z*dcm_matrix.c.y/cos_pitch; // magnetic heading // 6/4/11 - added constrain to keep bad values from ruining DCM Yaw - Jason S. heading = constrain(atan2f(-headY,headX), -3.15f, 3.15f); // Declination correction (if supplied) if( fabsf(_declination) > 0.0f ) { heading = heading + _declination; if (heading > PI) // Angle normalization (-180 deg, 180 deg) heading -= (2.0f * PI); else if (heading < -PI) heading += (2.0f * PI); } return heading; } /* * this offset nulling algorithm is inspired by this paper from Bill Premerlani * * http://gentlenav.googlecode.com/files/MagnetometerOffsetNullingRevisited.pdf * * The base algorithm works well, but is quite sensitive to * noise. After long discussions with Bill, the following changes were * made: * * 1) we keep a history buffer that effectively divides the mag * vectors into a set of N streams. The algorithm is run on the * streams separately * * 2) within each stream we only calculate a change when the mag * vector has changed by a significant amount. * * This gives us the property that we learn quickly if there is no * noise, but still learn correctly (and slowly) in the face of lots of * noise. */ void Compass::null_offsets(void) { if (_learn == 0) { // auto-calibration is disabled return; } // this gain is set so we converge on the offsets in about 5 // minutes with a 10Hz compass const float gain = 0.01; const float max_change = 10.0; const float min_diff = 50.0; Vector3f ofs; ofs = _offset.get(); if (!_null_init_done) { // first time through _null_init_done = true; for (uint8_t i=0; i<_mag_history_size; i++) { // fill the history buffer with the current mag vector, // with the offset removed _mag_history[i] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z); } _mag_history_index = 0; return; } Vector3f b1, b2, diff; float length; // get a past element b1 = Vector3f(_mag_history[_mag_history_index].x, _mag_history[_mag_history_index].y, _mag_history[_mag_history_index].z); // the history buffer doesn't have the offsets b1 += ofs; // get the current vector b2 = Vector3f(mag_x, mag_y, mag_z); // calculate the delta for this sample diff = b2 - b1; length = diff.length(); if (length < min_diff) { // the mag vector hasn't changed enough - we don't get // enough information from this vector to use it. // Note that we don't put the current vector into the mag // history here. We want to wait for a larger rotation to // build up before calculating an offset change, as accuracy // of the offset change is highly dependent on the size of the // rotation. _mag_history_index = (_mag_history_index + 1) % _mag_history_size; return; } // put the vector in the history _mag_history[_mag_history_index] = Vector3i((mag_x+0.5f) - ofs.x, (mag_y+0.5f) - ofs.y, (mag_z+0.5f) - ofs.z); _mag_history_index = (_mag_history_index + 1) % _mag_history_size; // equation 6 of Bills paper diff = diff * (gain * (b2.length() - b1.length()) / length); // limit the change from any one reading. This is to prevent // single crazy readings from throwing off the offsets for a long // time length = diff.length(); if (length > max_change) { diff *= max_change / length; } // set the new offsets _offset.set(_offset.get() - diff); }