ardupilot/libraries/GCS_MAVLink/GCS_Common.cpp

7283 lines
225 KiB
C++

/*
Common GCS MAVLink functions for all vehicle types
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GCS_config.h"
#if HAL_GCS_ENABLED
#include "GCS.h"
#include <AC_Fence/AC_Fence.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_ADSB/AP_ADSB.h>
#include <AP_AdvancedFailsafe/AP_AdvancedFailsafe.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Arming/AP_Arming.h>
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_Camera/AP_Camera.h>
#include <AP_Gripper/AP_Gripper.h>
#include <AC_Sprayer/AC_Sprayer.h>
#include <AP_BLHeli/AP_BLHeli.h>
#include <AP_Relay/AP_Relay.h>
#include <AP_RSSI/AP_RSSI.h>
#include <AP_RTC/AP_RTC.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_RCTelemetry/AP_Spektrum_Telem.h>
#include <AP_Mount/AP_Mount.h>
#include <AP_Common/AP_FWVersion.h>
#include <AP_VisualOdom/AP_VisualOdom.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_EFI/AP_EFI.h>
#include <AP_Proximity/AP_Proximity.h>
#include <AP_Scripting/AP_Scripting.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AP_Winch/AP_Winch.h>
#include <AP_Mission/AP_Mission.h>
#include <AP_OpenDroneID/AP_OpenDroneID.h>
#include <AP_OSD/AP_OSD.h>
#include <AP_RCTelemetry/AP_CRSF_Telem.h>
#include <AP_RPM/AP_RPM.h>
#include <AP_AIS/AP_AIS.h>
#include <AP_Filesystem/AP_Filesystem.h>
#include <AP_Frsky_Telem/AP_Frsky_Telem.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_VisualOdom/AP_VisualOdom.h>
#include <AP_KDECAN/AP_KDECAN.h>
#include <AP_LandingGear/AP_LandingGear.h>
#include <AP_Landing/AP_Landing_config.h>
#include "MissionItemProtocol_Waypoints.h"
#include "MissionItemProtocol_Rally.h"
#include "MissionItemProtocol_Fence.h"
#include <AP_Notify/AP_Notify.h>
#include <AP_Vehicle/AP_Vehicle_config.h>
#include <stdio.h>
#if AP_RADIO_ENABLED
#include <AP_Radio/AP_Radio.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <SITL/SITL.h>
#endif
#if HAL_MAX_CAN_PROTOCOL_DRIVERS
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/AP_Common.h>
#include <AP_PiccoloCAN/AP_PiccoloCAN.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#endif
#include <AP_BattMonitor/AP_BattMonitor_config.h>
#if AP_BATTERY_ENABLED
#include <AP_BattMonitor/AP_BattMonitor.h>
#endif
#include <AP_GPS/AP_GPS.h>
#include <AP_RCProtocol/AP_RCProtocol_config.h>
#if AP_RCPROTOCOL_ENABLED
#include <AP_RCProtocol/AP_RCProtocol.h>
#endif
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
#include <ctype.h>
extern const AP_HAL::HAL& hal;
struct GCS_MAVLINK::LastRadioStatus GCS_MAVLINK::last_radio_status;
uint8_t GCS_MAVLINK::mavlink_active = 0;
uint8_t GCS_MAVLINK::chan_is_streaming = 0;
uint32_t GCS_MAVLINK::reserve_param_space_start_ms;
// private channels are ones used for point-to-point protocols, and
// don't get broadcasts or fwded packets
uint8_t GCS_MAVLINK::mavlink_private = 0;
GCS *GCS::_singleton = nullptr;
GCS_MAVLINK_InProgress GCS_MAVLINK_InProgress::in_progress_tasks[1];
uint32_t GCS_MAVLINK_InProgress::last_check_ms;
GCS_MAVLINK::GCS_MAVLINK(GCS_MAVLINK_Parameters &parameters,
AP_HAL::UARTDriver &uart)
{
_port = &uart;
streamRates = parameters.streamRates;
}
bool GCS_MAVLINK::init(uint8_t instance)
{
// get associated mavlink channel
chan = (mavlink_channel_t)(MAVLINK_COMM_0 + instance);
if (!valid_channel(chan)) {
return false;
}
// find instance of MAVLink protocol; the protocol_match method in
// AP_SerialManager means this will match MAVLink2 and MAVLinkHL,
// too:
uartstate = AP::serialmanager().find_protocol_instance(AP_SerialManager::SerialProtocol_MAVLink, instance);
if (uartstate == nullptr) {
return false;
}
// and init the gcs instance
// whether this port is considered "private" is stored on the uart
// rather than in our own parameters:
if (uartstate->option_enabled(AP_HAL::UARTDriver::OPTION_MAVLINK_NO_FORWARD)) {
set_channel_private(chan);
}
/*
Now try to cope with SiK radios that may be stuck in bootloader
mode because CTS was held while powering on. This tells the
bootloader to wait for a firmware. It affects any SiK radio with
CTS connected that is externally powered. To cope we send 0x30
0x20 at 115200 on startup, which tells the bootloader to reset
and boot normally
*/
_port->begin(115200);
AP_HAL::UARTDriver::flow_control old_flow_control = _port->get_flow_control();
_port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
for (uint8_t i=0; i<3; i++) {
hal.scheduler->delay(1);
_port->write(0x30);
_port->write(0x20);
}
// since tcdrain() and TCSADRAIN may not be implemented...
hal.scheduler->delay(1);
_port->set_flow_control(old_flow_control);
// now change back to desired baudrate
_port->begin(uartstate->baudrate());
mavlink_comm_port[chan] = _port;
const auto mavlink_protocol = uartstate->get_protocol();
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2 ||
mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLinkHL) {
// load signing key
load_signing_key();
} else {
// user has asked to only send MAVLink1
_channel_status.flags |= MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
#if HAL_HIGH_LATENCY2_ENABLED
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLinkHL) {
is_high_latency_link = true;
}
#endif
return true;
}
void GCS_MAVLINK::send_meminfo(void)
{
unsigned __brkval = 0;
uint32_t memory = hal.util->available_memory();
mavlink_msg_meminfo_send(chan, __brkval, MIN(memory, 0xFFFFU), memory);
}
// report power supply status
void GCS_MAVLINK::send_power_status(void)
{
if (!gcs().vehicle_initialised()) {
// avoid unnecessary errors being reported to user
return;
}
mavlink_msg_power_status_send(chan,
hal.analogin->board_voltage() * 1000,
hal.analogin->servorail_voltage() * 1000,
hal.analogin->power_status_flags());
}
#if AP_SCHEDULER_ENABLED
// cap the MAVLink message rate. It can't be greater than 0.8 * SCHED_LOOP_RATE
uint16_t GCS_MAVLINK::cap_message_interval(uint16_t interval_ms) const
{
if (interval_ms == 0) {
return 0;
}
if (interval_ms*800 < AP::scheduler().get_loop_period_us()) {
return AP::scheduler().get_loop_period_us()/800.0f;
}
return interval_ms;
}
#endif
#if HAL_WITH_MCU_MONITORING
// report MCU voltage/temperature status
void GCS_MAVLINK::send_mcu_status(void)
{
if (!gcs().vehicle_initialised()) {
// avoid unnecessary errors being reported to user
return;
}
mavlink_msg_mcu_status_send(chan,
0, // only one MCU
hal.analogin->mcu_temperature() * 100,
hal.analogin->mcu_voltage() * 1000,
hal.analogin->mcu_voltage_min() * 1000,
hal.analogin->mcu_voltage_max() * 1000);
}
#endif
#if AP_BATTERY_ENABLED
// returns the battery remaining percentage if valid, -1 otherwise
int8_t GCS_MAVLINK::battery_remaining_pct(const uint8_t instance) const {
uint8_t percentage;
return AP::battery().capacity_remaining_pct(percentage, instance) ? MIN(percentage, INT8_MAX) : -1;
}
void GCS_MAVLINK::send_battery_status(const uint8_t instance) const
{
// catch the battery backend not supporting the required number of cells
static_assert(sizeof(AP_BattMonitor::cells) >= (sizeof(uint16_t) * MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN),
"Not enough battery cells for the MAVLink message");
const AP_BattMonitor &battery = AP::battery();
float temp;
bool got_temperature = battery.get_temperature(temp, instance);
// prepare arrays of individual cell voltages
uint16_t cell_mvolts[MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN];
uint16_t cell_mvolts_ext[MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_EXT_LEN];
const uint16_t max_cell_mV = 0xFFFEU;
const uint16_t invalid_cell_mV = 0xFFFFU;
if (battery.has_cell_voltages(instance)) {
const AP_BattMonitor::cells& batt_cells = battery.get_cell_voltages(instance);
static_assert(sizeof(cell_mvolts) <= sizeof(batt_cells.cells), "cell array length not large enough");
// copy the first 10 cells
memcpy(cell_mvolts, batt_cells.cells, sizeof(cell_mvolts));
// 11 ... 14 use a second cell_volts_ext array
for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_EXT_LEN; i++) {
if (MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN+i < uint8_t(ARRAY_SIZE(batt_cells.cells))) {
cell_mvolts_ext[i] = batt_cells.cells[MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN+i];
} else {
cell_mvolts_ext[i] = 0;
}
}
/*
now adjust voltages to cope with two things:
1) we may be reporting sag corrected voltage
2) the battery may have more cells than can be reported by the backend, so the actual voltage may be higher than the sum
*/
const float voltage_mV = battery.gcs_voltage(instance) * 1e3f;
float voltage_mV_sum = 0;
uint8_t non_zero_cell_count = 0;
for (uint8_t i=0; i<MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) {
if (cell_mvolts[i] > 0 && cell_mvolts[i] != invalid_cell_mV) {
non_zero_cell_count++;
voltage_mV_sum += cell_mvolts[i];
}
}
for (uint8_t i=0; i<MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_EXT_LEN; i++) {
if (cell_mvolts_ext[i] > 0 && cell_mvolts_ext[i] != invalid_cell_mV) {
non_zero_cell_count++;
voltage_mV_sum += cell_mvolts_ext[i];
}
}
if (voltage_mV > voltage_mV_sum && non_zero_cell_count > 0) {
// distribute the extra voltage over the non-zero cells
uint32_t extra_mV = (voltage_mV - voltage_mV_sum) / non_zero_cell_count;
for (uint8_t i=0; i<MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) {
if (cell_mvolts[i] > 0 && cell_mvolts[i] != invalid_cell_mV) {
cell_mvolts[i] = MIN(cell_mvolts[i] + extra_mV, max_cell_mV);
}
}
for (uint8_t i=0; i<MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_EXT_LEN; i++) {
if (cell_mvolts_ext[i] > 0 && cell_mvolts_ext[i] != invalid_cell_mV) {
cell_mvolts_ext[i] = MIN(cell_mvolts_ext[i] + extra_mV, max_cell_mV);
}
}
}
} else {
// for battery monitors that cannot provide voltages for individual cells the battery's total voltage is put into the first cell
// if the total voltage cannot fit into a single field, the remainder into subsequent fields.
// the GCS can then recover the pack voltage by summing all non ignored cell values an we can report a pack up to 655.34 V
float voltage_mV = battery.gcs_voltage(instance) * 1e3f;
for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_LEN; i++) {
if (voltage_mV < 0.001f) {
// too small to send to the GCS, set it to the no cell value
cell_mvolts[i] = UINT16_MAX;
} else {
cell_mvolts[i] = MIN(voltage_mV, max_cell_mV); // Can't send more then UINT16_MAX - 1 in a cell
voltage_mV -= max_cell_mV;
}
}
for (uint8_t i = 0; i < MAVLINK_MSG_BATTERY_STATUS_FIELD_VOLTAGES_EXT_LEN; i++) {
cell_mvolts_ext[i] = 0;
}
}
float current, consumed_mah, consumed_wh;
const int8_t percentage = battery_remaining_pct(instance);
if (battery.current_amps(current, instance)) {
current = constrain_float(current * 100,-INT16_MAX,INT16_MAX);
} else {
current = -1;
}
if (!battery.consumed_mah(consumed_mah, instance)) {
consumed_mah = -1;
}
if (battery.consumed_wh(consumed_wh, instance)) {
consumed_wh *= 36;
} else {
consumed_wh = -1;
}
uint32_t time_remaining;
if (!battery.time_remaining(time_remaining, instance)) {
time_remaining = 0;
}
mavlink_msg_battery_status_send(chan,
instance, // id
MAV_BATTERY_FUNCTION_UNKNOWN, // function
MAV_BATTERY_TYPE_UNKNOWN, // type
got_temperature ? ((int16_t) (temp * 100)) : INT16_MAX, // temperature. INT16_MAX if unknown
cell_mvolts, // cell voltages
current, // current in centiampere
consumed_mah, // total consumed current in milliampere.hour
consumed_wh, // consumed energy in hJ (hecto-Joules)
constrain_int16(percentage, -1, 100),
time_remaining, // time remaining, seconds
battery.get_mavlink_charge_state(instance), // battery charge state
cell_mvolts_ext, // Cell 11..14 voltages
0, // battery mode
battery.get_mavlink_fault_bitmask(instance)); // fault_bitmask
}
// returns true if all battery instances were reported
bool GCS_MAVLINK::send_battery_status()
{
const AP_BattMonitor &battery = AP::battery();
for(uint8_t i = 0; i < AP_BATT_MONITOR_MAX_INSTANCES; i++) {
const uint8_t battery_id = (last_battery_status_idx + 1) % AP_BATT_MONITOR_MAX_INSTANCES;
const auto configured_type = battery.configured_type(battery_id);
if (configured_type != AP_BattMonitor::Type::NONE &&
configured_type == battery.allocated_type(battery_id) &&
!battery.option_is_set(battery_id, AP_BattMonitor_Params::Options::InternalUseOnly)) {
CHECK_PAYLOAD_SIZE(BATTERY_STATUS);
send_battery_status(battery_id);
last_battery_status_idx = battery_id;
return true;
} else {
last_battery_status_idx = battery_id;
}
}
return true;
}
#endif // AP_BATTERY_ENABLED
#if AP_RANGEFINDER_ENABLED
void GCS_MAVLINK::send_distance_sensor(const AP_RangeFinder_Backend *sensor, const uint8_t instance) const
{
if (!sensor->has_data()) {
return;
}
int8_t quality_pct = sensor->signal_quality_pct();
// ardupilot defines this field as -1 is unknown, 0 is poor, 100 is excellent
// mavlink defines this field as 0 is unknown, 1 is invalid, 100 is perfect
uint8_t quality;
if (quality_pct == RangeFinder::SIGNAL_QUALITY_UNKNOWN) {
quality = 0;
} else if (quality_pct > 1 && quality_pct <= RangeFinder::SIGNAL_QUALITY_MAX) {
quality = quality_pct;
} else {
quality = 1;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot TODO: take time of measurement
sensor->min_distance_cm(), // minimum distance the sensor can measure in centimeters
sensor->max_distance_cm(), // maximum distance the sensor can measure in centimeters
sensor->distance_cm(), // current distance reading
sensor->get_mav_distance_sensor_type(), // type from MAV_DISTANCE_SENSOR enum
instance, // onboard ID of the sensor == instance
sensor->orientation(), // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, // horizontal FOV
0, // vertical FOV
(const float *)nullptr, // quaternion of sensor orientation for MAV_SENSOR_ROTATION_CUSTOM
quality); // Signal quality of the sensor. 0 = unknown/unset signal quality, 1 = invalid signal, 100 = perfect signal.
}
#endif // AP_RANGEFINDER_ENABLED
// send any and all distance_sensor messages. This starts by sending
// any distance sensors not used by a Proximity sensor, then sends the
// proximity sensor ones.
void GCS_MAVLINK::send_distance_sensor()
{
#if AP_RANGEFINDER_ENABLED
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
// if we have a proximity backend that utilizes rangefinders cull
// sending them here, and allow the later proximity code to manage
// them
bool filter_possible_proximity_sensors = false;
#if HAL_PROXIMITY_ENABLED
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity != nullptr) {
for (uint8_t i = 0; i < proximity->num_sensors(); i++) {
#if AP_PROXIMITY_RANGEFINDER_ENABLED
if (proximity->get_type(i) == AP_Proximity::Type::RangeFinder) {
filter_possible_proximity_sensors = true;
}
#endif
}
}
#endif
for (uint8_t i = 0; i < RANGEFINDER_MAX_INSTANCES; i++) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
AP_RangeFinder_Backend *sensor = rangefinder->get_backend(i);
if (sensor == nullptr) {
continue;
}
enum Rotation orient = sensor->orientation();
if (!filter_possible_proximity_sensors ||
(orient > ROTATION_YAW_315 && orient != ROTATION_PITCH_90)) {
send_distance_sensor(sensor, i);
}
}
#endif // AP_RANGEFINDER_ENABLED
#if HAL_PROXIMITY_ENABLED
send_proximity();
#endif
}
#if AP_RANGEFINDER_ENABLED
void GCS_MAVLINK::send_rangefinder() const
{
RangeFinder *rangefinder = RangeFinder::get_singleton();
if (rangefinder == nullptr) {
return;
}
AP_RangeFinder_Backend *s = rangefinder->find_instance(ROTATION_PITCH_270);
if (s == nullptr) {
return;
}
mavlink_msg_rangefinder_send(
chan,
s->distance(),
s->voltage_mv() * 0.001f);
}
#endif
#if HAL_PROXIMITY_ENABLED
void GCS_MAVLINK::send_proximity()
{
AP_Proximity *proximity = AP_Proximity::get_singleton();
if (proximity == nullptr) {
return; // this is wrong, but pretend we sent data and don't requeue
}
// get min/max distances
const uint16_t dist_min = (uint16_t)(proximity->distance_min() * 100.0f); // minimum distance the sensor can measure in centimeters
const uint16_t dist_max = (uint16_t)(proximity->distance_max() * 100.0f); // maximum distance the sensor can measure in centimeters
// send horizontal distances
if (proximity->get_status() == AP_Proximity::Status::Good) {
Proximity_Distance_Array dist_array;
if (proximity->get_horizontal_distances(dist_array)) {
for (uint8_t i = 0; i < PROXIMITY_MAX_DIRECTION; i++) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
if (dist_array.valid(i)) {
proximity_ever_valid_bitmask |= (1U << i);
} else if (!(proximity_ever_valid_bitmask & (1U << i))) {
// we've never sent this distance out, so we don't
// need to send an invalid one.
continue;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_array.distance[i] * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + i, // onboard ID of the sensor
dist_array.orientation[i], // direction the sensor faces from MAV_SENSOR_ORIENTATION enum
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, 0, nullptr, 0);
}
}
}
// send upward distance
float dist_up;
if (proximity->get_upward_distance(dist_up)) {
if (!HAVE_PAYLOAD_SPACE(chan, DISTANCE_SENSOR)) {
return;
}
mavlink_msg_distance_sensor_send(
chan,
AP_HAL::millis(), // time since system boot
dist_min, // minimum distance the sensor can measure in centimeters
dist_max, // maximum distance the sensor can measure in centimeters
(uint16_t)(dist_up * 100.0f), // current distance reading
MAV_DISTANCE_SENSOR_LASER, // type from MAV_DISTANCE_SENSOR enum
PROXIMITY_SENSOR_ID_START + PROXIMITY_MAX_DIRECTION + 1, // onboard ID of the sensor
MAV_SENSOR_ROTATION_PITCH_90, // direction upwards
0, // Measurement covariance in centimeters, 0 for unknown / invalid readings
0, 0, nullptr, 0);
}
}
#endif // HAL_PROXIMITY_ENABLED
#if AP_AHRS_ENABLED
// report AHRS2 state
void GCS_MAVLINK::send_ahrs2()
{
const AP_AHRS &ahrs = AP::ahrs();
Vector3f euler;
Location loc {};
// we want one or both of these, use | to avoid short-circuiting:
if (uint8_t(ahrs.get_secondary_attitude(euler)) |
uint8_t(ahrs.get_secondary_position(loc))) {
mavlink_msg_ahrs2_send(chan,
euler.x,
euler.y,
euler.z,
loc.alt*1.0e-2f,
loc.lat,
loc.lng);
}
}
#endif // AP_AHRS_ENABLED
MissionItemProtocol *GCS::get_prot_for_mission_type(const MAV_MISSION_TYPE mission_type) const
{
if (mission_type >= ARRAY_SIZE(missionitemprotocols)) {
return nullptr;
}
return missionitemprotocols[mission_type];
}
// handle a request for the number of items we have stored for a mission type:
void GCS_MAVLINK::handle_mission_request_list(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_list_t packet;
mavlink_msg_mission_request_list_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
MAV_MISSION_UNSUPPORTED,
packet.mission_type);
return;
}
prot->handle_mission_request_list(*this, packet, msg);
}
/*
handle a MISSION_REQUEST mavlink packet
*/
void GCS_MAVLINK::handle_mission_request_int(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_int_t packet;
mavlink_msg_mission_request_int_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
return;
}
prot->handle_mission_request_int(*this, packet, msg);
}
#if AP_MAVLINK_MSG_MISSION_REQUEST_ENABLED
void GCS_MAVLINK::handle_mission_request(const mavlink_message_t &msg)
{
// decode
mavlink_mission_request_t packet;
mavlink_msg_mission_request_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
return;
}
prot->handle_mission_request(*this, packet, msg);
}
#endif
// returns a MISSION_STATE numeration value best describing out
// current mission state.
MISSION_STATE GCS_MAVLINK::mission_state(const AP_Mission &mission) const
{
if (mission.num_commands() < 2) { // 1 means just home is present
return MISSION_STATE_NO_MISSION;
}
switch (mission.state()) {
case AP_Mission::mission_state::MISSION_STOPPED:
return MISSION_STATE_NOT_STARTED;
case AP_Mission::mission_state::MISSION_RUNNING:
return MISSION_STATE_ACTIVE;
case AP_Mission::mission_state::MISSION_COMPLETE:
return MISSION_STATE_COMPLETE;
}
// compiler ensures we can't get here as no default case in above enumeration
return MISSION_STATE_UNKNOWN;
}
void GCS_MAVLINK::send_mission_current(const class AP_Mission &mission, uint16_t seq)
{
auto num_commands = mission.num_commands();
if (num_commands > 0) {
// exclude home location from the count; see message definition.
num_commands -= 1;
}
#if AP_VEHICLE_ENABLED
const uint8_t mission_mode = AP::vehicle()->current_mode_requires_mission() ? 1 : 0;
#else
const uint8_t mission_mode = 0;
#endif
mavlink_msg_mission_current_send(
chan,
seq,
num_commands, // total
mission_state(mission), // mission_state
mission_mode); // mission_mode
}
#if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
/*
handle a MISSION_SET_CURRENT mavlink packet
Note that there exists a relatively new mavlink DO command,
MAV_CMD_DO_SET_MISSION_CURRENT which provides an acknowledgement
that the command has been received, rather than the GCS having to
rely on getting back an identical sequence number as some currently
do.
*/
void GCS_MAVLINK::handle_mission_set_current(AP_Mission &mission, const mavlink_message_t &msg)
{
// send_received_message_deprecation_warning("MISSION_SET_CURRENT");
// decode
mavlink_mission_set_current_t packet;
mavlink_msg_mission_set_current_decode(&msg, &packet);
// set current command
if (mission.set_current_cmd(packet.seq)) {
// because MISSION_SET_CURRENT is a message not a command,
// there is not ACK associated with us successfully changing
// our waypoint. Some GCSs use the fact we return exactly the
// same mission sequence number in this packet as an ACK - so
// if they send a MISSION_SET_CURRENT with seq number of 4
// then they expect to receive a MISSION_CURRENT message with
// exactly that sequence number in it, even if ArduPilot never
// actually holds that as a sequence number (e.g. packet.seq==0).
if (HAVE_PAYLOAD_SPACE(chan, MISSION_CURRENT)) {
send_mission_current(mission, packet.seq);
} else {
// schedule it for later:
send_message(MSG_CURRENT_WAYPOINT);
}
}
}
#endif // AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
/*
handle a MISSION_COUNT mavlink packet
*/
void GCS_MAVLINK::handle_mission_count(const mavlink_message_t &msg)
{
// decode
mavlink_mission_count_t packet;
mavlink_msg_mission_count_decode(&msg, &packet);
MissionItemProtocol *prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (prot == nullptr) {
mavlink_msg_mission_ack_send(chan,
msg.sysid,
msg.compid,
MAV_MISSION_UNSUPPORTED,
packet.mission_type);
return;
}
prot->handle_mission_count(*this, packet, msg);
}
/*
handle a MISSION_CLEAR_ALL mavlink packet
*/
void GCS_MAVLINK::handle_mission_clear_all(const mavlink_message_t &msg)
{
// decode
mavlink_mission_clear_all_t packet;
mavlink_msg_mission_clear_all_decode(&msg, &packet);
const MAV_MISSION_TYPE mission_type = (MAV_MISSION_TYPE)packet.mission_type;
MissionItemProtocol *prot = gcs().get_prot_for_mission_type(mission_type);
if (prot == nullptr) {
send_mission_ack(msg, mission_type, MAV_MISSION_UNSUPPORTED);
return;
}
prot->handle_mission_clear_all(*this, msg);
}
bool GCS_MAVLINK::requesting_mission_items() const
{
for (const auto *prot : gcs().missionitemprotocols) {
if (prot && prot->receiving && prot->active_link_is(this)) {
return true;
}
}
return false;
}
void GCS_MAVLINK::handle_mission_write_partial_list(const mavlink_message_t &msg)
{
// decode
mavlink_mission_write_partial_list_t packet;
mavlink_msg_mission_write_partial_list_decode(&msg, &packet);
MissionItemProtocol *use_prot = gcs().get_prot_for_mission_type((MAV_MISSION_TYPE)packet.mission_type);
if (use_prot == nullptr) {
send_mission_ack(msg, (MAV_MISSION_TYPE)packet.mission_type, MAV_MISSION_UNSUPPORTED);
return;
}
use_prot->handle_mission_write_partial_list(*this, msg, packet);
}
#if HAL_MOUNT_ENABLED
/*
pass mavlink messages to the AP_Mount singleton
*/
void GCS_MAVLINK::handle_mount_message(const mavlink_message_t &msg)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->handle_message(chan, msg);
}
#endif
/*
pass parameter value messages through to mount library
*/
void GCS_MAVLINK::handle_param_value(const mavlink_message_t &msg)
{
#if HAL_MOUNT_ENABLED
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->handle_param_value(msg);
#endif
}
void GCS_MAVLINK::send_text(MAV_SEVERITY severity, const char *fmt, ...) const
{
va_list arg_list;
va_start(arg_list, fmt);
gcs().send_textv(severity, fmt, arg_list, (1<<chan));
va_end(arg_list);
}
float GCS_MAVLINK::telemetry_radio_rssi()
{
if (AP_HAL::millis() - last_radio_status.received_ms > 5000) {
// telemetry radio has disappeared?!
return 0;
}
if (last_radio_status.rssi == 255) {
// see RADIO_STATUS packet definition
return 0;
}
return last_radio_status.rssi/254.0f;
}
bool GCS_MAVLINK::last_txbuf_is_greater(uint8_t txbuf_limit)
{
if (AP_HAL::millis() - last_radio_status.received_ms > 5000) {
// stale report
return true;
}
return last_radio_status.txbuf > txbuf_limit;
}
void GCS_MAVLINK::handle_radio_status(const mavlink_message_t &msg)
{
mavlink_radio_t packet;
mavlink_msg_radio_decode(&msg, &packet);
const uint32_t now = AP_HAL::millis();
last_radio_status.received_ms = now;
last_radio_status.rssi = packet.rssi;
// record if the GCS has been receiving radio messages from
// the aircraft
if (packet.remrssi != 0) {
last_radio_status.remrssi_ms = now;
}
last_radio_status.txbuf = packet.txbuf;
// use the state of the transmit buffer in the radio to
// control the stream rate, giving us adaptive software
// flow control
if (packet.txbuf < 20 && stream_slowdown_ms < 2000) {
// we are very low on space - slow down a lot
stream_slowdown_ms += 60;
} else if (packet.txbuf < 50 && stream_slowdown_ms < 2000) {
// we are a bit low on space, slow down slightly
stream_slowdown_ms += 20;
} else if (packet.txbuf > 95 && stream_slowdown_ms > 200) {
// the buffer has plenty of space, speed up a lot
stream_slowdown_ms -= 40;
} else if (packet.txbuf > 90 && stream_slowdown_ms != 0) {
// the buffer has enough space, speed up a bit
if (stream_slowdown_ms > 20) {
stream_slowdown_ms -= 20;
} else {
stream_slowdown_ms = 0;
}
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
if (stream_slowdown_ms > max_slowdown_ms) {
max_slowdown_ms = stream_slowdown_ms;
}
#endif
#if HAL_LOGGING_ENABLED
//log rssi, noise, etc if logging Performance monitoring data
if (AP::logger().should_log(log_radio_bit())) {
AP::logger().Write_Radio(packet);
}
#endif
}
void GCS_MAVLINK::handle_mission_item(const mavlink_message_t &msg)
{
mavlink_mission_item_int_t mission_item_int;
bool send_mission_item_warning = false;
if (msg.msgid == MAVLINK_MSG_ID_MISSION_ITEM) {
mavlink_mission_item_t mission_item;
mavlink_msg_mission_item_decode(&msg, &mission_item);
#if AP_MISSION_ENABLED
MAV_MISSION_RESULT ret = AP_Mission::convert_MISSION_ITEM_to_MISSION_ITEM_INT(mission_item, mission_item_int);
if (ret != MAV_MISSION_ACCEPTED) {
const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)mission_item_int.mission_type;
send_mission_ack(msg, type, ret);
return;
}
#else
// No mission library, so we can't convert from MISSION_ITEM
// to MISSION_ITEM_INT. Since we shouldn't be receiving fence
// or rally items via MISSION_ITEM, we don't need to work hard
// here, just fail:
const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)mission_item.mission_type;
send_mission_ack(msg, type, MAV_MISSION_UNSUPPORTED);
return;
#endif
send_mission_item_warning = true;
} else {
mavlink_msg_mission_item_int_decode(&msg, &mission_item_int);
}
const MAV_MISSION_TYPE type = (MAV_MISSION_TYPE)mission_item_int.mission_type;
#if AP_MISSION_ENABLED
const uint8_t current = mission_item_int.current;
if (type == MAV_MISSION_TYPE_MISSION && (current == 2 || current == 3)) {
struct AP_Mission::Mission_Command cmd = {};
MAV_MISSION_RESULT result = AP_Mission::mavlink_int_to_mission_cmd(mission_item_int, cmd);
if (result != MAV_MISSION_ACCEPTED) {
//decode failed
send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result);
return;
}
// guided or change-alt
if (current == 2) {
// current = 2 is a flag to tell us this is a "guided mode"
// waypoint and not for the mission
result = (handle_guided_request(cmd) ? MAV_MISSION_ACCEPTED
: MAV_MISSION_ERROR) ;
} else if (current == 3) {
//current = 3 is a flag to tell us this is a alt change only
// add home alt if needed
handle_change_alt_request(cmd);
// verify we received the command
result = MAV_MISSION_ACCEPTED;
}
send_mission_ack(msg, MAV_MISSION_TYPE_MISSION, result);
return;
}
#endif
// not a guided-mode reqest
MissionItemProtocol *prot = gcs().get_prot_for_mission_type(type);
if (prot == nullptr) {
send_mission_ack(msg, type, MAV_MISSION_UNSUPPORTED);
return;
}
if (send_mission_item_warning) {
prot->send_mission_item_warning();
}
if (!prot->receiving) {
send_mission_ack(msg, type, MAV_MISSION_ERROR);
return;
}
prot->handle_mission_item(msg, mission_item_int);
}
ap_message GCS_MAVLINK::mavlink_id_to_ap_message_id(const uint32_t mavlink_id) const
{
// MSG_NEXT_MISSION_REQUEST doesn't correspond to a mavlink message directly.
// It is used to request the next waypoint after receiving one.
// MSG_NEXT_PARAM doesn't correspond to a mavlink message directly.
// It is used to send the next parameter in a stream after sending one
// MSG_NAMED_FLOAT messages can't really be "streamed"...
static const struct {
uint32_t mavlink_id;
ap_message msg_id;
} map[] {
{ MAVLINK_MSG_ID_HEARTBEAT, MSG_HEARTBEAT},
{ MAVLINK_MSG_ID_HOME_POSITION, MSG_HOME},
{ MAVLINK_MSG_ID_GPS_GLOBAL_ORIGIN, MSG_ORIGIN},
{ MAVLINK_MSG_ID_SYS_STATUS, MSG_SYS_STATUS},
{ MAVLINK_MSG_ID_POWER_STATUS, MSG_POWER_STATUS},
#if HAL_WITH_MCU_MONITORING
{ MAVLINK_MSG_ID_MCU_STATUS, MSG_MCU_STATUS},
#endif
{ MAVLINK_MSG_ID_MEMINFO, MSG_MEMINFO},
{ MAVLINK_MSG_ID_NAV_CONTROLLER_OUTPUT, MSG_NAV_CONTROLLER_OUTPUT},
{ MAVLINK_MSG_ID_MISSION_CURRENT, MSG_CURRENT_WAYPOINT},
{ MAVLINK_MSG_ID_SERVO_OUTPUT_RAW, MSG_SERVO_OUTPUT_RAW},
{ MAVLINK_MSG_ID_RC_CHANNELS, MSG_RC_CHANNELS},
#if AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
{ MAVLINK_MSG_ID_RC_CHANNELS_RAW, MSG_RC_CHANNELS_RAW},
#endif
{ MAVLINK_MSG_ID_RAW_IMU, MSG_RAW_IMU},
{ MAVLINK_MSG_ID_SCALED_IMU, MSG_SCALED_IMU},
{ MAVLINK_MSG_ID_SCALED_IMU2, MSG_SCALED_IMU2},
{ MAVLINK_MSG_ID_SCALED_IMU3, MSG_SCALED_IMU3},
#if AP_MAVLINK_MSG_HIGHRES_IMU_ENABLED
{ MAVLINK_MSG_ID_HIGHRES_IMU, MSG_HIGHRES_IMU},
#endif
{ MAVLINK_MSG_ID_SCALED_PRESSURE, MSG_SCALED_PRESSURE},
{ MAVLINK_MSG_ID_SCALED_PRESSURE2, MSG_SCALED_PRESSURE2},
{ MAVLINK_MSG_ID_SCALED_PRESSURE3, MSG_SCALED_PRESSURE3},
#if AP_GPS_GPS_RAW_INT_SENDING_ENABLED
{ MAVLINK_MSG_ID_GPS_RAW_INT, MSG_GPS_RAW},
#endif
#if AP_GPS_GPS_RTK_SENDING_ENABLED
{ MAVLINK_MSG_ID_GPS_RTK, MSG_GPS_RTK},
#endif
#if AP_GPS_GPS2_RAW_SENDING_ENABLED
{ MAVLINK_MSG_ID_GPS2_RAW, MSG_GPS2_RAW},
#endif
#if AP_GPS_GPS2_RTK_SENDING_ENABLED
{ MAVLINK_MSG_ID_GPS2_RTK, MSG_GPS2_RTK},
#endif
{ MAVLINK_MSG_ID_SYSTEM_TIME, MSG_SYSTEM_TIME},
{ MAVLINK_MSG_ID_RC_CHANNELS_SCALED, MSG_SERVO_OUT},
{ MAVLINK_MSG_ID_PARAM_VALUE, MSG_NEXT_PARAM},
#if AP_FENCE_ENABLED
{ MAVLINK_MSG_ID_FENCE_STATUS, MSG_FENCE_STATUS},
#endif
#if AP_SIM_ENABLED
{ MAVLINK_MSG_ID_SIMSTATE, MSG_SIMSTATE},
{ MAVLINK_MSG_ID_SIM_STATE, MSG_SIM_STATE},
#endif
#if AP_AHRS_ENABLED
{ MAVLINK_MSG_ID_AHRS2, MSG_AHRS2},
{ MAVLINK_MSG_ID_AHRS, MSG_AHRS},
{ MAVLINK_MSG_ID_ATTITUDE, MSG_ATTITUDE},
{ MAVLINK_MSG_ID_ATTITUDE_QUATERNION, MSG_ATTITUDE_QUATERNION},
{ MAVLINK_MSG_ID_GLOBAL_POSITION_INT, MSG_LOCATION},
{ MAVLINK_MSG_ID_LOCAL_POSITION_NED, MSG_LOCAL_POSITION},
{ MAVLINK_MSG_ID_VFR_HUD, MSG_VFR_HUD},
#endif
{ MAVLINK_MSG_ID_HWSTATUS, MSG_HWSTATUS},
{ MAVLINK_MSG_ID_WIND, MSG_WIND},
#if AP_RANGEFINDER_ENABLED
{ MAVLINK_MSG_ID_RANGEFINDER, MSG_RANGEFINDER},
#endif
{ MAVLINK_MSG_ID_DISTANCE_SENSOR, MSG_DISTANCE_SENSOR},
#if AP_TERRAIN_AVAILABLE
{ MAVLINK_MSG_ID_TERRAIN_REQUEST, MSG_TERRAIN_REQUEST},
{ MAVLINK_MSG_ID_TERRAIN_REPORT, MSG_TERRAIN_REPORT},
#endif
#if AP_MAVLINK_BATTERY2_ENABLED
{ MAVLINK_MSG_ID_BATTERY2, MSG_BATTERY2},
#endif
#if AP_CAMERA_ENABLED
{ MAVLINK_MSG_ID_CAMERA_FEEDBACK, MSG_CAMERA_FEEDBACK},
{ MAVLINK_MSG_ID_CAMERA_INFORMATION, MSG_CAMERA_INFORMATION},
{ MAVLINK_MSG_ID_CAMERA_SETTINGS, MSG_CAMERA_SETTINGS},
{ MAVLINK_MSG_ID_CAMERA_FOV_STATUS, MSG_CAMERA_FOV_STATUS},
{ MAVLINK_MSG_ID_CAMERA_CAPTURE_STATUS, MSG_CAMERA_CAPTURE_STATUS},
#if AP_CAMERA_SEND_THERMAL_RANGE_ENABLED
{ MAVLINK_MSG_ID_CAMERA_THERMAL_RANGE, MSG_CAMERA_THERMAL_RANGE},
#endif // AP_CAMERA_SEND_THERMAL_RANGE_ENABLED
#if AP_MAVLINK_MSG_VIDEO_STREAM_INFORMATION_ENABLED
{ MAVLINK_MSG_ID_VIDEO_STREAM_INFORMATION, MSG_VIDEO_STREAM_INFORMATION},
#endif // AP_MAVLINK_MSG_VIDEO_STREAM_INFORMATION_ENABLED
#endif // AP_CAMERA_ENABLED
#if HAL_MOUNT_ENABLED
{ MAVLINK_MSG_ID_GIMBAL_DEVICE_ATTITUDE_STATUS, MSG_GIMBAL_DEVICE_ATTITUDE_STATUS},
{ MAVLINK_MSG_ID_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE, MSG_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE},
{ MAVLINK_MSG_ID_GIMBAL_MANAGER_INFORMATION, MSG_GIMBAL_MANAGER_INFORMATION},
{ MAVLINK_MSG_ID_GIMBAL_MANAGER_STATUS, MSG_GIMBAL_MANAGER_STATUS},
#endif
#if AP_OPTICALFLOW_ENABLED
{ MAVLINK_MSG_ID_OPTICAL_FLOW, MSG_OPTICAL_FLOW},
#endif
#if COMPASS_CAL_ENABLED
{ MAVLINK_MSG_ID_MAG_CAL_PROGRESS, MSG_MAG_CAL_PROGRESS},
{ MAVLINK_MSG_ID_MAG_CAL_REPORT, MSG_MAG_CAL_REPORT},
#endif
{ MAVLINK_MSG_ID_EKF_STATUS_REPORT, MSG_EKF_STATUS_REPORT},
{ MAVLINK_MSG_ID_PID_TUNING, MSG_PID_TUNING},
{ MAVLINK_MSG_ID_VIBRATION, MSG_VIBRATION},
#if AP_RPM_ENABLED
{ MAVLINK_MSG_ID_RPM, MSG_RPM},
#endif
{ MAVLINK_MSG_ID_MISSION_ITEM_REACHED, MSG_MISSION_ITEM_REACHED},
{ MAVLINK_MSG_ID_ATTITUDE_TARGET, MSG_ATTITUDE_TARGET},
{ MAVLINK_MSG_ID_POSITION_TARGET_GLOBAL_INT, MSG_POSITION_TARGET_GLOBAL_INT},
{ MAVLINK_MSG_ID_POSITION_TARGET_LOCAL_NED, MSG_POSITION_TARGET_LOCAL_NED},
#if HAL_ADSB_ENABLED
{ MAVLINK_MSG_ID_ADSB_VEHICLE, MSG_ADSB_VEHICLE},
#endif
#if AP_BATTERY_ENABLED
{ MAVLINK_MSG_ID_BATTERY_STATUS, MSG_BATTERY_STATUS},
#endif
{ MAVLINK_MSG_ID_AOA_SSA, MSG_AOA_SSA},
#if HAL_LANDING_DEEPSTALL_ENABLED
{ MAVLINK_MSG_ID_DEEPSTALL, MSG_LANDING},
#endif
{ MAVLINK_MSG_ID_EXTENDED_SYS_STATE, MSG_EXTENDED_SYS_STATE},
{ MAVLINK_MSG_ID_AUTOPILOT_VERSION, MSG_AUTOPILOT_VERSION},
#if HAL_EFI_ENABLED
{ MAVLINK_MSG_ID_EFI_STATUS, MSG_EFI_STATUS},
#endif
#if HAL_GENERATOR_ENABLED
{ MAVLINK_MSG_ID_GENERATOR_STATUS, MSG_GENERATOR_STATUS},
#endif
#if AP_WINCH_ENABLED
{ MAVLINK_MSG_ID_WINCH_STATUS, MSG_WINCH_STATUS},
#endif
#if HAL_WITH_ESC_TELEM
{ MAVLINK_MSG_ID_ESC_TELEMETRY_1_TO_4, MSG_ESC_TELEMETRY},
#endif
#if AP_RANGEFINDER_ENABLED && APM_BUILD_TYPE(APM_BUILD_Rover)
{ MAVLINK_MSG_ID_WATER_DEPTH, MSG_WATER_DEPTH},
#endif
#if HAL_HIGH_LATENCY2_ENABLED
{ MAVLINK_MSG_ID_HIGH_LATENCY2, MSG_HIGH_LATENCY2},
#endif
#if AP_AIS_ENABLED
{ MAVLINK_MSG_ID_AIS_VESSEL, MSG_AIS_VESSEL},
#endif
#if AP_MAVLINK_MSG_UAVIONIX_ADSB_OUT_STATUS_ENABLED
{ MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_STATUS, MSG_UAVIONIX_ADSB_OUT_STATUS},
#endif
#if AP_MAVLINK_MSG_RELAY_STATUS_ENABLED
{ MAVLINK_MSG_ID_RELAY_STATUS, MSG_RELAY_STATUS},
#endif
#if AP_AIRSPEED_ENABLED
{ MAVLINK_MSG_ID_AIRSPEED, MSG_AIRSPEED},
#endif
{ MAVLINK_MSG_ID_AVAILABLE_MODES, MSG_AVAILABLE_MODES},
{ MAVLINK_MSG_ID_AVAILABLE_MODES_MONITOR, MSG_AVAILABLE_MODES_MONITOR},
};
for (uint8_t i=0; i<ARRAY_SIZE(map); i++) {
if (map[i].mavlink_id == mavlink_id) {
return map[i].msg_id;
}
}
return MSG_LAST;
}
bool GCS_MAVLINK::set_mavlink_message_id_interval(const uint32_t mavlink_id,
const uint16_t interval_ms)
{
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "No ap_message for mavlink id (%u)", (unsigned int)mavlink_id);
return false;
}
return set_ap_message_interval(id, interval_ms);
}
bool GCS_MAVLINK::should_send_message_in_delay_callback(const ap_message id) const
{
// No ID we return true for may take more than a few hundred
// microseconds to return!
switch (id) {
case MSG_NEXT_PARAM:
case MSG_HEARTBEAT:
#if HAL_HIGH_LATENCY2_ENABLED
case MSG_HIGH_LATENCY2:
#endif
case MSG_AUTOPILOT_VERSION:
return true;
default:
return false;
}
return false;
}
uint16_t GCS_MAVLINK::get_reschedule_interval_ms(const deferred_message_bucket_t &deferred) const
{
uint32_t interval_ms = deferred.interval_ms;
interval_ms += stream_slowdown_ms;
// slow most messages down if we're transfering parameters or
// waypoints:
if (_queued_parameter) {
// we are sending parameters, penalize streams:
interval_ms *= 4;
}
if (requesting_mission_items()) {
// we are sending requests for waypoints, penalize streams:
interval_ms *= 4;
}
#if AP_MAVLINK_FTP_ENABLED
if (AP_HAL::millis() - ftp.last_send_ms < 1000) {
// we are sending ftp replies
interval_ms *= 4;
}
#endif
if (interval_ms > 60000) {
return 60000;
}
return interval_ms;
}
// typical runtime on fmuv3: 5 microseconds for 3 buckets
void GCS_MAVLINK::find_next_bucket_to_send(uint16_t now16_ms)
{
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
void *data = hal.scheduler->disable_interrupts_save();
uint32_t start_us = AP_HAL::micros();
#endif
// all done sending this bucket... find another bucket...
sending_bucket_id = no_bucket_to_send;
uint16_t ms_before_send_next_bucket_to_send = UINT16_MAX;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
if (deferred_message_bucket[i].ap_message_ids.count() == 0) {
// no entries
continue;
}
const uint16_t interval = get_reschedule_interval_ms(deferred_message_bucket[i]);
const uint16_t ms_since_last_sent = now16_ms - deferred_message_bucket[i].last_sent_ms;
uint16_t ms_before_send_this_bucket;
if (ms_since_last_sent > interval) {
// should already have sent this bucket!
ms_before_send_this_bucket = 0;
} else {
ms_before_send_this_bucket = interval - ms_since_last_sent;
}
if (ms_before_send_this_bucket < ms_before_send_next_bucket_to_send) {
sending_bucket_id = i;
ms_before_send_next_bucket_to_send = ms_before_send_this_bucket;
}
}
if (sending_bucket_id != no_bucket_to_send) {
bucket_message_ids_to_send = deferred_message_bucket[sending_bucket_id].ap_message_ids;
} else {
bucket_message_ids_to_send.clearall();
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
uint32_t delta_us = AP_HAL::micros() - start_us;
hal.scheduler->restore_interrupts(data);
if (delta_us > try_send_message_stats.fnbts_maxtime) {
try_send_message_stats.fnbts_maxtime = delta_us;
}
#endif
}
ap_message GCS_MAVLINK::next_deferred_bucket_message_to_send(uint16_t now16_ms)
{
if (sending_bucket_id == no_bucket_to_send) {
// could happen if all streamrates are zero?
return no_message_to_send;
}
const uint16_t ms_since_last_sent = now16_ms - deferred_message_bucket[sending_bucket_id].last_sent_ms;
if (ms_since_last_sent < get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id])) {
// not time to send this bucket
return no_message_to_send;
}
const int16_t next = bucket_message_ids_to_send.first_set();
if (next == -1) {
// should not happen
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("next_deferred_bucket_message_to_send called on empty bucket");
#endif
find_next_bucket_to_send(now16_ms);
return no_message_to_send;
}
return (ap_message)next;
}
// call try_send_message if appropriate. Incorporates debug code to
// record how long it takes to send a message. try_send_message is
// expected to be overridden, not this function.
bool GCS_MAVLINK::do_try_send_message(const ap_message id)
{
const bool in_delay_callback = hal.scheduler->in_delay_callback();
if (in_delay_callback && !should_send_message_in_delay_callback(id)) {
return true;
}
if (telemetry_delayed()) {
return false;
}
WITH_SEMAPHORE(comm_chan_lock(chan));
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
void *data = hal.scheduler->disable_interrupts_save();
uint32_t start_send_message_us = AP_HAL::micros();
#endif
if (!try_send_message(id)) {
// didn't fit in buffer...
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
try_send_message_stats.no_space_for_message++;
hal.scheduler->restore_interrupts(data);
#endif
return false;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t delta_us = AP_HAL::micros() - start_send_message_us;
hal.scheduler->restore_interrupts(data);
if (delta_us > try_send_message_stats.longest_time_us) {
try_send_message_stats.longest_time_us = delta_us;
try_send_message_stats.longest_id = id;
}
#endif
return true;
}
int8_t GCS_MAVLINK::get_deferred_message_index(const ap_message id) const
{
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message); i++) {
if (deferred_message[i].id == id) {
return i;
}
}
return -1;
}
int8_t GCS_MAVLINK::deferred_message_to_send_index(uint16_t now16_ms)
{
if (next_deferred_message_to_send_cache == -1) {
uint16_t ms_before_next_message_to_send = UINT16_MAX;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message); i++) {
const uint16_t interval_ms = deferred_message[i].interval_ms;
if (interval_ms == 0) {
continue;
}
const uint16_t ms_since_last_sent = now16_ms - deferred_message[i].last_sent_ms;
uint16_t ms_before_send_this_message;
if (ms_since_last_sent > interval_ms) {
// should already have sent this one!
ms_before_send_this_message = 0;
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
try_send_message_stats.behind++;
#endif
} else {
ms_before_send_this_message = interval_ms - ms_since_last_sent;
}
if (ms_before_send_this_message < ms_before_next_message_to_send) {
next_deferred_message_to_send_cache = i;
ms_before_next_message_to_send = ms_before_send_this_message;
}
}
}
if (next_deferred_message_to_send_cache == -1) {
// this really shouldn't happen; we force parameter rates, for example.
return -1;
}
const uint16_t ms_since_last_sent = now16_ms - deferred_message[next_deferred_message_to_send_cache].last_sent_ms;
if (ms_since_last_sent < deferred_message[next_deferred_message_to_send_cache].interval_ms) {
return -1;
}
return next_deferred_message_to_send_cache;
}
bool GCS_MAVLINK_InProgress::send_ack(MAV_RESULT result)
{
if (!HAVE_PAYLOAD_SPACE(chan, COMMAND_ACK)) {
// can't fit the ACK, come back to this later
return false;
}
mavlink_msg_command_ack_send(
chan,
mav_cmd,
result,
0,
0,
requesting_sysid,
requesting_compid
);
return true;
}
bool GCS_MAVLINK_InProgress::send_in_progress()
{
return send_ack(MAV_RESULT_IN_PROGRESS);
}
bool GCS_MAVLINK_InProgress::conclude(MAV_RESULT result)
{
if (!send_ack(result)) {
return false;
}
task = Type::NONE;
return true;
}
GCS_MAVLINK_InProgress *GCS_MAVLINK_InProgress::get_task(MAV_CMD mav_cmd, GCS_MAVLINK_InProgress::Type t, uint8_t sysid, uint8_t compid, mavlink_channel_t chan)
{
// we can't have two outstanding tasks for the same command from
// the same mavlink node or the result is ambiguous:
for (auto &_task : in_progress_tasks) {
if (_task.task == Type::NONE) {
continue;
}
if (_task.mav_cmd == mav_cmd &&
_task.requesting_sysid == sysid &&
_task.requesting_compid == compid) {
return nullptr;
}
}
for (auto &_task : in_progress_tasks) {
if (_task.task != Type::NONE) {
continue;
}
_task.chan = chan;
_task.task = t;
_task.mav_cmd = mav_cmd;
_task.requesting_sysid = sysid;
_task.requesting_compid = compid;
return &_task;
}
return nullptr;
}
void GCS_MAVLINK_InProgress::check_tasks()
{
// run these checks only intermittently (rate-limits the
// MAV_RESULT_IN_PROGRESS messages):
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - last_check_ms < 1000) {
return;
}
last_check_ms = now_ms;
for (auto &task : in_progress_tasks) {
switch (task.task) {
case Type::NONE:
break;
case Type::AIRSPEED_CAL: {
#if AP_AIRSPEED_ENABLED
const AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
switch (airspeed->get_calibration_state()) {
case AP_Airspeed::CalibrationState::NOT_STARTED:
// we shouldn't get here
task.conclude(MAV_RESULT_FAILED);
break;
case AP_Airspeed::CalibrationState::IN_PROGRESS:
task.send_in_progress();
break;
case AP_Airspeed::CalibrationState::FAILED:
task.conclude(MAV_RESULT_FAILED);
break;
case AP_Airspeed::CalibrationState::SUCCESS:
task.conclude(MAV_RESULT_ACCEPTED);
break;
}
#endif
}
break;
case Type::SD_FORMAT:
#if AP_FILESYSTEM_FORMAT_ENABLED
switch (AP::FS().get_format_status()) {
case AP_Filesystem_Backend::FormatStatus::NOT_STARTED:
// we shouldn't get here
task.conclude(MAV_RESULT_FAILED);
break;
case AP_Filesystem_Backend::FormatStatus::IN_PROGRESS:
case AP_Filesystem_Backend::FormatStatus::PENDING:
task.send_in_progress();
break;
case AP_Filesystem_Backend::FormatStatus::SUCCESS:
task.conclude(MAV_RESULT_ACCEPTED);
break;
case AP_Filesystem_Backend::FormatStatus::FAILURE:
task.conclude(MAV_RESULT_FAILED);
break;
}
#endif
break;
}
}
}
void GCS_MAVLINK::update_send()
{
#if HAL_LOGGING_ENABLED
if (!hal.scheduler->in_delay_callback()) {
// AP_Logger will not send log data if we are armed.
AP::logger().handle_log_send();
}
#endif
if (!deferred_messages_initialised) {
initialise_message_intervals_from_streamrates();
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
initialise_message_intervals_from_config_files();
#endif
deferred_messages_initialised = true;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
uint32_t retry_deferred_body_start = AP_HAL::micros();
#endif
// check for any in-progress tasks; check_tasks does its own rate-limiting
GCS_MAVLINK_InProgress::check_tasks();
const uint32_t start = AP_HAL::millis();
const uint16_t start16 = start & 0xFFFF;
while (AP_HAL::millis() - start < 5) { // spend a max of 5ms sending messages. This should never trigger - out_of_time() should become true
if (gcs().out_of_time()) {
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
try_send_message_stats.out_of_time++;
#endif
break;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
retry_deferred_body_start = AP_HAL::micros();
#endif
// check if any "specially handled" messages should be sent out
{
const int8_t next = deferred_message_to_send_index(start16);
if (next != -1) {
if (!do_try_send_message(deferred_message[next].id)) {
break;
}
// we try to keep output on a regular clock to avoid
// user support questions:
const uint16_t interval_ms = deferred_message[next].interval_ms;
deferred_message[next].last_sent_ms += interval_ms;
// but we do not want to try to catch up too much:
if (uint16_t(start16 - deferred_message[next].last_sent_ms) > interval_ms) {
deferred_message[next].last_sent_ms = start16;
}
next_deferred_message_to_send_cache = -1; // deferred_message_to_send will recalculate
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 1;
}
#endif
continue;
}
}
// check for any messages that the code has explicitly sent
const int16_t fs = pushed_ap_message_ids.first_set();
if (fs != -1) {
ap_message next = (ap_message)fs;
if (!do_try_send_message(next)) {
break;
}
pushed_ap_message_ids.clear(next);
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 2;
}
#endif
continue;
}
ap_message next = next_deferred_bucket_message_to_send(start16);
if (next != no_message_to_send) {
if (!do_try_send_message(next)) {
break;
}
bucket_message_ids_to_send.clear(next);
if (bucket_message_ids_to_send.count() == 0) {
// we sent everything in the bucket. Reschedule it.
// we try to keep output on a regular clock to avoid
// user support questions:
const uint16_t interval_ms = get_reschedule_interval_ms(deferred_message_bucket[sending_bucket_id]);
deferred_message_bucket[sending_bucket_id].last_sent_ms += interval_ms;
// but we do not want to try to catch up too much:
if (uint16_t(start16 - deferred_message_bucket[sending_bucket_id].last_sent_ms) > interval_ms) {
deferred_message_bucket[sending_bucket_id].last_sent_ms = start16;
}
find_next_bucket_to_send(start16);
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 3;
}
#endif
continue;
}
break;
}
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint32_t stop = AP_HAL::micros();
const uint32_t delta = stop - retry_deferred_body_start;
if (delta > try_send_message_stats.max_retry_deferred_body_us) {
try_send_message_stats.max_retry_deferred_body_us = delta;
try_send_message_stats.max_retry_deferred_body_type = 4;
}
#endif
// update the number of packets transmitted base on seqno, making
// the assumption that we don't send more than 256 messages
// between the last pass through here
send_packet_count += uint8_t(_channel_status.current_tx_seq - last_tx_seq);
last_tx_seq = _channel_status.current_tx_seq;
}
void GCS_MAVLINK::remove_message_from_bucket(int8_t bucket, ap_message id)
{
deferred_message_bucket[bucket].ap_message_ids.clear(id);
if (deferred_message_bucket[bucket].ap_message_ids.count() == 0) {
// bucket empty. Free it:
deferred_message_bucket[bucket].interval_ms = 0;
deferred_message_bucket[bucket].last_sent_ms = 0;
}
if (bucket == sending_bucket_id) {
bucket_message_ids_to_send.clear(id);
if (bucket_message_ids_to_send.count() == 0) {
find_next_bucket_to_send(AP_HAL::millis16());
} else {
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (deferred_message_bucket[bucket].interval_ms == 0 &&
deferred_message_bucket[bucket].last_sent_ms == 0) {
// we just freed this bucket! this would mean that
// somehow our messages-still-to-send was a superset
// of the messages in the bucket we were sending,
// which would be bad.
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
#endif
}
}
}
bool GCS_MAVLINK::set_ap_message_interval(enum ap_message id, uint16_t interval_ms)
{
if (id == MSG_NEXT_PARAM) {
// force parameters to *always* get streamed so a vehicle is
// recoverable from bad configuration:
if (interval_ms == 0) {
interval_ms = 100;
} else if (interval_ms > 1000) {
interval_ms = 1000;
}
}
#if AP_SCHEDULER_ENABLED
interval_ms = cap_message_interval(interval_ms);
#endif
// check if it's a specially-handled message:
const int8_t deferred_offset = get_deferred_message_index(id);
if (deferred_offset != -1) {
deferred_message[deferred_offset].interval_ms = interval_ms;
deferred_message[deferred_offset].last_sent_ms = AP_HAL::millis16();
return true;
}
// see which bucket has the closest interval:
int8_t closest_bucket = -1;
uint16_t closest_bucket_interval_delta = UINT16_MAX;
int8_t in_bucket = -1;
int8_t empty_bucket_id = -1;
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
const deferred_message_bucket_t &bucket = deferred_message_bucket[i];
if (bucket.interval_ms == 0) {
// unused bucket
if (empty_bucket_id == -1) {
empty_bucket_id = i;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (bucket.ap_message_ids.count() != 0) {
AP_HAL::panic("Bucket %u has zero interval but with ids set", i);
}
#endif
continue;
}
if (bucket.ap_message_ids.get(id)) {
in_bucket = i;
}
const uint16_t interval_delta = abs(bucket.interval_ms - interval_ms);
if (interval_delta < closest_bucket_interval_delta) {
closest_bucket = i;
closest_bucket_interval_delta = interval_delta;
}
}
if (in_bucket == -1 && interval_ms == 0) {
// not in a bucket and told to remove from scheduling
return true;
}
if (in_bucket != -1) {
if (interval_ms == 0) {
// remove it
remove_message_from_bucket(in_bucket, id);
return true;
}
if (closest_bucket_interval_delta == 0 &&
in_bucket == closest_bucket) {
// don't need to move it
return true;
}
// remove from existing bucket
remove_message_from_bucket(in_bucket, id);
if (empty_bucket_id == -1 &&
deferred_message_bucket[in_bucket].ap_message_ids.count() == 0) {
empty_bucket_id = in_bucket;
}
}
if (closest_bucket == -1 && empty_bucket_id == -1) {
// gah?!
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
::fprintf(stderr, "no buckets?!\n");
abort();
#endif
return false;
}
if (closest_bucket_interval_delta != 0 &&
empty_bucket_id != -1) {
// allocate a bucket for this interval
deferred_message_bucket[empty_bucket_id].interval_ms = interval_ms;
deferred_message_bucket[empty_bucket_id].last_sent_ms = AP_HAL::millis16();
closest_bucket = empty_bucket_id;
}
deferred_message_bucket[closest_bucket].ap_message_ids.set(id);
if (sending_bucket_id == no_bucket_to_send) {
sending_bucket_id = closest_bucket;
bucket_message_ids_to_send = deferred_message_bucket[closest_bucket].ap_message_ids;
}
return true;
}
// queue a message to be sent (try_send_message does the *actual*
// mavlink work!)
void GCS_MAVLINK::send_message(enum ap_message id)
{
switch (id) {
case MSG_HEARTBEAT:
#if HAL_HIGH_LATENCY2_ENABLED
case MSG_HIGH_LATENCY2:
#endif
save_signing_timestamp(false);
// update the mask of all streaming channels
if (is_streaming()) {
GCS_MAVLINK::chan_is_streaming |= (1U<<(chan-MAVLINK_COMM_0));
} else {
GCS_MAVLINK::chan_is_streaming &= ~(1U<<(chan-MAVLINK_COMM_0));
}
break;
default:
break;
}
pushed_ap_message_ids.set(id);
}
void GCS_MAVLINK::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
// we exclude radio packets because we historically used this to
// make it possible to use the CLI over the radio
if (msg.msgid != MAVLINK_MSG_ID_RADIO && msg.msgid != MAVLINK_MSG_ID_RADIO_STATUS) {
mavlink_active |= (1U<<(chan-MAVLINK_COMM_0));
}
const auto mavlink_protocol = uartstate->get_protocol();
if (!(status.flags & MAVLINK_STATUS_FLAG_IN_MAVLINK1) &&
(status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) &&
(mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2 ||
mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLinkHL)) {
// if we receive any MAVLink2 packets on a connection
// currently sending MAVLink1 then switch to sending
// MAVLink2
_channel_status.flags &= ~MAVLINK_STATUS_FLAG_OUT_MAVLINK1;
}
if (!routing.check_and_forward(*this, msg)) {
// the routing code has indicated we should not handle this packet locally
return;
}
if (msg.msgid == MAVLINK_MSG_ID_GLOBAL_POSITION_INT) {
#if HAL_MOUNT_ENABLED
// allow mounts to see the location of other vehicles
handle_mount_message(msg);
#endif
}
#if AP_SCRIPTING_ENABLED
{
AP_Scripting *scripting = AP_Scripting::get_singleton();
if (scripting != nullptr) {
scripting->handle_message(msg, chan);
}
}
#endif // AP_SCRIPTING_ENABLED
if (!accept_packet(status, msg)) {
// e.g. enforce-sysid says we shouldn't look at this packet
return;
}
handle_message(msg);
}
void
GCS_MAVLINK::update_receive(uint32_t max_time_us)
{
// do absolutely nothing if we are locked
if (locked()) {
return;
}
// receive new packets
mavlink_message_t msg;
mavlink_status_t status;
uint32_t tstart_us = AP_HAL::micros();
uint32_t now_ms = AP_HAL::millis();
status.packet_rx_drop_count = 0;
const uint16_t nbytes = _port->available();
for (uint16_t i=0; i<nbytes; i++)
{
const uint8_t c = (uint8_t)_port->read();
const uint32_t protocol_timeout = 4000;
if (alternative.handler &&
now_ms - alternative.last_mavlink_ms > protocol_timeout) {
/*
we have an alternative protocol handler installed and we
haven't parsed a MAVLink packet for 4 seconds. Try
parsing using alternative handler
*/
if (alternative.handler(c, mavlink_comm_port[chan])) {
alternative.last_alternate_ms = now_ms;
gcs_alternative_active[chan] = true;
}
/*
we may also try parsing as MAVLink if we haven't had a
successful parse on the alternative protocol for 4s
*/
if (now_ms - alternative.last_alternate_ms <= protocol_timeout) {
continue;
}
}
bool parsed_packet = false;
// Try to get a new message
const uint8_t framing = mavlink_frame_char_buffer(channel_buffer(), channel_status(), c, &msg, &status);
if (framing == MAVLINK_FRAMING_OK) {
hal.util->persistent_data.last_mavlink_msgid = msg.msgid;
packetReceived(status, msg);
parsed_packet = true;
gcs_alternative_active[chan] = false;
alternative.last_mavlink_ms = now_ms;
hal.util->persistent_data.last_mavlink_msgid = 0;
}
#if AP_SCRIPTING_ENABLED
else if (framing == MAVLINK_FRAMING_BAD_CRC) {
// This may be a valid message that we don't know the crc extra for, pass it to scripting which might
AP_Scripting *scripting = AP_Scripting::get_singleton();
if (scripting != nullptr) {
scripting->handle_message(msg, chan);
}
}
#endif // AP_SCRIPTING_ENABLED
if (parsed_packet || i % 100 == 0) {
// make sure we don't spend too much time parsing mavlink messages
if (AP_HAL::micros() - tstart_us > max_time_us) {
break;
}
}
}
const uint32_t tnow = AP_HAL::millis();
// send a timesync message every 10 seconds; this is for data
// collection purposes
#if HAL_HIGH_LATENCY2_ENABLED
if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms && !is_private() && !is_high_latency_link) {
#else
if (tnow - _timesync_request.last_sent_ms > _timesync_request.interval_ms && !is_private()) {
#endif
if (HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) {
send_timesync();
_timesync_request.last_sent_ms = tnow;
}
}
#if HAL_LOGGING_ENABLED
// consider logging mavlink stats:
if (is_active() || is_streaming()) {
if (tnow - last_mavlink_stats_logged > 1000) {
log_mavlink_stats();
last_mavlink_stats_logged = tnow;
}
}
#endif
#if GCS_DEBUG_SEND_MESSAGE_TIMINGS
const uint16_t now16_ms{AP_HAL::millis16()};
if (uint16_t(now16_ms - try_send_message_stats.statustext_last_sent_ms) > 10000U) {
if (try_send_message_stats.longest_time_us) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): ap_msg=%u took %uus to send",
chan,
try_send_message_stats.longest_id,
try_send_message_stats.longest_time_us);
try_send_message_stats.longest_time_us = 0;
}
if (try_send_message_stats.no_space_for_message &&
(is_active() || is_streaming())) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): out-of-space: %u",
chan,
try_send_message_stats.no_space_for_message);
try_send_message_stats.no_space_for_message = 0;
}
if (try_send_message_stats.out_of_time) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): out-of-time=%u",
chan,
try_send_message_stats.out_of_time);
try_send_message_stats.out_of_time = 0;
}
if (max_slowdown_ms) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): max slowdown=%u",
chan,
max_slowdown_ms);
max_slowdown_ms = 0;
}
if (try_send_message_stats.behind) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): behind=%u",
chan,
try_send_message_stats.behind);
try_send_message_stats.behind = 0;
}
if (try_send_message_stats.fnbts_maxtime) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): fnbts_maxtime=%uus",
chan,
try_send_message_stats.fnbts_maxtime);
try_send_message_stats.fnbts_maxtime = 0;
}
if (try_send_message_stats.max_retry_deferred_body_us) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"GCS.chan(%u): retry_body_maxtime=%uus (%u)",
chan,
try_send_message_stats.max_retry_deferred_body_us,
try_send_message_stats.max_retry_deferred_body_type
);
try_send_message_stats.max_retry_deferred_body_us = 0;
}
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"B. intvl. (%u): %u %u %u %u %u",
chan,
deferred_message_bucket[0].interval_ms,
deferred_message_bucket[1].interval_ms,
deferred_message_bucket[2].interval_ms,
deferred_message_bucket[3].interval_ms,
deferred_message_bucket[4].interval_ms);
}
try_send_message_stats.statustext_last_sent_ms = now16_ms;
}
#endif
}
#if HAL_LOGGING_ENABLED
/*
record stats about this link to logger
*/
void GCS_MAVLINK::log_mavlink_stats()
{
uint8_t flags = 0;
if (signing_enabled()) {
flags |= (uint8_t)Flags::USING_SIGNING;
}
if (is_streaming()) {
flags |= (uint8_t)Flags::STREAMING;
}
if (is_active()) {
flags |= (uint8_t)Flags::ACTIVE;
}
if (is_private()) {
flags |= (uint8_t)Flags::PRIVATE;
}
if (locked()) {
flags |= (uint8_t)Flags::LOCKED;
}
const struct log_MAV pkt{
LOG_PACKET_HEADER_INIT(LOG_MAV_MSG),
time_us : AP_HAL::micros64(),
chan : (uint8_t)chan,
packet_tx_count : send_packet_count,
packet_rx_success_count: _channel_status.packet_rx_success_count,
packet_rx_drop_count : _channel_status.packet_rx_drop_count,
flags : flags,
stream_slowdown_ms : stream_slowdown_ms,
times_full : out_of_space_to_send_count,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
/*
send the SYSTEM_TIME message
*/
void GCS_MAVLINK::send_system_time() const
{
uint64_t time_unix = 0;
#if AP_RTC_ENABLED
AP::rtc().get_utc_usec(time_unix); // may fail, leaving time_unix at 0
#endif
mavlink_msg_system_time_send(
chan,
time_unix,
AP_HAL::millis());
}
bool GCS_MAVLINK::sending_mavlink1() const
{
return ((_channel_status.flags & MAVLINK_STATUS_FLAG_OUT_MAVLINK1) != 0);
}
#if AP_RC_CHANNEL_ENABLED
/*
send RC_CHANNELS messages
*/
void GCS_MAVLINK::send_rc_channels() const
{
uint16_t values[18] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
mavlink_msg_rc_channels_send(
chan,
AP_HAL::millis(),
RC_Channels::get_valid_channel_count(),
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
values[8],
values[9],
values[10],
values[11],
values[12],
values[13],
values[14],
values[15],
values[16],
values[17],
#if AP_RSSI_ENABLED
receiver_rssi()
#else
255 // meaning "unknown"
#endif
);
}
#if AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
void GCS_MAVLINK::send_rc_channels_raw() const
{
// for mavlink1 send RC_CHANNELS_RAW, for compatibility with OSD
// implementations
if (!sending_mavlink1()) {
return;
}
uint16_t values[8] = {};
rc().get_radio_in(values, ARRAY_SIZE(values));
mavlink_msg_rc_channels_raw_send(
chan,
AP_HAL::millis(),
0,
values[0],
values[1],
values[2],
values[3],
values[4],
values[5],
values[6],
values[7],
#if AP_RSSI_ENABLED
receiver_rssi()
#else
255 // meaning "unknown"
#endif
);
}
#endif // AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
#endif // AP_RC_CHANNEL_ENABLED
void GCS_MAVLINK::send_raw_imu()
{
#if AP_INERTIALSENSOR_ENABLED
const AP_InertialSensor &ins = AP::ins();
const Vector3f &accel = ins.get_accel(0);
const Vector3f &gyro = ins.get_gyro(0);
Vector3f mag;
#if AP_COMPASS_ENABLED
const Compass &compass = AP::compass();
if (compass.get_count() >= 1) {
mag = compass.get_field(0);
}
#endif
mavlink_msg_raw_imu_send(
chan,
AP_HAL::micros64(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z,
0, // we use SCALED_IMU and SCALED_IMU2 for other IMUs
int16_t(ins.get_temperature(0)*100));
#endif
}
#if AP_MAVLINK_MSG_HIGHRES_IMU_ENABLED
void GCS_MAVLINK::send_highres_imu()
{
// static const uint16_t HIGHRES_IMU_UPDATED_NONE = 0x00;
static const uint16_t HIGHRES_IMU_UPDATED_XACC = 0x01;
static const uint16_t HIGHRES_IMU_UPDATED_YACC = 0x02;
static const uint16_t HIGHRES_IMU_UPDATED_ZACC = 0x04;
static const uint16_t HIGHRES_IMU_UPDATED_XGYRO = 0x08;
static const uint16_t HIGHRES_IMU_UPDATED_YGYRO = 0x10;
static const uint16_t HIGHRES_IMU_UPDATED_ZGYRO = 0x20;
static const uint16_t HIGHRES_IMU_UPDATED_XMAG = 0x40;
static const uint16_t HIGHRES_IMU_UPDATED_YMAG = 0x80;
static const uint16_t HIGHRES_IMU_UPDATED_ZMAG = 0x100;
static const uint16_t HIGHRES_IMU_UPDATED_ABS_PRESSURE = 0x200;
static const uint16_t HIGHRES_IMU_UPDATED_DIFF_PRESSURE = 0x400;
static const uint16_t HIGHRES_IMU_UPDATED_PRESSURE_ALT = 0x800;
static const uint16_t HIGHRES_IMU_UPDATED_TEMPERATURE = 0x1000;
static const uint16_t HIGHRES_IMU_UPDATED_ALL = 0xFFFF;
const AP_InertialSensor &ins = AP::ins();
const Vector3f& accel = ins.get_accel();
const Vector3f& gyro = ins.get_gyro();
mavlink_highres_imu_t reply = {
.time_usec = AP_HAL::micros64(),
.xacc = accel.x,
.yacc = accel.y,
.zacc = accel.z,
.xgyro = gyro.x,
.ygyro = gyro.y,
.zgyro = gyro.z,
.xmag = 0.0,
.ymag = 0.0,
.zmag = 0.0,
.abs_pressure = 0.0,
.diff_pressure = 0.0,
.pressure_alt = 0.0,
.temperature = 0.0,
.fields_updated = (HIGHRES_IMU_UPDATED_XACC | HIGHRES_IMU_UPDATED_YACC | HIGHRES_IMU_UPDATED_ZACC |
HIGHRES_IMU_UPDATED_XGYRO | HIGHRES_IMU_UPDATED_YGYRO | HIGHRES_IMU_UPDATED_ZGYRO),
.id = ins.get_first_usable_accel(),
};
#if AP_COMPASS_ENABLED
const Compass &compass = AP::compass();
if (compass.get_count() >= 1) {
const Vector3f field = compass.get_field() * 1000.0f;
reply.xmag = field.x; // convert to gauss
reply.ymag = field.y;
reply.zmag = field.z;
reply.fields_updated |= (HIGHRES_IMU_UPDATED_XMAG | HIGHRES_IMU_UPDATED_YMAG | HIGHRES_IMU_UPDATED_ZMAG);
}
#endif
#if AP_BARO_ENABLED
const AP_Baro &barometer = AP::baro();
reply.abs_pressure = barometer.get_pressure() * 0.01f;
reply.temperature = barometer.get_temperature();
reply.pressure_alt = barometer.get_altitude_AMSL();
reply.diff_pressure = reply.abs_pressure - barometer.get_ground_pressure() * 0.01f;
reply.fields_updated |= (HIGHRES_IMU_UPDATED_ABS_PRESSURE | HIGHRES_IMU_UPDATED_DIFF_PRESSURE |
HIGHRES_IMU_UPDATED_PRESSURE_ALT | HIGHRES_IMU_UPDATED_TEMPERATURE);
#endif
static const uint16_t all_flags = (HIGHRES_IMU_UPDATED_XACC | HIGHRES_IMU_UPDATED_YACC | HIGHRES_IMU_UPDATED_ZACC |
HIGHRES_IMU_UPDATED_XGYRO | HIGHRES_IMU_UPDATED_YGYRO | HIGHRES_IMU_UPDATED_ZGYRO |
HIGHRES_IMU_UPDATED_XMAG | HIGHRES_IMU_UPDATED_YMAG | HIGHRES_IMU_UPDATED_ZMAG |
HIGHRES_IMU_UPDATED_ABS_PRESSURE | HIGHRES_IMU_UPDATED_DIFF_PRESSURE |
HIGHRES_IMU_UPDATED_PRESSURE_ALT | HIGHRES_IMU_UPDATED_TEMPERATURE);
if (reply.fields_updated == all_flags) {
reply.fields_updated |= HIGHRES_IMU_UPDATED_ALL;
}
mavlink_msg_highres_imu_send_struct(chan, &reply);
}
#endif // AP_MAVLINK_MSG_HIGHRES_IMU_ENABLED
void GCS_MAVLINK::send_scaled_imu(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_ms, int16_t xacc, int16_t yacc, int16_t zacc, int16_t xgyro, int16_t ygyro, int16_t zgyro, int16_t xmag, int16_t ymag, int16_t zmag, int16_t temperature))
{
#if AP_INERTIALSENSOR_ENABLED
const AP_InertialSensor &ins = AP::ins();
int16_t _temperature = 0;
bool have_data = false;
Vector3f accel{};
if (ins.get_accel_count() > instance) {
accel = ins.get_accel(instance);
_temperature = ins.get_temperature(instance)*100;
have_data = true;
}
Vector3f gyro{};
if (ins.get_gyro_count() > instance) {
gyro = ins.get_gyro(instance);
have_data = true;
}
Vector3f mag;
#if AP_COMPASS_ENABLED
const Compass &compass = AP::compass();
if (compass.get_count() > instance) {
mag = compass.get_field(instance);
have_data = true;
}
#endif
if (!have_data) {
return;
}
send_fn(
chan,
AP_HAL::millis(),
accel.x * 1000.0f / GRAVITY_MSS,
accel.y * 1000.0f / GRAVITY_MSS,
accel.z * 1000.0f / GRAVITY_MSS,
gyro.x * 1000.0f,
gyro.y * 1000.0f,
gyro.z * 1000.0f,
mag.x,
mag.y,
mag.z,
_temperature);
#endif
}
// send data for barometer and airspeed sensors instances. In the
// case that we run out of instances of one before the other we send
// the relevant fields as 0.
void GCS_MAVLINK::send_scaled_pressure_instance(uint8_t instance, void (*send_fn)(mavlink_channel_t chan, uint32_t time_boot_ms, float press_abs, float press_diff, int16_t temperature, int16_t temperature_press_diff))
{
const AP_Baro &barometer = AP::baro();
bool have_data = false;
float press_abs = 0.0f;
int16_t temperature = 0; // Absolute pressure temperature
int16_t temperature_press_diff = 0; // Differential pressure temperature
if (instance < barometer.num_instances()) {
press_abs = barometer.get_pressure(instance) * 0.01f;
temperature = barometer.get_temperature(instance)*100;
have_data = true;
}
float press_diff = 0; // pascal
#if AP_AIRSPEED_ENABLED
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr &&
airspeed->enabled(instance)) {
press_diff = airspeed->get_differential_pressure(instance) * 0.01f;
float temp;
if (airspeed->get_temperature(instance,temp)) {
temperature_press_diff = temp * 100;
if (temperature_press_diff == 0) {
// don't send zero as that is the value for 'no data'
temperature_press_diff = 1;
}
}
have_data = true;
}
#endif
if (!have_data) {
return;
}
send_fn(
chan,
AP_HAL::millis(),
press_abs, // hectopascal
press_diff, // hectopascal
temperature, // 0.01 degrees C
temperature_press_diff); // 0.01 degrees C
}
void GCS_MAVLINK::send_scaled_pressure()
{
send_scaled_pressure_instance(0, mavlink_msg_scaled_pressure_send);
}
void GCS_MAVLINK::send_scaled_pressure2()
{
send_scaled_pressure_instance(1, mavlink_msg_scaled_pressure2_send);
}
void GCS_MAVLINK::send_scaled_pressure3()
{
send_scaled_pressure_instance(2, mavlink_msg_scaled_pressure3_send);
}
#if AP_AIRSPEED_ENABLED
void GCS_MAVLINK::send_airspeed()
{
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed == nullptr) {
return;
}
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
// Try and send the next sensor
const uint8_t index = (last_airspeed_idx + 1 + i) % AIRSPEED_MAX_SENSORS;
if (!airspeed->enabled(index)) {
continue;
}
float temperature_float;
int16_t temperature = INT16_MAX;
if (airspeed->get_temperature(index, temperature_float)) {
temperature = int16_t(temperature_float * 100);
}
uint8_t flags = 0;
// Set unhealthy flag
if (!airspeed->healthy(index)) {
flags |= 1U << AIRSPEED_SENSOR_FLAGS::AIRSPEED_SENSOR_UNHEALTHY;
}
#if AP_AHRS_ENABLED
// Set using flag if the AHRS is using this sensor
const AP_AHRS &ahrs = AP::ahrs();
if (ahrs.using_airspeed_sensor() && (ahrs.get_active_airspeed_index() == index)) {
flags |= 1U << AIRSPEED_SENSOR_FLAGS::AIRSPEED_SENSOR_USING;
}
#endif
// Assemble message and send
const mavlink_airspeed_t msg {
airspeed : airspeed->get_airspeed(index),
raw_press : airspeed->get_differential_pressure(index),
temperature : temperature,
id : index,
flags : flags
};
mavlink_msg_airspeed_send_struct(chan, &msg);
// Only send one msg per call
last_airspeed_idx = index;
return;
}
}
#endif // AP_AIRSPEED_ENABLED
#if AP_AHRS_ENABLED
void GCS_MAVLINK::send_ahrs()
{
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f &omega_I = ahrs.get_gyro_drift();
mavlink_msg_ahrs_send(
chan,
omega_I.x,
omega_I.y,
omega_I.z,
0,
0,
ahrs.get_error_rp(),
ahrs.get_error_yaw());
}
#endif // AP_AHRS_ENABLED
/*
send a statustext text string to specific MAVLink bitmask
*/
void GCS::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list, uint8_t dest_bitmask)
{
char first_piece_of_text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]{};
do {
// send_text can be called from multiple threads; we must
// protect the "text" member with _statustext_sem
WITH_SEMAPHORE(_statustext_queue.semaphore());
hal.util->vsnprintf(statustext_printf_buffer, sizeof(statustext_printf_buffer), fmt, arg_list);
memcpy(first_piece_of_text, statustext_printf_buffer, ARRAY_SIZE(first_piece_of_text)-1);
// filter destination ports to only allow active ports.
statustext_t statustext{};
if (update_send_has_been_called) {
statustext.bitmask = statustext_send_channel_mask();
} else {
// we have not yet initialised the streaming-channel-mask,
// which is done as part of the update() call. So just send
// it to all channels:
statustext.bitmask = (1<<_num_gcs)-1;
}
statustext.bitmask &= dest_bitmask;
if (!statustext.bitmask) {
// nowhere to send
break;
}
statustext.entry_created_ms = AP_HAL::millis16();
statustext.msg.severity = severity;
static uint16_t msgid;
if (strlen(statustext_printf_buffer) > sizeof(statustext.msg.text)) {
msgid++;
if (msgid == 0) {
msgid = 1;
}
statustext.msg.id = msgid;
}
const char *remainder = statustext_printf_buffer;
for (uint8_t i=0; i<_status_capacity; i++) {
statustext.msg.chunk_seq = i;
const size_t remainder_len = strlen(remainder);
// note that remainder_len may be zero here!
uint16_t n = MIN(sizeof(statustext.msg.text), remainder_len);
if (i == _status_capacity -1 && n == sizeof(statustext.msg.text)) {
// fantastic. This us a very long statustext and
// we've actually managed to push everything else out
// of the queue - this is the last chunk, so we MUST
// null-terminate.
n -= 1;
}
memset(statustext.msg.text, '\0', sizeof(statustext.msg.text));
memcpy(statustext.msg.text, remainder, n);
// The force push will ensure comm links do not block other comm links forever if they fail.
// If we push to a full buffer then we overwrite the oldest entry, effectively removing the
// block but not until the buffer fills up.
_statustext_queue.push_force(statustext);
remainder = &remainder[n];
// note that remainder_len here is the remainder length for
// the *old* remainder!
if (remainder_len < sizeof(statustext.msg.text) || statustext.msg.id == 0) {
break;
}
}
} while (false);
#if HAL_LOGGING_ENABLED
// given we don't really know what these methods get up to, we
// don't hold the statustext semaphore while doing them:
AP_Logger *logger = AP_Logger::get_singleton();
if (logger != nullptr) {
logger->Write_Message(first_piece_of_text);
}
#endif
#if AP_FRSKY_TELEM_ENABLED
frsky = AP::frsky_telem();
if (frsky != nullptr) {
frsky->queue_message(severity, first_piece_of_text);
}
#endif
#if HAL_SPEKTRUM_TELEM_ENABLED
AP_Spektrum_Telem* spektrum = AP::spektrum_telem();
if (spektrum != nullptr) {
spektrum->queue_message(severity, first_piece_of_text);
}
#endif
#if HAL_CRSF_TELEM_ENABLED
AP_CRSF_Telem* crsf = AP::crsf_telem();
if (crsf != nullptr) {
crsf->queue_message(severity, first_piece_of_text);
}
#endif
AP_Notify *notify = AP_Notify::get_singleton();
if (notify) {
notify->send_text(first_piece_of_text);
}
// push the messages out straight away until the vehicle states
// that it is initialised. At that point we can assume
// update_send is being called
if (!vehicle_initialised()) {
service_statustext();
}
}
void GCS::service_statustext(void)
{
WITH_SEMAPHORE(_statustext_queue.semaphore());
if (_statustext_queue.is_empty()) {
// nothing to do
return;
}
for (uint8_t i=first_backend_to_send; i<num_gcs(); i++) {
chan(i)->service_statustext();
}
for (uint8_t i=0; i<first_backend_to_send; i++) {
chan(i)->service_statustext();
}
_statustext_queue.prune();
}
void GCS::StatusTextQueue::prune(void)
{
// consider pruning the statustext queue of ancient entries
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - last_prune_ms < 1000) {
return;
}
last_prune_ms = now_ms;
const uint16_t now16_ms = AP_HAL::millis16();
for (uint8_t idx=0; idx<available(); ) {
const GCS::statustext_t *statustext = (*this)[idx];
if (statustext == nullptr) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
// be wary of integer promotion here
const uint16_t age = now16_ms - statustext->entry_created_ms;
if (age > 5000) {
// too old. Purge it.
remove(idx);
continue;
}
// this is a queue. If this one wasn't too old then the next
// one isn't either.
break;
}
}
/*
send a statustext message to specific MAVLink connections in a bitmask
must be called with semaphore held
*/
void GCS_MAVLINK::service_statustext(void)
{
GCS::StatusTextQueue &_statustext_queue = gcs().statustext_queue();
const uint8_t chan_bit = (1U<<chan);
// note the lack of idx++ here. We may remove the iteration item
// from the queue as the last thing we do, in which case we don't
// want to move idx.
const uint16_t payload_size = PAYLOAD_SIZE(chan, STATUSTEXT);
for (uint8_t idx=0; idx<_statustext_queue.available(); ) {
WITH_SEMAPHORE(comm_chan_lock(chan));
if (txspace() < payload_size) {
break;
}
GCS::statustext_t *statustext = _statustext_queue[idx];
if (statustext == nullptr) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
// check to see if we need to send this queue entry:
if (statustext->bitmask & chan_bit) {
mavlink_msg_statustext_send(chan,
statustext->msg.severity,
statustext->msg.text,
statustext->msg.id,
statustext->msg.chunk_seq);
// indicate we've sent the message:
statustext->bitmask &= ~chan_bit;
if (statustext->bitmask == 0) {
// sent everywhere it needs to be sent, remove it from the
// queue but leave idx as-is as we want to handle the
// remaining items which have been bumped up to out
// current index
_statustext_queue.remove(idx);
continue;
}
}
// this item still has places to go. Continue to iterate over the queue
idx++;
}
}
void GCS::send_message(enum ap_message id)
{
for (uint8_t i=0; i<num_gcs(); i++) {
chan(i)->send_message(id);
}
}
void GCS::update_send()
{
update_send_has_been_called = true;
if (!initialised_missionitemprotocol_objects) {
initialised_missionitemprotocol_objects = true;
// once-only initialisation of MissionItemProtocol objects:
#if AP_MISSION_ENABLED
AP_Mission *mission = AP::mission();
if (mission != nullptr) {
missionitemprotocols[MAV_MISSION_TYPE_MISSION] = NEW_NOTHROW MissionItemProtocol_Waypoints(*mission);
}
#endif
#if HAL_RALLY_ENABLED
AP_Rally *rally = AP::rally();
if (rally != nullptr) {
missionitemprotocols[MAV_MISSION_TYPE_RALLY] = NEW_NOTHROW MissionItemProtocol_Rally(*rally);
}
#endif
#if AP_FENCE_ENABLED
AC_Fence *fence = AP::fence();
if (fence != nullptr) {
missionitemprotocols[MAV_MISSION_TYPE_FENCE] = NEW_NOTHROW MissionItemProtocol_Fence(*fence);
}
#endif
}
for (auto *prot : missionitemprotocols) {
if (prot == nullptr) {
continue;
}
prot->update();
}
// round-robin the GCS_MAVLINK backend that gets to go first so
// one backend doesn't monopolise all of the time allowed for sending
// messages
for (uint8_t i=first_backend_to_send; i<num_gcs(); i++) {
chan(i)->update_send();
}
for (uint8_t i=0; i<first_backend_to_send; i++) {
chan(i)->update_send();
}
service_statustext();
first_backend_to_send++;
if (first_backend_to_send >= num_gcs()) {
first_backend_to_send = 0;
}
}
void GCS::update_receive(void)
{
for (uint8_t i=0; i<num_gcs(); i++) {
chan(i)->update_receive();
}
// also update UART pass-thru, if enabled
update_passthru();
}
void GCS::send_mission_item_reached_message(uint16_t mission_index)
{
for (uint8_t i=0; i<num_gcs(); i++) {
chan(i)->mission_item_reached_index = mission_index;
chan(i)->send_message(MSG_MISSION_ITEM_REACHED);
}
}
void GCS::setup_console()
{
AP_HAL::UARTDriver *uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_MAVLink, 0);
if (uart == nullptr) {
// this is probably not going to end well.
return;
}
if (ARRAY_SIZE(chan_parameters) == 0) {
return;
}
create_gcs_mavlink_backend(chan_parameters[0], *uart);
}
GCS_MAVLINK_Parameters::GCS_MAVLINK_Parameters()
{
AP_Param::setup_object_defaults(this, var_info);
}
void GCS::create_gcs_mavlink_backend(GCS_MAVLINK_Parameters &params, AP_HAL::UARTDriver &uart)
{
if (_num_gcs >= ARRAY_SIZE(chan_parameters)) {
return;
}
_chan[_num_gcs] = new_gcs_mavlink_backend(params, uart);
if (_chan[_num_gcs] == nullptr) {
return;
}
if (!_chan[_num_gcs]->init(_num_gcs)) {
delete _chan[_num_gcs];
_chan[_num_gcs] = nullptr;
return;
}
_num_gcs++;
}
void GCS::setup_uarts()
{
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
if (i >= ARRAY_SIZE(chan_parameters)) {
// should not happen
break;
}
AP_HAL::UARTDriver *uart = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_MAVLink, i);
if (uart == nullptr) {
// no more mavlink uarts
break;
}
create_gcs_mavlink_backend(chan_parameters[i], *uart);
}
#if AP_FRSKY_TELEM_ENABLED
if (frsky == nullptr) {
frsky = NEW_NOTHROW AP_Frsky_Telem();
if (frsky == nullptr || !frsky->init()) {
delete frsky;
frsky = nullptr;
}
}
#endif
#if AP_LTM_TELEM_ENABLED
ltm_telemetry.init();
#endif
#if AP_DEVO_TELEM_ENABLED
devo_telemetry.init();
#endif
}
#if AP_BATTERY_ENABLED && AP_MAVLINK_BATTERY2_ENABLED
// report battery2 state
void GCS_MAVLINK::send_battery2()
{
const AP_BattMonitor &battery = AP::battery();
if (battery.num_instances() > 1) {
float current;
if (battery.current_amps(current, 1)) {
current = constrain_float(current * 100,-INT16_MAX,INT16_MAX); // 10*mA
} else {
current = -1;
}
mavlink_msg_battery2_send(chan, battery.voltage(1)*1000, current);
}
}
#endif // AP_BATTERY_ENABLED && AP_MAVLINK_BATTERY2_ENABLED
/*
handle a SET_MODE MAVLink message
*/
void GCS_MAVLINK::handle_set_mode(const mavlink_message_t &msg)
{
mavlink_set_mode_t packet;
mavlink_msg_set_mode_decode(&msg, &packet);
const MAV_MODE _base_mode = (MAV_MODE)packet.base_mode;
const uint32_t _custom_mode = packet.custom_mode;
_set_mode_common(_base_mode, _custom_mode);
}
/*
code common to both SET_MODE mavlink message and command long set_mode msg
*/
MAV_RESULT GCS_MAVLINK::_set_mode_common(const MAV_MODE _base_mode, const uint32_t _custom_mode)
{
// only accept custom modes because there is no easy mapping from Mavlink flight modes to AC flight modes
#if AP_VEHICLE_ENABLED
if (uint32_t(_base_mode) & MAV_MODE_FLAG_CUSTOM_MODE_ENABLED) {
if (!AP::vehicle()->set_mode(_custom_mode, ModeReason::GCS_COMMAND)) {
// often we should be returning DENIED rather than FAILED
// here. Perhaps a "has_mode" callback on AP_::vehicle()
// would do?
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif
if (_base_mode == (MAV_MODE)MAV_MODE_FLAG_DECODE_POSITION_SAFETY) {
// set the safety switch position. Must be in a command by itself
if (_custom_mode == 0) {
// turn safety off (pwm outputs flow to the motors)
hal.rcout->force_safety_off();
return MAV_RESULT_ACCEPTED;
}
if (_custom_mode == 1) {
// turn safety on (no pwm outputs to the motors)
if (hal.rcout->force_safety_on()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
return MAV_RESULT_DENIED;
}
// Command is invalid (is supported but has invalid parameters)
return MAV_RESULT_DENIED;
}
#if AP_OPTICALFLOW_ENABLED
/*
send OPTICAL_FLOW message
*/
void GCS_MAVLINK::send_opticalflow()
{
const AP_OpticalFlow *optflow = AP::opticalflow();
// exit immediately if no optical flow sensor or not healthy
if (optflow == nullptr ||
!optflow->healthy()) {
return;
}
// get rates from sensor
const Vector2f &flowRate = optflow->flowRate();
const Vector2f &bodyRate = optflow->bodyRate();
float hagl = 0;
#if AP_AHRS_ENABLED
if (!AP::ahrs().get_hagl(hagl)) {
hagl = 0;
}
#endif
// populate and send message
mavlink_msg_optical_flow_send(
chan,
AP_HAL::millis(),
0, // sensor id is zero
flowRate.x,
flowRate.y,
flowRate.x - bodyRate.x,
flowRate.y - bodyRate.y,
optflow->quality(),
hagl, // ground distance (in meters) set to zero
flowRate.x,
flowRate.y);
}
#endif // AP_OPTICALFLOW_ENABLED
/*
send AUTOPILOT_VERSION packet
*/
void GCS_MAVLINK::send_autopilot_version() const
{
uint32_t flight_sw_version;
uint32_t middleware_sw_version = 0;
#ifdef APJ_BOARD_ID
uint32_t board_version { uint32_t(APJ_BOARD_ID) << 16 };
#else
uint32_t board_version = 0;
#endif
char flight_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_FLIGHT_CUSTOM_VERSION_LEN]{};
char middleware_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_MIDDLEWARE_CUSTOM_VERSION_LEN]{};
char os_custom_version[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_OS_CUSTOM_VERSION_LEN]{};
#ifdef HAL_USB_VENDOR_ID
const uint16_t vendor_id { HAL_USB_VENDOR_ID };
const uint16_t product_id { HAL_USB_PRODUCT_ID };
#else
uint16_t vendor_id = 0;
uint16_t product_id = 0;
#endif
uint64_t uid = 0;
uint8_t uid2[MAVLINK_MSG_AUTOPILOT_VERSION_FIELD_UID2_LEN] = {0};
uint8_t uid_len = sizeof(uid2); // taken as reference and modified
// by following call:
hal.util->get_system_id_unformatted(uid2, uid_len);
const AP_FWVersion &version = AP::fwversion();
flight_sw_version = version.major << (8 * 3) | \
version.minor << (8 * 2) | \
version.patch << (8 * 1) | \
(uint32_t)(version.fw_type) << (8 * 0);
if (version.fw_hash_str) {
strncpy_noterm(flight_custom_version, version.fw_hash_str, ARRAY_SIZE(flight_custom_version));
}
if (version.middleware_hash_str) {
strncpy_noterm(middleware_custom_version, version.middleware_hash_str, ARRAY_SIZE(middleware_custom_version));
}
if (version.os_hash_str) {
strncpy_noterm(os_custom_version, version.os_hash_str, ARRAY_SIZE(os_custom_version));
}
mavlink_msg_autopilot_version_send(
chan,
capabilities(),
flight_sw_version,
middleware_sw_version,
version.os_sw_version,
board_version,
(uint8_t *)flight_custom_version,
(uint8_t *)middleware_custom_version,
(uint8_t *)os_custom_version,
vendor_id,
product_id,
uid,
uid2
);
}
#if AP_AHRS_ENABLED
/*
send LOCAL_POSITION_NED message
*/
void GCS_MAVLINK::send_local_position() const
{
const AP_AHRS &ahrs = AP::ahrs();
Vector3f local_position, velocity;
if (!ahrs.get_relative_position_NED_origin(local_position) ||
!ahrs.get_velocity_NED(velocity)) {
// we don't know the position and velocity
return;
}
mavlink_msg_local_position_ned_send(
chan,
AP_HAL::millis(),
local_position.x,
local_position.y,
local_position.z,
velocity.x,
velocity.y,
velocity.z);
}
#endif
/*
send VIBRATION message
*/
void GCS_MAVLINK::send_vibration() const
{
#if AP_INERTIALSENSOR_ENABLED
const AP_InertialSensor &ins = AP::ins();
Vector3f vibration = ins.get_vibration_levels();
mavlink_msg_vibration_send(
chan,
AP_HAL::micros64(),
vibration.x,
vibration.y,
vibration.z,
ins.get_accel_clip_count(0),
ins.get_accel_clip_count(1),
ins.get_accel_clip_count(2));
#endif
}
void GCS_MAVLINK::send_named_float(const char *name, float value) const
{
char float_name[MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN+1] {};
strncpy(float_name, name, MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN);
mavlink_msg_named_value_float_send(chan, AP_HAL::millis(), float_name, value);
}
#if AP_AHRS_ENABLED
void GCS_MAVLINK::send_home_position() const
{
if (!AP::ahrs().home_is_set()) {
return;
}
const Location &home = AP::ahrs().get_home();
// get home position from origin
Vector3f home_pos_ned;
if (home.get_vector_from_origin_NEU(home_pos_ned)) {
// convert NEU in cm to NED in meters
home_pos_ned *= 0.01f;
home_pos_ned.z *= -1;
} else {
home_pos_ned = Vector3f{NAN, NAN, NAN};
}
const float q[4] {NAN, NAN, NAN, NAN};
mavlink_msg_home_position_send(
chan,
home.lat,
home.lng,
home.alt * 10,
home_pos_ned.x,
home_pos_ned.y,
home_pos_ned.z,
q,
0.0f, 0.0f, 0.0f,
AP_HAL::micros64());
}
void GCS_MAVLINK::send_gps_global_origin() const
{
Location ekf_origin;
if (!AP::ahrs().get_origin(ekf_origin)) {
return;
}
mavlink_msg_gps_global_origin_send(
chan,
ekf_origin.lat,
ekf_origin.lng,
ekf_origin.alt * 10,
AP_HAL::micros64());
}
#endif // AP_AHRS_ENABLED
MAV_STATE GCS_MAVLINK::system_status() const
{
MAV_STATE _system_status = vehicle_system_status();
if (_system_status < MAV_STATE_CRITICAL) {
// note that POWEROFF and FLIGHT_TERMINATION are both >
// CRITICAL, so we will not overwrite POWEROFF and
// FLIGHT_TERMINATION even if we have internal errors. If new
// enum entries are added then this may also not overwrite
// those.
if (AP::internalerror().errors()) {
_system_status = MAV_STATE_CRITICAL;
}
}
return _system_status;
}
/*
Send MAVLink heartbeat
*/
void GCS_MAVLINK::send_heartbeat() const
{
mavlink_msg_heartbeat_send(
chan,
gcs().frame_type(),
MAV_AUTOPILOT_ARDUPILOTMEGA,
base_mode(),
gcs().custom_mode(),
system_status());
}
#if AP_RC_CHANNEL_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_aux_function(const mavlink_command_int_t &packet)
{
if (packet.param2 > 2) {
return MAV_RESULT_DENIED;
}
const RC_Channel::AUX_FUNC aux_func = (RC_Channel::AUX_FUNC)packet.param1;
const RC_Channel::AuxSwitchPos position = (RC_Channel::AuxSwitchPos)packet.param2;
if (!rc().run_aux_function(aux_func, position, RC_Channel::AuxFuncTriggerSource::MAVLINK)) {
// note that this is not quite right; we could be more nuanced
// about our return code here.
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_RC_CHANNEL_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_set_message_interval(const mavlink_command_int_t &packet)
{
if (!is_zero(packet.param3)) {
return MAV_RESULT_DENIED;
}
return set_message_interval((uint32_t)packet.param1, (int32_t)packet.param2);
}
MAV_RESULT GCS_MAVLINK::set_message_interval(uint32_t msg_id, int32_t interval_us)
{
const ap_message id = mavlink_id_to_ap_message_id(msg_id);
if (id == MSG_LAST) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "No ap_message for mavlink id (%u)", (unsigned int)msg_id);
return MAV_RESULT_DENIED;
}
uint16_t interval_ms;
if (interval_us == 0) {
// zero is "reset to default rate"
if (!get_default_interval_for_ap_message(id, interval_ms)) {
// if we don't have a default interval then we assume that
// we do not send that message by default. That may not
// be strictly true if some random piece of code has set a
// rate as part of its initialisation - in which case that
// piece of code should probably be adding something into
// whatever get_default_interval_for_ap_message is looking
// at.
interval_ms = 0;
}
} else if (interval_us == -1) {
// minus-one is "stop sending"
interval_ms = 0;
} else if (interval_us < 1000) {
// don't squash sub-ms times to zero
interval_ms = 1;
} else if (interval_us > 60000000) {
interval_ms = 60000;
} else {
interval_ms = interval_us / 1000;
}
#if AP_SCHEDULER_ENABLED
if (interval_ms != 0 && cap_message_interval(interval_ms) > interval_ms) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Requested rate for message ID %u too fast. Increase SCHED_LOOP_RATE", (unsigned int)msg_id);
return MAV_RESULT_DENIED;
}
#endif
if (set_ap_message_interval(id, interval_ms)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
/*
this function is reserved for use by scripting
*/
MAV_RESULT GCS::set_message_interval(uint8_t port_num, uint32_t msg_id, int32_t interval_us)
{
uint8_t channel = get_channel_from_port_number(port_num);
GCS_MAVLINK *link = chan(channel);
if (link == nullptr) {
return MAV_RESULT_FAILED;
}
return link->set_message_interval(msg_id, interval_us);
}
uint8_t GCS::get_channel_from_port_number(uint8_t port_num)
{
const AP_HAL::UARTDriver *u = AP::serialmanager().get_serial_by_id(port_num);
for (uint8_t i=0; i<num_gcs(); i++) {
if (chan(i)->get_uart() == u) {
return i;
}
}
return UINT8_MAX;
}
MAV_RESULT GCS_MAVLINK::handle_command_request_message(const mavlink_command_int_t &packet)
{
const uint32_t mavlink_id = (uint32_t)packet.param1;
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
return MAV_RESULT_FAILED;
}
switch(id) {
case MSG_AVAILABLE_MODES:
available_modes.should_send = true;
available_modes.next_index = 1;
available_modes.requested_index = (uint8_t)packet.param2;
// After the first request sequnece is streamed in the AVAILABLE_MODES_MONITOR message
// This allows the GCS to re-request modes if there is a change
set_ap_message_interval(MSG_AVAILABLE_MODES_MONITOR, 5000);
break;
default:
break;
}
send_message(id);
return MAV_RESULT_ACCEPTED;
}
bool GCS_MAVLINK::get_ap_message_interval(ap_message id, uint16_t &interval_ms) const
{
// check if it's a specially-handled message:
const int8_t deferred_offset = get_deferred_message_index(id);
if (deferred_offset != -1) {
interval_ms = deferred_message[deferred_offset].interval_ms;
return true;
}
// check the deferred message buckets:
for (uint8_t i=0; i<ARRAY_SIZE(deferred_message_bucket); i++) {
const deferred_message_bucket_t &bucket = deferred_message_bucket[i];
if (bucket.ap_message_ids.get(id)) {
interval_ms = bucket.interval_ms;
return true;
}
}
return false;
}
MAV_RESULT GCS_MAVLINK::handle_command_get_message_interval(const mavlink_command_int_t &packet)
{
if (txspace() < PAYLOAD_SIZE(chan, MESSAGE_INTERVAL) + PAYLOAD_SIZE(chan, COMMAND_ACK)) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
const uint32_t mavlink_id = (uint32_t)packet.param1;
if (mavlink_id >= 2 << 15) {
// response packet limits range this works against!
mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available
return MAV_RESULT_FAILED;
}
const ap_message id = mavlink_id_to_ap_message_id(mavlink_id);
if (id == MSG_LAST) {
mavlink_msg_message_interval_send(chan, mavlink_id, 0); // not available
return MAV_RESULT_FAILED;
}
uint16_t interval_ms = 0;
if (!get_ap_message_interval(id, interval_ms) || interval_ms == 0) {
// not streaming this message at the moment...
mavlink_msg_message_interval_send(chan, mavlink_id, -1); // disabled
return MAV_RESULT_ACCEPTED;
}
mavlink_msg_message_interval_send(chan, mavlink_id, interval_ms * 1000);
return MAV_RESULT_ACCEPTED;
}
// are we still delaying telemetry to try to avoid Xbee bricking?
bool GCS_MAVLINK::telemetry_delayed() const
{
uint32_t tnow = AP_HAL::millis() >> 10;
if (tnow > telem_delay()) {
return false;
}
if (chan == MAVLINK_COMM_0 && hal.gpio->usb_connected()) {
// this is USB telemetry, so won't be an Xbee
return false;
}
// we're either on the 2nd UART, or no USB cable is connected
// we need to delay telemetry by the TELEM_DELAY time
return true;
}
/*
send SERVO_OUTPUT_RAW
*/
void GCS_MAVLINK::send_servo_output_raw()
{
const uint32_t enabled_mask = ~SRV_Channels::get_output_channel_mask(SRV_Channel::k_GPIO);
if (enabled_mask == 0) {
return;
}
#if NUM_SERVO_CHANNELS >= 17
static const uint8_t max_channels = 32;
#else
static const uint8_t max_channels = 16;
#endif
uint16_t values[max_channels] {};
hal.rcout->read(values, max_channels);
for (uint8_t i=0; i<max_channels; i++) {
if (values[i] == 65535) {
values[i] = 0;
}
}
if ((enabled_mask & 0xFFFF) != 0) {
mavlink_msg_servo_output_raw_send(
chan,
AP_HAL::micros(),
0, // port
values[0], values[1], values[2], values[3],
values[4], values[5], values[6], values[7],
values[8], values[9], values[10], values[11],
values[12], values[13], values[14], values[15]);
}
#if NUM_SERVO_CHANNELS >= 17
if ((enabled_mask & 0xFFFF0000) != 0) {
mavlink_msg_servo_output_raw_send(
chan,
AP_HAL::micros(),
1, // port
values[16], values[17], values[18], values[19],
values[20], values[21], values[22], values[23],
values[24], values[25], values[26], values[27],
values[28], values[29], values[30], values[31]);
}
#endif
}
void GCS_MAVLINK::send_accelcal_vehicle_position(uint32_t position)
{
if (HAVE_PAYLOAD_SPACE(chan, COMMAND_LONG)) {
mavlink_msg_command_long_send(
chan,
0,
0,
MAV_CMD_ACCELCAL_VEHICLE_POS,
0,
(float) position,
0, 0, 0, 0, 0, 0);
}
}
float GCS_MAVLINK::vfr_hud_airspeed() const
{
#if AP_AIRSPEED_ENABLED
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr && airspeed->healthy()) {
return airspeed->get_airspeed();
}
#endif
#if AP_GPS_ENABLED
// because most vehicles don't have airspeed sensors, we return a
// different sort of speed estimate in the relevant field for
// comparison's sake.
return AP::gps().ground_speed();
#endif
return 0.0;
}
float GCS_MAVLINK::vfr_hud_climbrate() const
{
#if AP_AHRS_ENABLED
Vector3f velned;
if (AP::ahrs().get_velocity_NED(velned) ||
AP::ahrs().get_vert_pos_rate_D(velned.z)) {
return -velned.z;
}
#endif
return 0;
}
#if AP_AHRS_ENABLED
float GCS_MAVLINK::vfr_hud_alt() const
{
return global_position_current_loc.alt * 0.01f; // cm -> m
}
void GCS_MAVLINK::send_vfr_hud()
{
AP_AHRS &ahrs = AP::ahrs();
// return values ignored; we send stale data
UNUSED_RESULT(ahrs.get_location(global_position_current_loc));
mavlink_msg_vfr_hud_send(
chan,
vfr_hud_airspeed(),
ahrs.groundspeed(),
(ahrs.yaw_sensor / 100) % 360,
abs(vfr_hud_throttle()),
vfr_hud_alt(),
vfr_hud_climbrate());
}
#endif // AP_AHRS_ENABLED
/*
handle a MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN command
Optionally disable PX4IO overrides. This is done for quadplanes to
prevent the mixer running while rebooting which can start the VTOL
motors. That can be dangerous when a preflight reboot is done with
the pilot close to the aircraft and can also damage the aircraft
*/
MAV_RESULT GCS_MAVLINK::handle_preflight_reboot(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
if (is_equal(packet.param1, 42.0f) &&
is_equal(packet.param2, 24.0f) &&
is_equal(packet.param3, 71.0f)) {
#if AP_MAVLINK_FAILURE_CREATION_ENABLED
if (is_equal(packet.param4, 93.0f)) {
// this is a magic sequence to force the main loop to
// lockup. This is for testing the stm32 watchdog
// functionality
while (true) {
send_text(MAV_SEVERITY_WARNING,"entering lockup");
hal.scheduler->delay(250);
}
}
if (is_equal(packet.param4, 94.0f)) {
// the following text is unlikely to make it out...
send_text(MAV_SEVERITY_WARNING,"dereferencing a bad thing");
#if CONFIG_HAL_BOARD != HAL_BOARD_ESP32
// esp32 can't do this bit, skip it, return an error
void *foo = (void*)0xE000ED38;
typedef void (*fptr)();
fptr gptr = (fptr) (void *) foo;
gptr();
#endif
return MAV_RESULT_FAILED;
}
if (is_equal(packet.param4, 95.0f)) {
// the following text is unlikely to make it out...
send_text(MAV_SEVERITY_WARNING,"calling AP_HAL::panic(...)");
AP_HAL::panic("panicing");
// keep calm and carry on
}
if (is_equal(packet.param4, 96.0f)) {
// deliberately corrupt parameter storage
send_text(MAV_SEVERITY_WARNING,"wiping parameter storage header");
StorageAccess param_storage{StorageManager::StorageParam};
uint8_t zeros[40] {};
param_storage.write_block(0, zeros, sizeof(zeros));
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param4, 97.0f)) {
// create a really long loop
send_text(MAV_SEVERITY_WARNING,"Creating long loop");
// 250ms:
for (uint8_t i=0; i<250; i++) {
hal.scheduler->delay_microseconds(1000);
}
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param4, 98.0f)) {
send_text(MAV_SEVERITY_WARNING,"Creating internal error");
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param4, 100.0f)) {
send_text(MAV_SEVERITY_WARNING,"Creating mutex deadlock");
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&GCS_MAVLINK::deadlock_sem, void));
while (!_deadlock_sem.taken) {
hal.scheduler->delay(1);
}
WITH_SEMAPHORE(_deadlock_sem.sem);
send_text(MAV_SEVERITY_WARNING,"deadlock passed");
return MAV_RESULT_ACCEPTED;
}
#endif // AP_MAVLINK_FAILURE_CREATION_ENABLED
#if HAL_ENABLE_DFU_BOOT
if (is_equal(packet.param4, 99.0f)) {
#if AP_SIGNED_FIRMWARE
send_text(MAV_SEVERITY_ERROR, "Refusing DFU for secure firmware");
return MAV_RESULT_FAILED;
#else
send_text(MAV_SEVERITY_WARNING, "Entering DFU mode");
hal.util->boot_to_dfu();
return MAV_RESULT_ACCEPTED;
#endif
}
#endif
}
// refuse reboot when armed:
if (hal.util->get_soft_armed()) {
/// but allow it if forced:
const uint32_t magic_force_reboot_value = 20190226;
if (packet.y != magic_force_reboot_value) {
return MAV_RESULT_FAILED;
}
}
if (!(is_equal(packet.param1, 1.0f) || is_equal(packet.param1, 3.0f))) {
// param1 must be 1 or 3 - 1 being reboot, 3 being reboot-to-bootloader
return MAV_RESULT_UNSUPPORTED;
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
{ // autotest relies in receiving the ACK for the reboot. Ensure
// there is space for it:
const uint32_t tstart_ms = AP_HAL::millis();
while (AP_HAL::millis() - tstart_ms < 1000) {
if (HAVE_PAYLOAD_SPACE(chan, COMMAND_ACK)) {
break;
}
hal.scheduler->delay(10);
}
}
#endif
// send ack before we reboot
mavlink_msg_command_ack_send(chan, packet.command, MAV_RESULT_ACCEPTED,
0, 0,
msg.sysid,
msg.compid);
// when packet.param1 == 3 we reboot to hold in bootloader
const bool hold_in_bootloader = is_equal(packet.param1, 3.0f);
#if AP_VEHICLE_ENABLED
AP::vehicle()->reboot(hold_in_bootloader); // not expected to return
#else
hal.scheduler->reboot(hold_in_bootloader);
#endif
return MAV_RESULT_FAILED;
}
#if AP_MAVLINK_FAILURE_CREATION_ENABLED
/*
take a semaphore and do not release it, triggering a deadlock
*/
void GCS_MAVLINK::deadlock_sem(void)
{
if (!_deadlock_sem.taken) {
_deadlock_sem.taken = true;
_deadlock_sem.sem.take_blocking();
}
}
#endif
/*
handle a flight termination request
*/
MAV_RESULT GCS_MAVLINK::handle_flight_termination(const mavlink_command_int_t &packet)
{
#if AP_ADVANCEDFAILSAFE_ENABLED
AP_AdvancedFailsafe *failsafe = AP::advancedfailsafe();
if (failsafe == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
bool should_terminate = packet.param1 > 0.5f;
if (failsafe->gcs_terminate(should_terminate, "GCS request")) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#else
return MAV_RESULT_UNSUPPORTED;
#endif
}
#if AP_RC_CHANNEL_ENABLED
/*
handle a R/C bind request (for spektrum)
*/
MAV_RESULT GCS_MAVLINK::handle_START_RX_PAIR(const mavlink_command_int_t &packet)
{
// initiate bind procedure. We accept the DSM type from either
// param1 or param2 due to a past mixup with what parameter is the
// right one
if (!RC_Channels::receiver_bind(packet.param2>0?packet.param2:packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_RC_CHANNEL_ENABLED
uint64_t GCS_MAVLINK::timesync_receive_timestamp_ns() const
{
uint64_t ret = _port->receive_time_constraint_us(PAYLOAD_SIZE(chan, TIMESYNC));
if (ret == 0) {
ret = AP_HAL::micros64();
}
return ret*1000LL;
}
uint64_t GCS_MAVLINK::timesync_timestamp_ns() const
{
// we add in our own system id try to ensure we only consider
// responses to our own timesync request messages
return AP_HAL::micros64()*1000LL + mavlink_system.sysid;
}
/*
return a timesync request
Sends back ts1 as received, and tc1 is the local timestamp in usec
*/
void GCS_MAVLINK::handle_timesync(const mavlink_message_t &msg)
{
// decode incoming timesync message
mavlink_timesync_t tsync;
mavlink_msg_timesync_decode(&msg, &tsync);
if (tsync.tc1 != 0) {
// this is a response to a timesync request
if (tsync.ts1 != _timesync_request.sent_ts1) {
// we didn't actually send the request.... or it's a
// response to an ancient request...
return;
}
#if 0
GCS_SEND_TEXT(MAV_SEVERITY_INFO,
"timesync response sysid=%u (latency=%fms)",
msg.sysid,
round_trip_time_us*0.001f);
#endif
#if HAL_LOGGING_ENABLED
const uint64_t round_trip_time_us = (timesync_receive_timestamp_ns() - _timesync_request.sent_ts1)*0.001f;
AP_Logger *logger = AP_Logger::get_singleton();
if (logger != nullptr) {
AP::logger().Write(
"TSYN",
"TimeUS,SysID,RTT",
"s-s",
"F-F",
"QBQ",
AP_HAL::micros64(),
msg.sysid,
round_trip_time_us
);
}
#endif // HAL_LOGGING_ENABLED
return;
}
if (!HAVE_PAYLOAD_SPACE(chan, TIMESYNC)) {
// drop this timesync request entirely
return;
}
// create new timesync struct with tc1 field as system time in
// nanoseconds. The client timestamp is as close as possible to
// the time we received the TIMESYNC message.
mavlink_timesync_t rsync;
rsync.tc1 = timesync_receive_timestamp_ns();
rsync.ts1 = tsync.ts1;
// respond with a timesync message
mavlink_msg_timesync_send(
chan,
rsync.tc1,
rsync.ts1
);
}
/*
* broadcast a timesync message. We may get multiple responses to this request.
*/
void GCS_MAVLINK::send_timesync()
{
_timesync_request.sent_ts1 = timesync_timestamp_ns();
mavlink_msg_timesync_send(
chan,
0,
_timesync_request.sent_ts1
);
}
void GCS_MAVLINK::handle_statustext(const mavlink_message_t &msg) const
{
#if HAL_LOGGING_ENABLED
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return;
}
mavlink_statustext_t packet;
mavlink_msg_statustext_decode(&msg, &packet);
const uint8_t max_prefix_len = 20;
const uint8_t text_len = MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1+max_prefix_len;
char text[text_len] = { 'G','C','S',':'};
uint8_t offset = strlen(text);
if (msg.sysid != sysid_my_gcs()) {
offset = hal.util->snprintf(text,
max_prefix_len,
"SRC=%u/%u:",
msg.sysid,
msg.compid);
offset = MIN(offset, max_prefix_len);
}
memcpy(&text[offset], packet.text, MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN);
logger->Write_Message(text);
#endif
}
/*
handle logging of named values from mavlink.
*/
void GCS_MAVLINK::handle_named_value(const mavlink_message_t &msg) const
{
#if HAL_LOGGING_ENABLED
auto *logger = AP_Logger::get_singleton();
if (logger == nullptr) {
return;
}
mavlink_named_value_float_t p;
mavlink_msg_named_value_float_decode(&msg, &p);
char s[11] {};
strncpy(s, p.name, sizeof(s)-1);
logger->Write("NVAL", "TimeUS,TimeBootMS,Name,Value,SSys,SCom", "ss#---", "FC----", "QINfBB",
AP_HAL::micros64(),
p.time_boot_ms,
s,
p.value,
msg.sysid,
msg.compid);
#endif
}
#if AP_RTC_ENABLED
void GCS_MAVLINK::handle_system_time_message(const mavlink_message_t &msg)
{
mavlink_system_time_t packet;
mavlink_msg_system_time_decode(&msg, &packet);
AP::rtc().set_utc_usec(packet.time_unix_usec, AP_RTC::SOURCE_MAVLINK_SYSTEM_TIME);
}
#endif
#if AP_CAMERA_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_camera(const mavlink_command_int_t &packet)
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
return camera->handle_command(packet);
}
#endif
#if AP_AHRS_ENABLED
// sets ekf_origin if it has not been set.
// should only be used when there is no GPS to provide an absolute position
void GCS_MAVLINK::set_ekf_origin(const Location& loc)
{
// check location is valid
if (!loc.check_latlng()) {
return;
}
AP_AHRS &ahrs = AP::ahrs();
// check if EKF origin has already been set
Location ekf_origin;
if (ahrs.get_origin(ekf_origin)) {
return;
}
if (!ahrs.set_origin(loc)) {
return;
}
// send ekf origin to GCS
if (!try_send_message(MSG_ORIGIN)) {
// try again later
send_message(MSG_ORIGIN);
}
}
void GCS_MAVLINK::handle_set_gps_global_origin(const mavlink_message_t &msg)
{
mavlink_set_gps_global_origin_t packet;
mavlink_msg_set_gps_global_origin_decode(&msg, &packet);
// sanity check location
if (!check_latlng(packet.latitude, packet.longitude)) {
// silently drop the request
return;
}
Location ekf_origin {};
ekf_origin.lat = packet.latitude;
ekf_origin.lng = packet.longitude;
ekf_origin.alt = packet.altitude / 10;
set_ekf_origin(ekf_origin);
}
#endif // AP_AHRS_ENABLED
/*
handle a DATA96 message
*/
void GCS_MAVLINK::handle_data_packet(const mavlink_message_t &msg)
{
#if AP_RADIO_ENABLED
mavlink_data96_t m;
mavlink_msg_data96_decode(&msg, &m);
switch (m.type) {
case 42:
case 43: {
// pass to AP_Radio (for firmware upload and playing test tunes)
AP_Radio *radio = AP_Radio::get_singleton();
if (radio != nullptr) {
radio->handle_data_packet(chan, m);
}
break;
}
default:
// unknown
break;
}
#endif
}
#if HAL_VISUALODOM_ENABLED
void GCS_MAVLINK::handle_vision_position_delta(const mavlink_message_t &msg)
{
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
visual_odom->handle_vision_position_delta_msg(msg);
}
void GCS_MAVLINK::handle_vision_position_estimate(const mavlink_message_t &msg)
{
mavlink_vision_position_estimate_t m;
mavlink_msg_vision_position_estimate_decode(&msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, m.covariance, m.reset_counter,
PAYLOAD_SIZE(chan, VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_global_vision_position_estimate(const mavlink_message_t &msg)
{
mavlink_global_vision_position_estimate_t m;
mavlink_msg_global_vision_position_estimate_decode(&msg, &m);
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, m.covariance, m.reset_counter,
PAYLOAD_SIZE(chan, GLOBAL_VISION_POSITION_ESTIMATE));
}
void GCS_MAVLINK::handle_vicon_position_estimate(const mavlink_message_t &msg)
{
mavlink_vicon_position_estimate_t m;
mavlink_msg_vicon_position_estimate_decode(&msg, &m);
// vicon position estimate does not include reset counter
handle_common_vision_position_estimate_data(m.usec, m.x, m.y, m.z, m.roll, m.pitch, m.yaw, m.covariance, 0,
PAYLOAD_SIZE(chan, VICON_POSITION_ESTIMATE));
}
/*
handle ODOMETRY message. This message combines position, velocity
and attitude data
*/
void GCS_MAVLINK::handle_odometry(const mavlink_message_t &msg)
{
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
mavlink_odometry_t m;
mavlink_msg_odometry_decode(&msg, &m);
if (m.frame_id != MAV_FRAME_LOCAL_FRD ||
m.child_frame_id != MAV_FRAME_BODY_FRD) {
// only support local FRD frame data
return;
}
Quaternion q{m.q[0],m.q[1],m.q[2],m.q[3]};
float posErr = 0;
float angErr = 0;
if (!isnan(m.pose_covariance[0])) {
posErr = cbrtf(sq(m.pose_covariance[0])+sq(m.pose_covariance[6])+sq(m.pose_covariance[11]));
angErr = cbrtf(sq(m.pose_covariance[15])+sq(m.pose_covariance[18])+sq(m.pose_covariance[20]));
}
const uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ODOMETRY));
visual_odom->handle_pose_estimate(m.time_usec, timestamp_ms, m.x, m.y, m.z, q, posErr, angErr, m.reset_counter, m.quality);
// convert velocity vector from FRD to NED frame
Vector3f vel{m.vx, m.vy, m.vz};
vel = q * vel;
visual_odom->handle_vision_speed_estimate(m.time_usec, timestamp_ms, vel, m.reset_counter, m.quality);
}
// there are several messages which all have identical fields in them.
// This function provides common handling for the data contained in
// these packets
void GCS_MAVLINK::handle_common_vision_position_estimate_data(const uint64_t usec,
const float x,
const float y,
const float z,
const float roll,
const float pitch,
const float yaw,
const float covariance[21],
const uint8_t reset_counter,
const uint16_t payload_size)
{
float posErr = 0;
float angErr = 0;
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(usec, payload_size);
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
if (!isnan(covariance[0])) {
posErr = cbrtf(sq(covariance[0])+sq(covariance[6])+sq(covariance[11]));
angErr = cbrtf(sq(covariance[15])+sq(covariance[18])+sq(covariance[20]));
}
visual_odom->handle_pose_estimate(usec, timestamp_ms, x, y, z, roll, pitch, yaw, posErr, angErr, reset_counter, 0);
}
void GCS_MAVLINK::handle_att_pos_mocap(const mavlink_message_t &msg)
{
mavlink_att_pos_mocap_t m;
mavlink_msg_att_pos_mocap_decode(&msg, &m);
// correct offboard timestamp to be in local ms since boot
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, ATT_POS_MOCAP));
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
// note: att_pos_mocap does not include reset counter
visual_odom->handle_pose_estimate(m.time_usec, timestamp_ms, m.x, m.y, m.z, m.q, 0, 0, 0, 0);
}
void GCS_MAVLINK::handle_vision_speed_estimate(const mavlink_message_t &msg)
{
AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom == nullptr) {
return;
}
mavlink_vision_speed_estimate_t m;
mavlink_msg_vision_speed_estimate_decode(&msg, &m);
const Vector3f vel = {m.x, m.y, m.z};
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(m.usec, PAYLOAD_SIZE(chan, VISION_SPEED_ESTIMATE));
visual_odom->handle_vision_speed_estimate(m.usec, timestamp_ms, vel, m.reset_counter, 0);
}
#endif // HAL_VISUALODOM_ENABLED
void GCS_MAVLINK::handle_command_ack(const mavlink_message_t &msg)
{
#if HAL_INS_ACCELCAL_ENABLED
mavlink_command_ack_t packet;
mavlink_msg_command_ack_decode(&msg, &packet);
AP_AccelCal *accelcal = AP::ins().get_acal();
if (accelcal != nullptr) {
accelcal->handle_command_ack(packet);
}
#endif
}
#if AP_RC_CHANNEL_ENABLED
// allow override of RC channel values for complete GCS
// control of switch position and RC PWM values.
void GCS_MAVLINK::handle_rc_channels_override(const mavlink_message_t &msg)
{
if(msg.sysid != sysid_my_gcs()) {
return; // Only accept control from our gcs
}
const uint32_t tnow = AP_HAL::millis();
mavlink_rc_channels_override_t packet;
mavlink_msg_rc_channels_override_decode(&msg, &packet);
const uint16_t override_data[] = {
packet.chan1_raw,
packet.chan2_raw,
packet.chan3_raw,
packet.chan4_raw,
packet.chan5_raw,
packet.chan6_raw,
packet.chan7_raw,
packet.chan8_raw,
packet.chan9_raw,
packet.chan10_raw,
packet.chan11_raw,
packet.chan12_raw,
packet.chan13_raw,
packet.chan14_raw,
packet.chan15_raw,
packet.chan16_raw
};
for (uint8_t i=0; i<8; i++) {
// Per MAVLink spec a value of UINT16_MAX means to ignore this field.
if (override_data[i] != UINT16_MAX) {
RC_Channels::set_override(i, override_data[i], tnow);
}
}
for (uint8_t i=8; i<ARRAY_SIZE(override_data); i++) {
// Per MAVLink spec a value of zero or UINT16_MAX means to
// ignore this field.
if (override_data[i] != 0 && override_data[i] != UINT16_MAX) {
// per the mavlink spec, a value of UINT16_MAX-1 means
// return the field to RC radio values:
const uint16_t value = override_data[i] == (UINT16_MAX-1) ? 0 : override_data[i];
RC_Channels::set_override(i, value, tnow);
}
}
gcs().sysid_myggcs_seen(tnow);
}
#endif // AP_RC_CHANNEL_ENABLED
#if AP_OPTICALFLOW_ENABLED
void GCS_MAVLINK::handle_optical_flow(const mavlink_message_t &msg)
{
AP_OpticalFlow *optflow = AP::opticalflow();
if (optflow == nullptr) {
return;
}
optflow->handle_msg(msg);
}
#endif
#if AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
/*
handle MAV_CMD_FIXED_MAG_CAL_YAW
*/
MAV_RESULT GCS_MAVLINK::handle_command_fixed_mag_cal_yaw(const mavlink_command_int_t &packet)
{
Compass &compass = AP::compass();
if (!compass.mag_cal_fixed_yaw(packet.param1,
uint8_t(packet.param2),
packet.param3,
packet.param4)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
#if COMPASS_CAL_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_mag_cal(const mavlink_command_int_t &packet)
{
return AP::compass().handle_mag_cal_command(packet);
}
#endif // COMPASS_CAL_ENABLED
#if HAL_CANMANAGER_ENABLED
/*
handle MAV_CMD_CAN_FORWARD
*/
MAV_RESULT GCS_MAVLINK::handle_can_forward(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
return AP::can().handle_can_forward(chan, packet, msg) ? MAV_RESULT_ACCEPTED : MAV_RESULT_FAILED;
}
/*
handle CAN_FRAME messages
*/
void GCS_MAVLINK::handle_can_frame(const mavlink_message_t &msg) const
{
AP::can().handle_can_frame(msg);
}
#endif // HAL_CANMANAGER_ENABLED
void GCS_MAVLINK::handle_distance_sensor(const mavlink_message_t &msg)
{
#if AP_RANGEFINDER_ENABLED
RangeFinder *rangefinder = AP::rangefinder();
if (rangefinder != nullptr) {
rangefinder->handle_msg(msg);
}
#endif
#if HAL_PROXIMITY_ENABLED
AP_Proximity *proximity = AP::proximity();
if (proximity != nullptr) {
proximity->handle_msg(msg);
}
#endif
}
#if HAL_PROXIMITY_ENABLED
void GCS_MAVLINK::handle_obstacle_distance(const mavlink_message_t &msg)
{
AP_Proximity *proximity = AP::proximity();
if (proximity != nullptr) {
proximity->handle_msg(msg);
}
}
void GCS_MAVLINK::handle_obstacle_distance_3d(const mavlink_message_t &msg)
{
AP_Proximity *proximity = AP::proximity();
if (proximity != nullptr) {
proximity->handle_msg(msg);
}
}
#endif
#if HAL_ADSB_ENABLED
void GCS_MAVLINK::handle_adsb_message(const mavlink_message_t &msg)
{
AP_ADSB *adsb = AP::ADSB();
if (adsb != nullptr) {
adsb->handle_message(chan, msg);
}
}
#endif
#if OSD_PARAM_ENABLED
void GCS_MAVLINK::handle_osd_param_config(const mavlink_message_t &msg) const
{
AP_OSD *osd = AP::osd();
if (osd != nullptr) {
osd->handle_msg(msg, *this);
}
}
#endif
void GCS_MAVLINK::handle_heartbeat(const mavlink_message_t &msg) const
{
// if the heartbeat is from our GCS then we don't failsafe for
// now...
if (msg.sysid == sysid_my_gcs()) {
gcs().sysid_myggcs_seen(AP_HAL::millis());
}
}
/*
handle messages which don't require vehicle specific data
*/
void GCS_MAVLINK::handle_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: {
handle_heartbeat(msg);
break;
}
case MAVLINK_MSG_ID_COMMAND_ACK: {
handle_command_ack(msg);
break;
}
case MAVLINK_MSG_ID_SETUP_SIGNING:
handle_setup_signing(msg);
break;
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
case MAVLINK_MSG_ID_PARAM_SET:
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
handle_common_param_message(msg);
break;
#if AP_AHRS_ENABLED
case MAVLINK_MSG_ID_SET_GPS_GLOBAL_ORIGIN:
handle_set_gps_global_origin(msg);
break;
#endif
#if AP_MAVLINK_MSG_DEVICE_OP_ENABLED
case MAVLINK_MSG_ID_DEVICE_OP_READ:
handle_device_op_read(msg);
break;
case MAVLINK_MSG_ID_DEVICE_OP_WRITE:
handle_device_op_write(msg);
break;
#endif
case MAVLINK_MSG_ID_TIMESYNC:
handle_timesync(msg);
break;
#if HAL_LOGGING_ENABLED
case MAVLINK_MSG_ID_LOG_REQUEST_LIST:
case MAVLINK_MSG_ID_LOG_REQUEST_DATA:
case MAVLINK_MSG_ID_LOG_ERASE:
case MAVLINK_MSG_ID_LOG_REQUEST_END:
case MAVLINK_MSG_ID_REMOTE_LOG_BLOCK_STATUS:
AP::logger().handle_mavlink_msg(*this, msg);
break;
#endif
#if AP_MAVLINK_FTP_ENABLED
case MAVLINK_MSG_ID_FILE_TRANSFER_PROTOCOL:
handle_file_transfer_protocol(msg);
break;
#endif
#if AP_CAMERA_ENABLED
case MAVLINK_MSG_ID_DIGICAM_CONTROL:
case MAVLINK_MSG_ID_GOPRO_HEARTBEAT: // heartbeat from a GoPro in Solo gimbal
case MAVLINK_MSG_ID_CAMERA_INFORMATION:
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
return;
}
camera->handle_message(chan, msg);
}
break;
#endif
case MAVLINK_MSG_ID_SET_MODE:
handle_set_mode(msg);
break;
#if AP_MAVLINK_AUTOPILOT_VERSION_REQUEST_ENABLED
case MAVLINK_MSG_ID_AUTOPILOT_VERSION_REQUEST:
handle_send_autopilot_version(msg);
break;
#endif
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST:
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST:
case MAVLINK_MSG_ID_MISSION_COUNT:
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL:
case MAVLINK_MSG_ID_MISSION_ITEM:
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
case MAVLINK_MSG_ID_MISSION_REQUEST:
case MAVLINK_MSG_ID_MISSION_ACK:
case MAVLINK_MSG_ID_MISSION_SET_CURRENT:
handle_common_mission_message(msg);
break;
case MAVLINK_MSG_ID_COMMAND_LONG:
handle_command_long(msg);
break;
case MAVLINK_MSG_ID_COMMAND_INT:
handle_command_int(msg);
break;
#if AC_POLYFENCE_FENCE_POINT_PROTOCOL_SUPPORT
case MAVLINK_MSG_ID_FENCE_POINT:
case MAVLINK_MSG_ID_FENCE_FETCH_POINT:
send_received_message_deprecation_warning("FENCE_FETCH_POINT");
handle_fence_message(msg);
break;
#endif
#if HAL_MOUNT_ENABLED
#if AP_MAVLINK_MSG_MOUNT_CONFIGURE_ENABLED
case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE
send_received_message_deprecation_warning("MOUNT_CONFIGURE");
handle_mount_message(msg);
break;
#endif
#if AP_MAVLINK_MSG_MOUNT_CONTROL_ENABLED
case MAVLINK_MSG_ID_MOUNT_CONTROL: // deprecated. Use MAV_CMD_DO_MOUNT_CONTROL
send_received_message_deprecation_warning("MOUNT_CONTROL");
handle_mount_message(msg);
break;
#endif
case MAVLINK_MSG_ID_GIMBAL_REPORT:
case MAVLINK_MSG_ID_GIMBAL_DEVICE_INFORMATION:
case MAVLINK_MSG_ID_GIMBAL_DEVICE_ATTITUDE_STATUS:
case MAVLINK_MSG_ID_GIMBAL_MANAGER_SET_ATTITUDE:
case MAVLINK_MSG_ID_GIMBAL_MANAGER_SET_PITCHYAW:
handle_mount_message(msg);
break;
#endif
case MAVLINK_MSG_ID_PARAM_VALUE:
handle_param_value(msg);
break;
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS:
handle_radio_status(msg);
break;
#if AP_MAVLINK_MSG_SERIAL_CONTROL_ENABLED
case MAVLINK_MSG_ID_SERIAL_CONTROL:
handle_serial_control(msg);
break;
#endif
#if AP_GPS_ENABLED
case MAVLINK_MSG_ID_GPS_RTCM_DATA:
case MAVLINK_MSG_ID_GPS_INPUT:
case MAVLINK_MSG_ID_GPS_INJECT_DATA:
AP::gps().handle_msg(chan, msg);
break;
#endif
case MAVLINK_MSG_ID_STATUSTEXT:
handle_statustext(msg);
break;
#if AP_NOTIFY_MAVLINK_LED_CONTROL_SUPPORT_ENABLED
case MAVLINK_MSG_ID_LED_CONTROL:
// send message to Notify
AP_Notify::handle_led_control(msg);
break;
#endif
#if AP_RC_CHANNEL_ENABLED
case MAVLINK_MSG_ID_MANUAL_CONTROL:
handle_manual_control(msg);
break;
#endif
#if AP_NOTIFY_MAVLINK_PLAY_TUNE_SUPPORT_ENABLED
case MAVLINK_MSG_ID_PLAY_TUNE:
// send message to Notify
AP_Notify::handle_play_tune(msg);
break;
#endif
#if AP_MAVLINK_RALLY_POINT_PROTOCOL_ENABLED
case MAVLINK_MSG_ID_RALLY_POINT:
case MAVLINK_MSG_ID_RALLY_FETCH_POINT:
send_received_message_deprecation_warning("RALLY_FETCH_POINT");
handle_common_rally_message(msg);
break;
#endif
case MAVLINK_MSG_ID_REQUEST_DATA_STREAM:
// only pass if override is not selected
if (!(_port->get_options() & _port->OPTION_NOSTREAMOVERRIDE)) {
handle_request_data_stream(msg);
}
break;
case MAVLINK_MSG_ID_DATA96:
handle_data_packet(msg);
break;
#if HAL_VISUALODOM_ENABLED
case MAVLINK_MSG_ID_VISION_POSITION_DELTA:
handle_vision_position_delta(msg);
break;
case MAVLINK_MSG_ID_VISION_POSITION_ESTIMATE:
handle_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_GLOBAL_VISION_POSITION_ESTIMATE:
handle_global_vision_position_estimate(msg);
break;
case MAVLINK_MSG_ID_VICON_POSITION_ESTIMATE:
handle_vicon_position_estimate(msg);
break;
case MAVLINK_MSG_ID_ODOMETRY:
handle_odometry(msg);
break;
case MAVLINK_MSG_ID_ATT_POS_MOCAP:
handle_att_pos_mocap(msg);
break;
case MAVLINK_MSG_ID_VISION_SPEED_ESTIMATE:
handle_vision_speed_estimate(msg);
break;
#endif // HAL_VISUALODOM_ENABLED
#if AP_RTC_ENABLED
case MAVLINK_MSG_ID_SYSTEM_TIME:
handle_system_time_message(msg);
break;
#endif
#if AP_RC_CHANNEL_ENABLED
case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE:
handle_rc_channels_override(msg);
break;
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
case MAVLINK_MSG_ID_RADIO_RC_CHANNELS:
handle_radio_rc_channels(msg);
break;
#endif
#endif
#if AP_OPTICALFLOW_ENABLED
case MAVLINK_MSG_ID_OPTICAL_FLOW:
handle_optical_flow(msg);
break;
#endif
case MAVLINK_MSG_ID_DISTANCE_SENSOR:
handle_distance_sensor(msg);
break;
#if HAL_PROXIMITY_ENABLED
case MAVLINK_MSG_ID_OBSTACLE_DISTANCE:
handle_obstacle_distance(msg);
break;
case MAVLINK_MSG_ID_OBSTACLE_DISTANCE_3D:
handle_obstacle_distance_3d(msg);
break;
#endif
#if OSD_PARAM_ENABLED
case MAVLINK_MSG_ID_OSD_PARAM_CONFIG:
case MAVLINK_MSG_ID_OSD_PARAM_SHOW_CONFIG:
handle_osd_param_config(msg);
break;
#endif
#if HAL_ADSB_ENABLED
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CONTROL:
handle_adsb_message(msg);
break;
#endif
case MAVLINK_MSG_ID_LANDING_TARGET:
handle_landing_target(msg);
break;
case MAVLINK_MSG_ID_NAMED_VALUE_FLOAT:
handle_named_value(msg);
break;
#if HAL_CANMANAGER_ENABLED
case MAVLINK_MSG_ID_CAN_FRAME:
case MAVLINK_MSG_ID_CANFD_FRAME:
handle_can_frame(msg);
break;
#endif
#if HAL_CANMANAGER_ENABLED
case MAVLINK_MSG_ID_CAN_FILTER_MODIFY:
AP::can().handle_can_filter_modify(msg);
break;
#endif
#if AP_OPENDRONEID_ENABLED
case MAVLINK_MSG_ID_OPEN_DRONE_ID_ARM_STATUS:
case MAVLINK_MSG_ID_OPEN_DRONE_ID_OPERATOR_ID:
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SELF_ID:
case MAVLINK_MSG_ID_OPEN_DRONE_ID_BASIC_ID:
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SYSTEM:
case MAVLINK_MSG_ID_OPEN_DRONE_ID_SYSTEM_UPDATE:
AP::opendroneid().handle_msg(chan, msg);
break;
#endif
#if AP_SIGNED_FIRMWARE
case MAVLINK_MSG_ID_SECURE_COMMAND:
case MAVLINK_MSG_ID_SECURE_COMMAND_REPLY:
AP_CheckFirmware::handle_msg(chan, msg);
break;
#endif
#if AP_EFI_MAV_ENABLED
case MAVLINK_MSG_ID_EFI_STATUS:
{
AP_EFI *efi = AP::EFI();
if (efi) {
efi->handle_EFI_message(msg);
}
break;
}
#endif
}
}
void GCS_MAVLINK::handle_common_mission_message(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_MISSION_WRITE_PARTIAL_LIST: // MAV ID: 38
{
handle_mission_write_partial_list(msg);
break;
}
// GCS has sent us a mission item, store to EEPROM
case MAVLINK_MSG_ID_MISSION_ITEM: // MAV ID: 39
case MAVLINK_MSG_ID_MISSION_ITEM_INT:
handle_mission_item(msg);
break;
// read an individual command from EEPROM and send it to the GCS
case MAVLINK_MSG_ID_MISSION_REQUEST_INT:
handle_mission_request_int(msg);
break;
#if AP_MAVLINK_MSG_MISSION_REQUEST_ENABLED
case MAVLINK_MSG_ID_MISSION_REQUEST:
handle_mission_request(msg);
break;
#endif
#if AP_MAVLINK_MISSION_SET_CURRENT_ENABLED
case MAVLINK_MSG_ID_MISSION_SET_CURRENT: // MAV ID: 41
{
AP_Mission *_mission = AP::mission();
if (_mission != nullptr) {
handle_mission_set_current(*_mission, msg);
}
break;
}
#endif
// GCS request the full list of commands, we return just the number and leave the GCS to then request each command individually
case MAVLINK_MSG_ID_MISSION_REQUEST_LIST: // MAV ID: 43
{
handle_mission_request_list(msg);
break;
}
// GCS provides the full number of commands it wishes to upload
// individual commands will then be sent from the GCS using the MAVLINK_MSG_ID_MISSION_ITEM message
case MAVLINK_MSG_ID_MISSION_COUNT: // MAV ID: 44
{
handle_mission_count(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_CLEAR_ALL: // MAV ID: 45
{
handle_mission_clear_all(msg);
break;
}
case MAVLINK_MSG_ID_MISSION_ACK:
/* not used */
break;
}
}
#if AP_MAVLINK_AUTOPILOT_VERSION_REQUEST_ENABLED
void GCS_MAVLINK::handle_send_autopilot_version(const mavlink_message_t &msg)
{
send_message(MSG_AUTOPILOT_VERSION);
}
#endif
void GCS_MAVLINK::send_banner()
{
// mark the firmware version in the tlog
const AP_FWVersion &fwver = AP::fwversion();
send_text(MAV_SEVERITY_INFO, "%s", fwver.fw_string);
if (fwver.middleware_name && fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s %s: %s",
fwver.middleware_name, fwver.middleware_hash_str,
fwver.os_name, fwver.os_hash_str);
} else if (fwver.os_name) {
send_text(MAV_SEVERITY_INFO, "%s: %s",
fwver.os_name, fwver.os_hash_str);
}
// send system ID if we can
char sysid[50];
if (hal.util->get_system_id(sysid)) {
send_text(MAV_SEVERITY_INFO, "%s", sysid);
}
// send MCUID if we can
#if HAL_WITH_IO_MCU
#define REVID_MASK 0xFFFF0000
#define DEVID_MASK 0xFFF
if (AP_BoardConfig::io_enabled()) {
uint32_t mcuid = iomcu.get_mcu_id();
send_text(MAV_SEVERITY_INFO, "IOMCU: %x %x %lx", uint16_t(mcuid & DEVID_MASK), uint16_t((mcuid & REVID_MASK) >> 16U),
iomcu.get_cpu_id());
}
#endif
// send RC output mode info if available
char banner_msg[50];
if (hal.rcout->get_output_mode_banner(banner_msg, sizeof(banner_msg))) {
send_text(MAV_SEVERITY_INFO, "%s", banner_msg);
}
#if AP_INERTIALSENSOR_ENABLED
// output any fast sampling status messages
for (uint8_t i = 0; i < INS_MAX_BACKENDS; i++) {
if (AP::ins().get_output_banner(i, banner_msg, sizeof(banner_msg))) {
send_text(MAV_SEVERITY_INFO, "%s", banner_msg);
}
}
#endif
}
#if AP_SIM_ENABLED
void GCS_MAVLINK::send_simstate() const
{
SITL::SIM *sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
sitl->simstate_send(get_chan());
}
void GCS_MAVLINK::send_sim_state() const
{
SITL::SIM *sitl = AP::sitl();
if (sitl == nullptr) {
return;
}
sitl->sim_state_send(get_chan());
}
#endif
#if AP_BOOTLOADER_FLASHING_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_flash_bootloader(const mavlink_command_int_t &packet)
{
if (packet.x != 290876) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Magic not set");
return MAV_RESULT_FAILED;
}
switch (hal.util->flash_bootloader()) {
case AP_HAL::Util::FlashBootloader::OK:
case AP_HAL::Util::FlashBootloader::NO_CHANGE:
// consider NO_CHANGE as success (so as not to display error to user)
return MAV_RESULT_ACCEPTED;
#if AP_SIGNED_FIRMWARE
case AP_HAL::Util::FlashBootloader::NOT_SIGNED:
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Bootloader not signed");
break;
#endif
default:
break;
}
return MAV_RESULT_FAILED;
}
#endif // AP_BOOTLOADER_FLASHING_ENABLED
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration_baro(const mavlink_message_t &msg)
{
// fast barometer calibration
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Updating barometer calibration");
AP::baro().update_calibration();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Barometer calibration complete");
#if AP_AIRSPEED_ENABLED
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed != nullptr) {
GCS_MAVLINK_InProgress *task = GCS_MAVLINK_InProgress::get_task(MAV_CMD_PREFLIGHT_CALIBRATION, GCS_MAVLINK_InProgress::Type::AIRSPEED_CAL, msg.sysid, msg.compid, chan);
if (task == nullptr) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
airspeed->calibrate(false);
return MAV_RESULT_IN_PROGRESS;
}
#endif
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::_handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
MAV_RESULT ret = MAV_RESULT_UNSUPPORTED;
EXPECT_DELAY_MS(30000);
if (is_equal(packet.param1,1.0f)) {
#if AP_INERTIALSENSOR_ENABLED
if (!AP::ins().calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
#else
return MAV_RESULT_UNSUPPORTED;
#endif
return MAV_RESULT_ACCEPTED;
}
if (is_equal(packet.param3,1.0f)) {
return _handle_command_preflight_calibration_baro(msg);
}
#if AP_RC_CHANNEL_ENABLED
rc().calibrating(is_positive(packet.param4));
#endif
#if HAL_INS_ACCELCAL_ENABLED
if (packet.x == 1) {
// start with gyro calibration
if (!AP::ins().calibrate_gyros()) {
return MAV_RESULT_FAILED;
}
// start accel cal
AP::ins().acal_init();
AP::ins().get_acal()->start(this);
return MAV_RESULT_ACCEPTED;
}
#endif
#if AP_INERTIALSENSOR_ENABLED
#if AP_AHRS_ENABLED
if (packet.x == 2) {
return AP::ins().calibrate_trim();
}
#endif
if (packet.x == 4) {
// simple accel calibration
return AP::ins().simple_accel_cal();
}
/*
allow GCS to force an existing calibration of accel and/or
compass to be written as valid. This is useful when reloading
parameters after a full parameter erase
*/
if (packet.x == 76) {
// force existing accel calibration to be accepted as valid
AP::ins().force_save_calibration();
ret = MAV_RESULT_ACCEPTED;
}
#endif // AP_INERTIALSENSOR_ENABLED
#if AP_COMPASS_ENABLED
if (is_equal(packet.param2,76.0f)) {
// force existing compass calibration to be accepted as valid
AP::compass().force_save_calibration();
ret = MAV_RESULT_ACCEPTED;
}
#endif
return ret;
}
MAV_RESULT GCS_MAVLINK::handle_command_preflight_calibration(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
if (hal.util->get_soft_armed()) {
// *preflight*, remember?
GCS_SEND_TEXT(MAV_SEVERITY_NOTICE, "Disarm to allow calibration");
return MAV_RESULT_FAILED;
}
// now call subclass methods:
return _handle_command_preflight_calibration(packet, msg);
}
#if AP_ARMING_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_run_prearm_checks(const mavlink_command_int_t &packet)
{
if (hal.util->get_soft_armed()) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
(void)AP::arming().pre_arm_checks(true);
return MAV_RESULT_ACCEPTED;
}
#endif // AP_ARMING_ENABLED
#if AP_MISSION_ENABLED
// changes the current waypoint; at time of writing GCS
// implementations use the mavlink message MISSION_SET_CURRENT to set
// the current waypoint, rather than this DO command. It is hoped we
// can move to this command in the future to avoid acknowledgement
// issues with MISSION_SET_CURRENT
MAV_RESULT GCS_MAVLINK::handle_command_do_set_mission_current(const mavlink_command_int_t &packet)
{
AP_Mission *mission = AP::mission();
if (mission == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
const uint32_t seq = (uint32_t)packet.param1;
if (!mission->is_valid_index(seq)) {
return MAV_RESULT_DENIED;
}
// From https://mavlink.io/en/messages/common.html#MAV_CMD_DO_SET_MISSION_CURRENT:
// Param 2: Reset Mission
// - Resets mission. 1: true, 0: false. Resets jump counters to initial values
// and changes mission state "completed" to be "active" or "paused".
const bool reset_and_restart = is_equal(packet.param2, 1.0f);
if (reset_and_restart) {
mission->reset();
}
if (!mission->set_current_cmd(seq)) {
return MAV_RESULT_FAILED;
}
if (reset_and_restart) {
mission->resume();
}
// volunteer the new current waypoint for all listeners
send_message(MSG_CURRENT_WAYPOINT);
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK::handle_command_do_jump_tag(const mavlink_command_int_t &packet)
{
AP_Mission *mission = AP::mission();
if (mission == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
const uint32_t tag = (uint32_t)packet.param1;
if (tag > UINT16_MAX) {
return MAV_RESULT_DENIED;
}
if (!mission->jump_to_tag(tag)) {
return MAV_RESULT_FAILED;
}
// volunteer the new current waypoint for all listeners
send_message(MSG_CURRENT_WAYPOINT);
return MAV_RESULT_ACCEPTED;
}
#endif
#if AP_BATTERY_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_battery_reset(const mavlink_command_int_t &packet)
{
const uint16_t battery_mask = packet.param1;
const float percentage = packet.param2;
if (AP::battery().reset_remaining_mask(battery_mask, percentage)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#endif
#if AP_MAVLINK_MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_request_autopilot_capabilities(const mavlink_command_int_t &packet)
{
if (!is_equal(packet.param1,1.0f)) {
return MAV_RESULT_FAILED;
}
send_message(MSG_AUTOPILOT_VERSION);
return MAV_RESULT_ACCEPTED;
}
#endif
MAV_RESULT GCS_MAVLINK::handle_command_do_set_mode(const mavlink_command_int_t &packet)
{
const MAV_MODE _base_mode = (MAV_MODE)packet.param1;
const uint32_t _custom_mode = (uint32_t)packet.param2;
return _set_mode_common(_base_mode, _custom_mode);
}
#if AP_AHRS_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_get_home_position(const mavlink_command_int_t &packet)
{
if (!AP::ahrs().home_is_set()) {
return MAV_RESULT_FAILED;
}
if (!try_send_message(MSG_HOME)) {
// try again later
send_message(MSG_HOME);
}
if (!try_send_message(MSG_ORIGIN)) {
// try again later
send_message(MSG_ORIGIN);
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_AHRS_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_debug_trap(const mavlink_command_int_t &packet)
{
// magic number must be supplied to trap; you must *really* mean it.
if (uint32_t(packet.param1) != 32451) {
return MAV_RESULT_DENIED;
}
if (hal.util->trap()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_UNSUPPORTED;
}
#if AP_AHRS_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_set_ekf_source_set(const mavlink_command_int_t &packet)
{
// source set must be between 1 and 3
uint32_t source_set = uint32_t(packet.param1);
if ((source_set >= 1) && (source_set <= 3)) {
// mavlink command uses range 1 to 3 while ahrs interface accepts 0 to 2
AP::ahrs().set_posvelyaw_source_set((AP_NavEKF_Source::SourceSetSelection)(source_set-1));
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_DENIED;
}
#endif
#if AP_GRIPPER_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_gripper(const mavlink_command_int_t &packet)
{
AP_Gripper &gripper = AP::gripper();
// param1 : gripper number (ignored)
// param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum.
if(!gripper.enabled()) {
return MAV_RESULT_FAILED;
}
MAV_RESULT result = MAV_RESULT_ACCEPTED;
switch ((uint8_t)packet.param2) {
case GRIPPER_ACTION_RELEASE:
gripper.release();
break;
case GRIPPER_ACTION_GRAB:
gripper.grab();
break;
default:
result = MAV_RESULT_FAILED;
break;
}
return result;
}
#endif // AP_GRIPPER_ENABLED
#if HAL_SPRAYER_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_sprayer(const mavlink_command_int_t &packet)
{
AC_Sprayer *sprayer = AP::sprayer();
if (sprayer == nullptr) {
return MAV_RESULT_FAILED;
}
if (is_equal(packet.param1, 1.0f)) {
sprayer->run(true);
} else if (is_zero(packet.param1)) {
sprayer->run(false);
}
return MAV_RESULT_ACCEPTED;
}
#endif
#if AP_LANDINGGEAR_ENABLED
/*
handle MAV_CMD_AIRFRAME_CONFIGURATION for landing gear control
*/
MAV_RESULT GCS_MAVLINK::handle_command_airframe_configuration(const mavlink_command_int_t &packet)
{
// Param 1: Select which gear, not used in ArduPilot
// Param 2: 0 = Deploy, 1 = Retract
// For safety, anything other than 1 will deploy
AP_LandingGear *lg = AP_LandingGear::get_singleton();
if (lg == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
switch ((uint8_t)packet.param2) {
case 1:
lg->set_position(AP_LandingGear::LandingGear_Retract);
return MAV_RESULT_ACCEPTED;
default:
lg->set_position(AP_LandingGear::LandingGear_Deploy);
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
#endif
#if HAL_INS_ACCELCAL_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_accelcal_vehicle_pos(const mavlink_command_int_t &packet)
{
if (AP::ins().get_acal() == nullptr ||
!AP::ins().get_acal()->gcs_vehicle_position(packet.param1)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // HAL_INS_ACCELCAL_ENABLED
#if HAL_MOUNT_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_mount(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
return mount->handle_command(packet, msg);
}
#endif // HAL_MOUNT_ENABLED
#if AP_ARMING_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_component_arm_disarm(const mavlink_command_int_t &packet)
{
if (is_equal(packet.param1,1.0f)) {
if (AP::arming().is_armed()) {
return MAV_RESULT_ACCEPTED;
}
// run pre_arm_checks and arm_checks and display failures
const bool do_arming_checks = !is_equal(packet.param2,magic_force_arm_value) && !is_equal(packet.param2,magic_force_arm_disarm_value);
if (AP::arming().arm(AP_Arming::Method::MAVLINK, do_arming_checks)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
if (is_zero(packet.param1)) {
if (!AP::arming().is_armed()) {
return MAV_RESULT_ACCEPTED;
}
const bool forced = is_equal(packet.param2, magic_force_arm_disarm_value);
// note disarm()'s second parameter is "do_disarm_checks"
if (AP::arming().disarm(AP_Arming::Method::MAVLINK, !forced)) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
}
return MAV_RESULT_UNSUPPORTED;
}
#endif // AP_ARMING_ENABLED
bool GCS_MAVLINK::location_from_command_t(const mavlink_command_int_t &in, Location &out)
{
if (!command_long_stores_location((MAV_CMD)in.command)) {
return false;
}
// integer storage imposes limits on the altitudes we can accept:
if (isnan(in.z) || fabsf(in.z) > LOCATION_ALT_MAX_M) {
return false;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)in.frame, frame)) {
// unknown coordinate frame
return false;
}
out.lat = in.x;
out.lng = in.y;
out.set_alt_m(in.z, frame);
return true;
}
bool GCS_MAVLINK::command_long_stores_location(const MAV_CMD command)
{
switch(command) {
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_DO_SET_ROI:
case MAV_CMD_DO_SET_ROI_LOCATION:
// case MAV_CMD_NAV_TAKEOFF: // technically yes, but we don't do lat/lng
// case MAV_CMD_NAV_VTOL_TAKEOFF:
case MAV_CMD_DO_REPOSITION:
case MAV_CMD_EXTERNAL_POSITION_ESTIMATE:
return true;
default:
return false;
}
return false;
}
#if AP_MAVLINK_COMMAND_LONG_ENABLED
// when conveyed via COMMAND_LONG, a command doesn't come with an
// explicit frame. When conveying a location they do have an assumed
// frame in ArduPilot, and this function returns that frame.
bool GCS_MAVLINK::mav_frame_for_command_long(MAV_FRAME &frame, MAV_CMD packet_command) const
{
static const struct {
uint32_t command;
MAV_FRAME frame;
} frame_map[] {
{ MAV_CMD_FIXED_MAG_CAL_YAW, MAV_FRAME_GLOBAL_RELATIVE_ALT },
{ MAV_CMD_DO_SET_ROI, MAV_FRAME_GLOBAL_RELATIVE_ALT },
{ MAV_CMD_DO_SET_ROI_LOCATION, MAV_FRAME_GLOBAL_RELATIVE_ALT },
{ MAV_CMD_DO_SET_HOME, MAV_FRAME_GLOBAL },
};
// map from command to frame:
for (const auto &map : frame_map) {
if (map.command != packet_command) {
continue;
}
frame = map.frame;
return true;
}
return false;
}
MAV_RESULT GCS_MAVLINK::try_command_long_as_command_int(const mavlink_command_long_t &packet, const mavlink_message_t &msg)
{
MAV_FRAME frame = MAV_FRAME_GLOBAL_RELATIVE_ALT;
if (command_long_stores_location((MAV_CMD)packet.command)) {
// we must be able to supply a frame for the location:
if (!mav_frame_for_command_long(frame, (MAV_CMD)packet.command)) {
return MAV_RESULT_UNSUPPORTED;
}
}
// convert and run the command
mavlink_command_int_t command_int;
convert_COMMAND_LONG_to_COMMAND_INT(packet, command_int, frame);
return handle_command_int_packet(command_int, msg);
}
// returns a value suitable for COMMAND_INT.x or y based on a value
// coming in from COMMAND_LONG.p5 or p6:
static int32_t convert_COMMAND_LONG_loc_param(float param, bool stores_location)
{
if (isnan(param)) {
return 0;
}
if (stores_location) {
return param *1e7;
}
return param;
}
void GCS_MAVLINK::convert_COMMAND_LONG_to_COMMAND_INT(const mavlink_command_long_t &in, mavlink_command_int_t &out, MAV_FRAME frame)
{
out = {};
out.target_system = in.target_system;
out.target_component = in.target_component;
out.frame = frame;
out.command = in.command;
out.current = 0;
out.autocontinue = 0;
out.param1 = in.param1;
out.param2 = in.param2;
out.param3 = in.param3;
out.param4 = in.param4;
const bool stores_location = command_long_stores_location((MAV_CMD)in.command);
out.x = convert_COMMAND_LONG_loc_param(in.param5, stores_location);
out.y = convert_COMMAND_LONG_loc_param(in.param6, stores_location);
out.z = in.param7;
}
void GCS_MAVLINK::handle_command_long(const mavlink_message_t &msg)
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(&msg, &packet);
#if AP_SCRIPTING_ENABLED
AP_Scripting *scripting = AP_Scripting::get_singleton();
if (scripting != nullptr && scripting->is_handling_command(packet.command)) {
// Scripting has registered to receive this command, do not procces it internaly
return;
}
#endif
hal.util->persistent_data.last_mavlink_cmd = packet.command;
const MAV_RESULT result = try_command_long_as_command_int(packet, msg);
// send ACK or NAK
mavlink_msg_command_ack_send(chan, packet.command, result,
0, 0,
msg.sysid,
msg.compid);
#if HAL_LOGGING_ENABLED
// log the packet:
mavlink_command_int_t packet_int;
convert_COMMAND_LONG_to_COMMAND_INT(packet, packet_int);
AP::logger().Write_Command(packet_int, msg.sysid, msg.compid, result, true);
#endif
hal.util->persistent_data.last_mavlink_cmd = 0;
}
#else
void GCS_MAVLINK::handle_command_long(const mavlink_message_t &msg)
{
// decode packet
mavlink_command_long_t packet;
mavlink_msg_command_long_decode(&msg, &packet);
// send ACK or NAK
mavlink_msg_command_ack_send(
chan,
packet.command,
MAV_RESULT_COMMAND_INT_ONLY,
0,
0,
msg.sysid,
msg.compid
);
}
#endif // AP_MAVLINK_COMMAND_LONG_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const Location &roi_loc)
{
#if HAL_MOUNT_ENABLED
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
// sanity check location
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
if (roi_loc.lat == 0 && roi_loc.lng == 0 && roi_loc.alt == 0) {
mount->clear_roi_target();
} else {
mount->set_roi_target(roi_loc);
}
return MAV_RESULT_ACCEPTED;
#else
return MAV_RESULT_UNSUPPORTED;
#endif
}
void GCS_MAVLINK::handle_landing_target(const mavlink_message_t &msg)
{
mavlink_landing_target_t m;
mavlink_msg_landing_target_decode(&msg, &m);
// correct offboard timestamp
const uint32_t corrected_ms = correct_offboard_timestamp_usec_to_ms(m.time_usec, PAYLOAD_SIZE(chan, LANDING_TARGET));
handle_landing_target(m, corrected_ms);
}
#if AP_HOME_ENABLED
bool GCS_MAVLINK::set_home_to_current_location(bool _lock)
{
#if AP_VEHICLE_ENABLED
return AP::vehicle()->set_home_to_current_location(_lock);
#else
return false;
#endif
}
bool GCS_MAVLINK::set_home(const Location& loc, bool _lock) {
#if AP_VEHICLE_ENABLED
return AP::vehicle()->set_home(loc, _lock);
#else
return false;
#endif
}
#endif // AP_HOME_ENABLED
#if AP_HOME_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_set_home(const mavlink_command_int_t &packet)
{
if (is_equal(packet.param1, 1.0f) || (packet.x == 0 && packet.y == 0)) {
// param1 is 1 (or both lat and lon are zero); use current location
if (!set_home_to_current_location(true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
// ensure param1 is zero
if (!is_zero(packet.param1)) {
return MAV_RESULT_FAILED;
}
Location new_home_loc;
if (!location_from_command_t(packet, new_home_loc)) {
return MAV_RESULT_DENIED;
}
if (!set_home(new_home_loc, true)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_HOME_ENABLED
#if AP_AHRS_POSITION_RESET_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_int_external_position_estimate(const mavlink_command_int_t &packet)
{
if ((packet.frame != MAV_FRAME_GLOBAL && packet.frame != MAV_FRAME_GLOBAL_INT) ||
!isnan(packet.z)) {
// we only support global frame without altitude
return MAV_RESULT_DENIED;
}
// cope with the NaN when convering to Location
Location loc;
mavlink_command_int_t p2 = packet;
p2.z = 0;
if (!location_from_command_t(p2, loc)) {
return MAV_RESULT_DENIED;
}
uint32_t timestamp_ms = correct_offboard_timestamp_usec_to_ms(uint64_t(p2.param1*1e6), PAYLOAD_SIZE(chan, COMMAND_INT));
const uint32_t processing_ms = p2.param2*1e3;
const float pos_accuracy = p2.param3;
if (timestamp_ms > processing_ms) {
timestamp_ms -= processing_ms;
}
if (!AP::ahrs().handle_external_position_estimate(loc, pos_accuracy, timestamp_ms)) {
return MAV_RESULT_FAILED;
}
return MAV_RESULT_ACCEPTED;
}
#endif // AP_AHRS_POSITION_RESET_ENABLED
#if AP_AHRS_EXTERNAL_WIND_ESTIMATE_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_int_external_wind_estimate(const mavlink_command_int_t &packet)
{
if (packet.param1 < 0) {
return MAV_RESULT_DENIED;
}
if (packet.param3 < 0 || packet.param3 > 360) {
return MAV_RESULT_DENIED;
}
AP::ahrs().set_external_wind_estimate(packet.param1, packet.param3);
return MAV_RESULT_ACCEPTED;
}
#endif // AP_AHRS_EXTERNAL_WIND_ESTIMATE_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_do_set_roi(const mavlink_command_int_t &packet)
{
// be aware that this method is called for both MAV_CMD_DO_SET_ROI
// and MAV_CMD_DO_SET_ROI_LOCATION. If you intend to support any
// of the extra fields in the former then you will need to split
// off support for MAV_CMD_DO_SET_ROI_LOCATION (which doesn't
// support the extra fields).
// param1 : /* Region of interest mode (not used)*/
// param2 : /* MISSION index/ target ID (not used)*/
// param3 : /* ROI index (not used)*/
// param4 : /* empty */
// x : lat
// y : lon
// z : alt
Location roi_loc;
if (!location_from_command_t(packet, roi_loc)) {
return MAV_RESULT_DENIED;
}
return handle_command_do_set_roi(roi_loc);
}
#if AP_FILESYSTEM_FORMAT_ENABLED
MAV_RESULT GCS_MAVLINK::handle_command_storage_format(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
if (!is_equal(packet.param1, 1.0f) ||
!is_equal(packet.param2, 1.0f)) {
return MAV_RESULT_UNSUPPORTED;
}
GCS_MAVLINK_InProgress *task = GCS_MAVLINK_InProgress::get_task(MAV_CMD_STORAGE_FORMAT, GCS_MAVLINK_InProgress::Type::SD_FORMAT, msg.sysid, msg.compid, chan);
if (task == nullptr) {
return MAV_RESULT_TEMPORARILY_REJECTED;
}
if (!AP::FS().format()) {
task->abort();
return MAV_RESULT_FAILED;
}
return MAV_RESULT_IN_PROGRESS;
}
#endif
MAV_RESULT GCS_MAVLINK::handle_do_set_safety_switch_state(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch ((SAFETY_SWITCH_STATE)packet.param1) {
case SAFETY_SWITCH_STATE_DANGEROUS:
// turn safety off (pwm outputs flow to the motors)
hal.rcout->force_safety_off();
return MAV_RESULT_ACCEPTED;
case SAFETY_SWITCH_STATE_SAFE:
// turn safety on (no pwm outputs to the motors)
if (hal.rcout->force_safety_on()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
default:
return MAV_RESULT_DENIED;
}
}
MAV_RESULT GCS_MAVLINK::handle_command_int_packet(const mavlink_command_int_t &packet, const mavlink_message_t &msg)
{
switch (packet.command) {
#if HAL_INS_ACCELCAL_ENABLED
case MAV_CMD_ACCELCAL_VEHICLE_POS:
return handle_command_accelcal_vehicle_pos(packet);
#endif
#if AP_LANDINGGEAR_ENABLED
case MAV_CMD_AIRFRAME_CONFIGURATION:
return handle_command_airframe_configuration(packet);
#endif
#if AP_BATTERY_ENABLED
case MAV_CMD_BATTERY_RESET:
return handle_command_battery_reset(packet);
#endif
#if HAL_CANMANAGER_ENABLED
case MAV_CMD_CAN_FORWARD:
return handle_can_forward(packet, msg);
#endif
#if HAL_HIGH_LATENCY2_ENABLED
case MAV_CMD_CONTROL_HIGH_LATENCY:
return handle_control_high_latency(packet);
#endif // HAL_HIGH_LATENCY2_ENABLED
case MAV_CMD_DEBUG_TRAP:
return handle_command_debug_trap(packet);
#if HAL_ADSB_ENABLED
case MAV_CMD_DO_ADSB_OUT_IDENT:
if ((AP::ADSB() != nullptr) && AP::ADSB()->ident_start()) {
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
#endif
#if AP_RC_CHANNEL_ENABLED
case MAV_CMD_DO_AUX_FUNCTION:
return handle_command_do_aux_function(packet);
#endif
#if AP_FENCE_ENABLED
case MAV_CMD_DO_FENCE_ENABLE:
return handle_command_do_fence_enable(packet);
#endif
case MAV_CMD_DO_FLIGHTTERMINATION:
return handle_flight_termination(packet);
#if AP_GRIPPER_ENABLED
case MAV_CMD_DO_GRIPPER:
return handle_command_do_gripper(packet);
#endif
#if AP_MISSION_ENABLED
case MAV_CMD_DO_JUMP_TAG:
return handle_command_do_jump_tag(packet);
case MAV_CMD_DO_SET_MISSION_CURRENT:
return handle_command_do_set_mission_current(packet);
#endif
case MAV_CMD_DO_SET_MODE:
return handle_command_do_set_mode(packet);
#if HAL_SPRAYER_ENABLED
case MAV_CMD_DO_SPRAYER:
return handle_command_do_sprayer(packet);
#endif
#if AP_CAMERA_ENABLED
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
case MAV_CMD_SET_CAMERA_ZOOM:
case MAV_CMD_SET_CAMERA_FOCUS:
case MAV_CMD_SET_CAMERA_SOURCE:
case MAV_CMD_IMAGE_START_CAPTURE:
case MAV_CMD_IMAGE_STOP_CAPTURE:
case MAV_CMD_CAMERA_TRACK_POINT:
case MAV_CMD_CAMERA_TRACK_RECTANGLE:
case MAV_CMD_CAMERA_STOP_TRACKING:
case MAV_CMD_VIDEO_START_CAPTURE:
case MAV_CMD_VIDEO_STOP_CAPTURE:
return handle_command_camera(packet);
#endif
case MAV_CMD_DO_SET_ROI_NONE: {
const Location zero_loc;
return handle_command_do_set_roi(zero_loc);
}
case MAV_CMD_DO_SET_ROI:
case MAV_CMD_DO_SET_ROI_LOCATION:
return handle_command_do_set_roi(packet);
#if HAL_MOUNT_ENABLED
case MAV_CMD_DO_SET_ROI_SYSID:
case MAV_CMD_DO_MOUNT_CONFIGURE:
case MAV_CMD_DO_MOUNT_CONTROL:
case MAV_CMD_DO_GIMBAL_MANAGER_PITCHYAW:
case MAV_CMD_DO_GIMBAL_MANAGER_CONFIGURE:
return handle_command_mount(packet, msg);
#endif // HAL_MOUNT_ENABLED
case MAV_CMD_DO_SEND_BANNER:
send_banner();
return MAV_RESULT_ACCEPTED;
#if AP_HOME_ENABLED
case MAV_CMD_DO_SET_HOME:
return handle_command_do_set_home(packet);
#endif
#if AP_AHRS_POSITION_RESET_ENABLED
case MAV_CMD_EXTERNAL_POSITION_ESTIMATE:
return handle_command_int_external_position_estimate(packet);
#endif
#if AP_AHRS_EXTERNAL_WIND_ESTIMATE_ENABLED
case MAV_CMD_EXTERNAL_WIND_ESTIMATE:
return handle_command_int_external_wind_estimate(packet);
#endif
#if AP_ARMING_ENABLED
case MAV_CMD_COMPONENT_ARM_DISARM:
return handle_command_component_arm_disarm(packet);
#endif
#if AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
case MAV_CMD_FIXED_MAG_CAL_YAW:
return handle_command_fixed_mag_cal_yaw(packet);
#endif
#if COMPASS_CAL_ENABLED
case MAV_CMD_DO_START_MAG_CAL:
case MAV_CMD_DO_ACCEPT_MAG_CAL:
case MAV_CMD_DO_CANCEL_MAG_CAL:
return handle_command_mag_cal(packet);
#endif
#if AP_BOOTLOADER_FLASHING_ENABLED
case MAV_CMD_FLASH_BOOTLOADER:
return handle_command_flash_bootloader(packet);
#endif
#if AP_AHRS_ENABLED
case MAV_CMD_GET_HOME_POSITION:
return handle_command_get_home_position(packet);
#endif
case MAV_CMD_PREFLIGHT_CALIBRATION:
return handle_command_preflight_calibration(packet, msg);
case MAV_CMD_PREFLIGHT_STORAGE:
if (is_equal(packet.param1, 2.0f)) {
AP_Param::erase_all();
send_text(MAV_SEVERITY_WARNING, "All parameters reset, reboot board");
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_DENIED;
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN:
return handle_preflight_reboot(packet, msg);
case MAV_CMD_DO_SET_SAFETY_SWITCH_STATE:
return handle_do_set_safety_switch_state(packet, msg);
#if AP_MAVLINK_SERVO_RELAY_ENABLED
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_RELAY:
return handle_servorelay_message(packet);
#endif
#if AP_MAVLINK_MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES_ENABLED
case MAV_CMD_REQUEST_AUTOPILOT_CAPABILITIES:
return handle_command_request_autopilot_capabilities(packet);
#endif
#if AP_ARMING_ENABLED
case MAV_CMD_RUN_PREARM_CHECKS:
return handle_command_run_prearm_checks(packet);
#endif
#if AP_SCRIPTING_ENABLED
case MAV_CMD_SCRIPTING:
{
AP_Scripting *scripting = AP_Scripting::get_singleton();
if (scripting == nullptr) {
return MAV_RESULT_UNSUPPORTED;
}
return scripting->handle_command_int_packet(packet);
}
#endif // AP_SCRIPTING_ENABLED
#if AP_AHRS_ENABLED
case MAV_CMD_SET_EKF_SOURCE_SET:
return handle_command_set_ekf_source_set(packet);
#endif
#if AP_RC_CHANNEL_ENABLED
case MAV_CMD_START_RX_PAIR:
return handle_START_RX_PAIR(packet);
#endif
#if AP_FILESYSTEM_FORMAT_ENABLED
case MAV_CMD_STORAGE_FORMAT:
return handle_command_storage_format(packet, msg);
#endif
// support for dealing with streamrate for a specific message and
// requesting a message instance:
case MAV_CMD_SET_MESSAGE_INTERVAL:
return handle_command_set_message_interval(packet);
case MAV_CMD_GET_MESSAGE_INTERVAL:
return handle_command_get_message_interval(packet);
case MAV_CMD_REQUEST_MESSAGE:
return handle_command_request_message(packet);
}
return MAV_RESULT_UNSUPPORTED;
}
void GCS_MAVLINK::handle_command_int(const mavlink_message_t &msg)
{
// decode packet
mavlink_command_int_t packet;
mavlink_msg_command_int_decode(&msg, &packet);
#if AP_SCRIPTING_ENABLED
AP_Scripting *scripting = AP_Scripting::get_singleton();
if (scripting != nullptr && scripting->is_handling_command(packet.command)) {
// Scripting has registered to receive this command, do not procces it internaly
return;
}
#endif
hal.util->persistent_data.last_mavlink_cmd = packet.command;
const MAV_RESULT result = handle_command_int_packet(packet, msg);
// send ACK or NAK
mavlink_msg_command_ack_send(chan, packet.command, result,
0, 0,
msg.sysid,
msg.compid);
#if HAL_LOGGING_ENABLED
AP::logger().Write_Command(packet, msg.sysid, msg.compid, result);
#endif
hal.util->persistent_data.last_mavlink_cmd = 0;
}
void GCS::try_send_queued_message_for_type(MAV_MISSION_TYPE type) const {
MissionItemProtocol *prot = get_prot_for_mission_type(type);
if (prot == nullptr) {
return;
}
prot->queued_request_send();
}
bool GCS_MAVLINK::try_send_mission_message(const enum ap_message id)
{
switch (id) {
#if AP_MISSION_ENABLED
case MSG_CURRENT_WAYPOINT:
{
CHECK_PAYLOAD_SIZE(MISSION_CURRENT);
AP_Mission *mission = AP::mission();
if (mission != nullptr) {
send_mission_current(*mission, mission->get_current_nav_index());
}
break;
}
case MSG_MISSION_ITEM_REACHED:
CHECK_PAYLOAD_SIZE(MISSION_ITEM_REACHED);
mavlink_msg_mission_item_reached_send(chan, mission_item_reached_index);
break;
case MSG_NEXT_MISSION_REQUEST_WAYPOINTS:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_MISSION);
break;
#endif
#if HAL_RALLY_ENABLED
case MSG_NEXT_MISSION_REQUEST_RALLY:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_RALLY);
break;
#endif
#if AP_FENCE_ENABLED
case MSG_NEXT_MISSION_REQUEST_FENCE:
CHECK_PAYLOAD_SIZE(MISSION_REQUEST);
gcs().try_send_queued_message_for_type(MAV_MISSION_TYPE_FENCE);
break;
#endif
default:
break;
}
return true;
}
void GCS_MAVLINK::send_hwstatus()
{
mavlink_msg_hwstatus_send(
chan,
hal.analogin->board_voltage()*1000,
0);
}
#if AP_RPM_ENABLED
void GCS_MAVLINK::send_rpm() const
{
AP_RPM *rpm = AP::rpm();
if (rpm == nullptr) {
return;
}
if (!rpm->enabled(0) && !rpm->enabled(1)) {
return;
}
float rpm1 = -1, rpm2 = -1;
rpm->get_rpm(0, rpm1);
rpm->get_rpm(1, rpm2);
mavlink_msg_rpm_send(
chan,
rpm1,
rpm2);
}
#endif // AP_RPM_ENABLED
void GCS_MAVLINK::send_sys_status()
{
// send extended status only once vehicle has been initialised
// to avoid unnecessary errors being reported to user
if (!gcs().vehicle_initialised()) {
return;
}
#if AP_BATTERY_ENABLED
const AP_BattMonitor &battery = AP::battery();
float battery_current;
const int8_t battery_remaining = battery_remaining_pct(AP_BATT_PRIMARY_INSTANCE);
if (battery.healthy() && battery.current_amps(battery_current)) {
battery_current = constrain_float(battery_current * 100,-INT16_MAX,INT16_MAX);
} else {
battery_current = -1;
}
#endif
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
gcs().get_sensor_status_flags(control_sensors_present, control_sensors_enabled, control_sensors_health);
const uint32_t errors = AP::internalerror().errors();
const uint16_t errors1 = errors & 0xffff;
const uint16_t errors2 = (errors>>16) & 0xffff;
const uint16_t errors4 = AP::internalerror().count() & 0xffff;
mavlink_msg_sys_status_send(
chan,
control_sensors_present,
control_sensors_enabled,
control_sensors_health,
#if AP_SCHEDULER_ENABLED
static_cast<uint16_t>(AP::scheduler().load_average() * 1000),
#else
0,
#endif
#if AP_BATTERY_ENABLED
battery.gcs_voltage() * 1000, // mV
battery_current, // in 10mA units
battery_remaining, // in %
#else
0,
-1,
-1,
#endif
0, // comm drops %,
0, // comm drops in pkts,
errors1,
errors2,
0, // errors3
errors4); // errors4
}
void GCS_MAVLINK::send_extended_sys_state() const
{
mavlink_msg_extended_sys_state_send(chan, vtol_state(), landed_state());
}
void GCS_MAVLINK::send_attitude() const
{
#if AP_AHRS_ENABLED
const AP_AHRS &ahrs = AP::ahrs();
const Vector3f omega = ahrs.get_gyro();
mavlink_msg_attitude_send(
chan,
AP_HAL::millis(),
ahrs.get_roll(),
ahrs.get_pitch(),
ahrs.get_yaw(),
omega.x,
omega.y,
omega.z);
#endif
}
void GCS_MAVLINK::send_attitude_quaternion() const
{
#if AP_AHRS_ENABLED
const AP_AHRS &ahrs = AP::ahrs();
Quaternion quat;
if (!ahrs.get_quaternion(quat)) {
return;
}
const Vector3f omega = ahrs.get_gyro();
const float repr_offseq_q[] {0,0,0,0}; // unused, but probably should correspond to the AHRS view?
mavlink_msg_attitude_quaternion_send(
chan,
AP_HAL::millis(),
quat.q1,
quat.q2,
quat.q3,
quat.q4,
omega.x, // rollspeed
omega.y, // pitchspeed
omega.z, // yawspeed
repr_offseq_q
);
#endif
}
int32_t GCS_MAVLINK::global_position_int_alt() const {
return global_position_current_loc.alt * 10UL;
}
int32_t GCS_MAVLINK::global_position_int_relative_alt() const {
#if AP_AHRS_ENABLED
float posD;
AP::ahrs().get_relative_position_D_home(posD);
posD *= -1000.0f; // change from down to up and metres to millimeters
return posD;
#else
return 0;
#endif
}
void GCS_MAVLINK::send_global_position_int()
{
#if AP_AHRS_ENABLED
AP_AHRS &ahrs = AP::ahrs();
UNUSED_RESULT(ahrs.get_location(global_position_current_loc)); // return value ignored; we send stale data
Vector3f vel;
if (!ahrs.get_velocity_NED(vel)) {
vel.zero();
}
mavlink_msg_global_position_int_send(
chan,
AP_HAL::millis(),
global_position_current_loc.lat, // in 1E7 degrees
global_position_current_loc.lng, // in 1E7 degrees
global_position_int_alt(), // millimeters above ground/sea level
global_position_int_relative_alt(), // millimeters above home
vel.x * 100, // X speed cm/s (+ve North)
vel.y * 100, // Y speed cm/s (+ve East)
vel.z * 100, // Z speed cm/s (+ve Down)
ahrs.yaw_sensor); // compass heading in 1/100 degree
#endif // AP_AHRS_ENABLED
}
#if HAL_MOUNT_ENABLED
void GCS_MAVLINK::send_gimbal_device_attitude_status() const
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->send_gimbal_device_attitude_status(chan);
}
void GCS_MAVLINK::send_gimbal_manager_information() const
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->send_gimbal_manager_information(chan);
}
void GCS_MAVLINK::send_gimbal_manager_status() const
{
AP_Mount *mount = AP::mount();
if (mount == nullptr) {
return;
}
mount->send_gimbal_manager_status(chan);
}
#endif
void GCS_MAVLINK::send_set_position_target_global_int(uint8_t target_system, uint8_t target_component, const Location& loc)
{
const uint16_t type_mask = POSITION_TARGET_TYPEMASK_VX_IGNORE | POSITION_TARGET_TYPEMASK_VY_IGNORE | POSITION_TARGET_TYPEMASK_VZ_IGNORE | \
POSITION_TARGET_TYPEMASK_AX_IGNORE | POSITION_TARGET_TYPEMASK_AY_IGNORE | POSITION_TARGET_TYPEMASK_AZ_IGNORE | \
POSITION_TARGET_TYPEMASK_YAW_IGNORE | POSITION_TARGET_TYPEMASK_YAW_RATE_IGNORE;
// convert altitude to relative to home
int32_t rel_alt;
if (!loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, rel_alt)) {
return;
}
mavlink_msg_set_position_target_global_int_send(
chan,
AP_HAL::millis(),
target_system,
target_component,
MAV_FRAME_GLOBAL_RELATIVE_ALT,
type_mask,
loc.lat,
loc.lng,
rel_alt,
0,0,0, // vx, vy, vz
0,0,0, // ax, ay, az
0,0); // yaw, yaw_rate
}
#if HAL_GENERATOR_ENABLED
void GCS_MAVLINK::send_generator_status() const
{
AP_Generator *generator = AP::generator();
if (generator == nullptr) {
return;
}
generator->send_generator_status(*this);
}
#endif
#if HAL_ADSB_ENABLED
void GCS_MAVLINK::send_uavionix_adsb_out_status() const
{
AP_ADSB *adsb = AP::ADSB();
if (adsb != nullptr) {
adsb->send_adsb_out_status(chan);
}
}
#endif
#if AP_MAVLINK_MSG_RELAY_STATUS_ENABLED
bool GCS_MAVLINK::send_relay_status() const
{
AP_Relay *relay = AP::relay();
if (relay == nullptr) {
// must only return false if out of space:
return true;
}
return relay->send_relay_status(*this);
}
#endif // AP_MAVLINK_MSG_RELAY_STATUS_ENABLED
void GCS_MAVLINK::send_autopilot_state_for_gimbal_device() const
{
#if AP_AHRS_ENABLED
// get attitude
const AP_AHRS &ahrs = AP::ahrs();
Quaternion quat;
if (!ahrs.get_quaternion(quat)) {
return;
}
const float repr_offseq_q[] = {quat.q1, quat.q2, quat.q3, quat.q4};
// get velocity
Vector3f vel;
if (!ahrs.get_velocity_NED(vel)) {
vel.zero();
}
// get vehicle earth-frame rotation rate targets
Vector3f rate_ef_targets;
#if AP_VEHICLE_ENABLED
const AP_Vehicle *vehicle = AP::vehicle();
if (vehicle != nullptr) {
vehicle->get_rate_ef_targets(rate_ef_targets);
}
#endif
// get estimator flags
uint16_t est_status_flags = 0;
nav_filter_status nav_filt_status;
if (ahrs.get_filter_status(nav_filt_status)) {
est_status_flags = (uint16_t)(nav_filt_status.value & 0xFFFF);
}
mavlink_msg_autopilot_state_for_gimbal_device_send(
chan,
mavlink_system.sysid, // target system (this autopilot's gimbal)
0, // target component (anything)
AP_HAL::micros(), // time boot us
repr_offseq_q, // attitude as quaternion
0, // attitude estimated delay in micros
vel.x, // x speed in NED (m/s)
vel.y, // y speed in NED (m/s)
vel.z, // z speed in NED (m/s)
0, // velocity estimated delay in micros
rate_ef_targets.z, // feed forward angular velocity z
est_status_flags, // estimator status
0, // landed_state (see MAV_LANDED_STATE)
AP::ahrs().get_yaw_rate_earth()); // [rad/s] Z component of angular velocity in NED (North, East, Down). NaN if unknown
#endif // AP_AHRS_ENABLED
}
void GCS_MAVLINK::send_received_message_deprecation_warning(const char * message)
{
// we're not expecting very many of these ever, so a tiny bit of
// de-duping is probably OK:
if (message == last_deprecation_message) {
return;
}
const uint32_t now_ms = AP_HAL::millis();
if (last_deprecation_warning_send_time_ms - now_ms < 30000) {
return;
}
last_deprecation_warning_send_time_ms = now_ms;
last_deprecation_message = message;
send_text(MAV_SEVERITY_INFO, "Received message (%s) is deprecated", message);
}
bool GCS_MAVLINK::send_available_modes()
{
if (!available_modes.should_send) {
// must only return false if out of space
return true;
}
CHECK_PAYLOAD_SIZE(AVAILABLE_MODES);
// Zero is a special case for send all.
const bool send_all = available_modes.requested_index == 0;
uint8_t request_index;
if (!send_all) {
// Single request
request_index = available_modes.requested_index;
available_modes.should_send = false;
} else {
// Request all modes
request_index = available_modes.next_index;
available_modes.next_index += 1;
}
const uint8_t mode_count = send_available_mode(request_index);
if (send_all && (available_modes.next_index > mode_count)) {
// Sending all and just sent the last
available_modes.should_send = false;
}
return true;
}
bool GCS_MAVLINK::send_available_mode_monitor()
{
CHECK_PAYLOAD_SIZE(AVAILABLE_MODES_MONITOR);
mavlink_msg_available_modes_monitor_send(
chan,
gcs().get_available_modes_sequence()
);
return true;
}
bool GCS_MAVLINK::try_send_message(const enum ap_message id)
{
bool ret = true;
switch(id) {
#if AP_AHRS_ENABLED
case MSG_ATTITUDE:
CHECK_PAYLOAD_SIZE(ATTITUDE);
send_attitude();
break;
case MSG_ATTITUDE_QUATERNION:
CHECK_PAYLOAD_SIZE(ATTITUDE_QUATERNION);
send_attitude_quaternion();
break;
#endif
case MSG_NEXT_PARAM:
CHECK_PAYLOAD_SIZE(PARAM_VALUE);
queued_param_send();
break;
case MSG_HEARTBEAT:
CHECK_PAYLOAD_SIZE(HEARTBEAT);
last_heartbeat_time = AP_HAL::millis();
send_heartbeat();
break;
case MSG_HWSTATUS:
CHECK_PAYLOAD_SIZE(HWSTATUS);
send_hwstatus();
break;
#if AP_AHRS_ENABLED
case MSG_LOCATION:
CHECK_PAYLOAD_SIZE(GLOBAL_POSITION_INT);
send_global_position_int();
break;
case MSG_HOME:
CHECK_PAYLOAD_SIZE(HOME_POSITION);
send_home_position();
break;
case MSG_ORIGIN:
CHECK_PAYLOAD_SIZE(GPS_GLOBAL_ORIGIN);
send_gps_global_origin();
break;
#endif // AP_AHRS_ENABLED
#if AP_RPM_ENABLED
case MSG_RPM:
CHECK_PAYLOAD_SIZE(RPM);
send_rpm();
break;
#endif
case MSG_CURRENT_WAYPOINT:
case MSG_MISSION_ITEM_REACHED:
case MSG_NEXT_MISSION_REQUEST_WAYPOINTS:
case MSG_NEXT_MISSION_REQUEST_RALLY:
case MSG_NEXT_MISSION_REQUEST_FENCE:
ret = try_send_mission_message(id);
break;
#if COMPASS_CAL_ENABLED
case MSG_MAG_CAL_PROGRESS:
ret = AP::compass().send_mag_cal_progress(*this);
break;
case MSG_MAG_CAL_REPORT:
ret = AP::compass().send_mag_cal_report(*this);
break;
#endif
#if AP_BATTERY_ENABLED
case MSG_BATTERY_STATUS:
send_battery_status();
break;
#if AP_MAVLINK_BATTERY2_ENABLED
case MSG_BATTERY2:
CHECK_PAYLOAD_SIZE(BATTERY2);
send_battery2();
break;
#endif
#endif // AP_BATTERY_ENABLED
#if AP_AHRS_ENABLED
case MSG_EKF_STATUS_REPORT:
CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT);
AP::ahrs().send_ekf_status_report(*this);
break;
#endif
case MSG_MEMINFO:
CHECK_PAYLOAD_SIZE(MEMINFO);
send_meminfo();
break;
#if AP_FENCE_ENABLED
case MSG_FENCE_STATUS:
CHECK_PAYLOAD_SIZE(FENCE_STATUS);
send_fence_status();
break;
#endif
#if AP_RANGEFINDER_ENABLED
case MSG_RANGEFINDER:
CHECK_PAYLOAD_SIZE(RANGEFINDER);
send_rangefinder();
break;
#endif
case MSG_DISTANCE_SENSOR:
send_distance_sensor();
break;
#if AP_CAMERA_ENABLED
case MSG_CAMERA_FEEDBACK:
case MSG_CAMERA_INFORMATION:
case MSG_CAMERA_SETTINGS:
#if AP_CAMERA_SEND_FOV_STATUS_ENABLED
case MSG_CAMERA_FOV_STATUS:
#endif
case MSG_CAMERA_CAPTURE_STATUS:
#if AP_CAMERA_SEND_THERMAL_RANGE_ENABLED
case MSG_CAMERA_THERMAL_RANGE:
#endif
#if AP_MAVLINK_MSG_VIDEO_STREAM_INFORMATION_ENABLED
case MSG_VIDEO_STREAM_INFORMATION:
#endif // AP_MAVLINK_MSG_VIDEO_STREAM_INFORMATION_ENABLED
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
break;
}
return camera->send_mavlink_message(*this, id);
}
#endif // AP_CAMERA_ENABLED
case MSG_SYSTEM_TIME:
CHECK_PAYLOAD_SIZE(SYSTEM_TIME);
send_system_time();
break;
#if AP_GPS_GPS_RAW_INT_SENDING_ENABLED
case MSG_GPS_RAW:
CHECK_PAYLOAD_SIZE(GPS_RAW_INT);
AP::gps().send_mavlink_gps_raw(chan);
break;
#endif // AP_GPS_GPS_RAW_INT_SENDING_ENABLED
#if AP_GPS_GPS_RTK_SENDING_ENABLED
case MSG_GPS_RTK:
CHECK_PAYLOAD_SIZE(GPS_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 0);
break;
#endif // AP_GPS_GPS_RTK_SENDING_ENABLED
#if AP_GPS_GPS2_RAW_SENDING_ENABLED
case MSG_GPS2_RAW:
CHECK_PAYLOAD_SIZE(GPS2_RAW);
AP::gps().send_mavlink_gps2_raw(chan);
break;
#endif // AP_GPS_GPS2_RAW_SENDING_ENABLED
#if AP_GPS_GPS2_RTK_SENDING_ENABLED
case MSG_GPS2_RTK:
CHECK_PAYLOAD_SIZE(GPS2_RTK);
AP::gps().send_mavlink_gps_rtk(chan, 1);
break;
#endif // AP_GPS_GPS2_RTK_SENDING_ENABLED
#if AP_AHRS_ENABLED
case MSG_LOCAL_POSITION:
CHECK_PAYLOAD_SIZE(LOCAL_POSITION_NED);
send_local_position();
break;
#endif
#if HAL_MOUNT_ENABLED
case MSG_GIMBAL_DEVICE_ATTITUDE_STATUS:
CHECK_PAYLOAD_SIZE(GIMBAL_DEVICE_ATTITUDE_STATUS);
send_gimbal_device_attitude_status();
break;
case MSG_AUTOPILOT_STATE_FOR_GIMBAL_DEVICE:
CHECK_PAYLOAD_SIZE(AUTOPILOT_STATE_FOR_GIMBAL_DEVICE);
send_autopilot_state_for_gimbal_device();
break;
case MSG_GIMBAL_MANAGER_INFORMATION:
CHECK_PAYLOAD_SIZE(GIMBAL_MANAGER_INFORMATION);
send_gimbal_manager_information();
break;
case MSG_GIMBAL_MANAGER_STATUS:
CHECK_PAYLOAD_SIZE(GIMBAL_MANAGER_STATUS);
send_gimbal_manager_status();
break;
#endif // HAL_MOUNT_ENABLED
#if AP_OPTICALFLOW_ENABLED
case MSG_OPTICAL_FLOW:
CHECK_PAYLOAD_SIZE(OPTICAL_FLOW);
send_opticalflow();
break;
#endif
case MSG_ATTITUDE_TARGET:
CHECK_PAYLOAD_SIZE(ATTITUDE_TARGET);
send_attitude_target();
break;
case MSG_POSITION_TARGET_GLOBAL_INT:
CHECK_PAYLOAD_SIZE(POSITION_TARGET_GLOBAL_INT);
send_position_target_global_int();
break;
case MSG_POSITION_TARGET_LOCAL_NED:
CHECK_PAYLOAD_SIZE(POSITION_TARGET_LOCAL_NED);
send_position_target_local_ned();
break;
case MSG_POWER_STATUS:
CHECK_PAYLOAD_SIZE(POWER_STATUS);
send_power_status();
break;
#if HAL_WITH_MCU_MONITORING
case MSG_MCU_STATUS:
CHECK_PAYLOAD_SIZE(MCU_STATUS);
send_mcu_status();
break;
#endif
#if AP_RC_CHANNEL_ENABLED
case MSG_RC_CHANNELS:
CHECK_PAYLOAD_SIZE(RC_CHANNELS);
send_rc_channels();
break;
#if AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
case MSG_RC_CHANNELS_RAW:
CHECK_PAYLOAD_SIZE(RC_CHANNELS_RAW);
send_rc_channels_raw();
break;
#endif // AP_MAVLINK_MSG_RC_CHANNELS_RAW_ENABLED
#endif
case MSG_RAW_IMU:
CHECK_PAYLOAD_SIZE(RAW_IMU);
send_raw_imu();
break;
case MSG_SCALED_IMU:
CHECK_PAYLOAD_SIZE(SCALED_IMU);
send_scaled_imu(0, mavlink_msg_scaled_imu_send);
break;
case MSG_SCALED_IMU2:
CHECK_PAYLOAD_SIZE(SCALED_IMU2);
send_scaled_imu(1, mavlink_msg_scaled_imu2_send);
break;
case MSG_SCALED_IMU3:
CHECK_PAYLOAD_SIZE(SCALED_IMU3);
send_scaled_imu(2, mavlink_msg_scaled_imu3_send);
break;
#if AP_MAVLINK_MSG_HIGHRES_IMU_ENABLED
case MSG_HIGHRES_IMU:
CHECK_PAYLOAD_SIZE(HIGHRES_IMU);
send_highres_imu();
break;
#endif
case MSG_SCALED_PRESSURE:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE);
send_scaled_pressure();
break;
case MSG_SCALED_PRESSURE2:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE2);
send_scaled_pressure2();
break;
case MSG_SCALED_PRESSURE3:
CHECK_PAYLOAD_SIZE(SCALED_PRESSURE3);
send_scaled_pressure3();
break;
#if AP_AIRSPEED_ENABLED
case MSG_AIRSPEED:
CHECK_PAYLOAD_SIZE(AIRSPEED);
send_airspeed();
break;
#endif
case MSG_SERVO_OUTPUT_RAW:
CHECK_PAYLOAD_SIZE(SERVO_OUTPUT_RAW);
send_servo_output_raw();
break;
#if AP_SIM_ENABLED
case MSG_SIMSTATE:
CHECK_PAYLOAD_SIZE(SIMSTATE);
send_simstate();
break;
case MSG_SIM_STATE:
CHECK_PAYLOAD_SIZE(SIM_STATE);
send_sim_state();
break;
#endif
case MSG_SYS_STATUS:
CHECK_PAYLOAD_SIZE(SYS_STATUS);
send_sys_status();
break;
#if AP_AHRS_ENABLED
case MSG_AHRS2:
CHECK_PAYLOAD_SIZE(AHRS2);
send_ahrs2();
break;
#endif
case MSG_PID_TUNING:
CHECK_PAYLOAD_SIZE(PID_TUNING);
send_pid_tuning();
break;
case MSG_NAV_CONTROLLER_OUTPUT:
CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT);
send_nav_controller_output();
break;
#if AP_AHRS_ENABLED
case MSG_AHRS:
CHECK_PAYLOAD_SIZE(AHRS);
send_ahrs();
break;
#endif
case MSG_EXTENDED_SYS_STATE:
CHECK_PAYLOAD_SIZE(EXTENDED_SYS_STATE);
send_extended_sys_state();
break;
#if AP_AHRS_ENABLED
case MSG_VFR_HUD:
CHECK_PAYLOAD_SIZE(VFR_HUD);
send_vfr_hud();
break;
#endif
case MSG_VIBRATION:
CHECK_PAYLOAD_SIZE(VIBRATION);
send_vibration();
break;
#if HAL_GENERATOR_ENABLED
case MSG_GENERATOR_STATUS:
CHECK_PAYLOAD_SIZE(GENERATOR_STATUS);
send_generator_status();
break;
#endif
case MSG_AUTOPILOT_VERSION:
CHECK_PAYLOAD_SIZE(AUTOPILOT_VERSION);
send_autopilot_version();
break;
#if HAL_WITH_ESC_TELEM
case MSG_ESC_TELEMETRY:
AP::esc_telem().send_esc_telemetry_mavlink(uint8_t(chan));
break;
#endif
#if HAL_EFI_ENABLED
case MSG_EFI_STATUS: {
CHECK_PAYLOAD_SIZE(EFI_STATUS);
AP_EFI *efi = AP::EFI();
if (efi) {
efi->send_mavlink_status(chan);
}
break;
}
#endif
#if AP_WINCH_ENABLED
case MSG_WINCH_STATUS:
CHECK_PAYLOAD_SIZE(WINCH_STATUS);
send_winch_status();
break;
#endif
#if HAL_HIGH_LATENCY2_ENABLED
case MSG_HIGH_LATENCY2:
CHECK_PAYLOAD_SIZE(HIGH_LATENCY2);
send_high_latency2();
break;
#endif // HAL_HIGH_LATENCY2_ENABLED
#if AP_AIS_ENABLED
case MSG_AIS_VESSEL: {
AP_AIS *ais = AP_AIS::get_singleton();
if (ais) {
ais->send(chan);
}
break;
}
#endif
#if AP_MAVLINK_MSG_UAVIONIX_ADSB_OUT_STATUS_ENABLED
case MSG_UAVIONIX_ADSB_OUT_STATUS:
CHECK_PAYLOAD_SIZE(UAVIONIX_ADSB_OUT_STATUS);
send_uavionix_adsb_out_status();
break;
#endif
#if AP_MAVLINK_MSG_RELAY_STATUS_ENABLED
case MSG_RELAY_STATUS:
ret = send_relay_status();
break;
#endif
case MSG_AVAILABLE_MODES:
ret = send_available_modes();
break;
case MSG_AVAILABLE_MODES_MONITOR:
ret = send_available_mode_monitor();
break;
default:
// try_send_message must always at some stage return true for
// a message, or we will attempt to infinitely retry the
// message as part of send_message.
// This message will be sent out at the same rate as the
// unknown message, so should be safe.
GCS_SEND_TEXT(MAV_SEVERITY_DEBUG, "Sending unknown message (%u)", id);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("Sending unknown ap_message %u", id);
#endif
break;
}
return ret;
}
uint16_t GCS_MAVLINK::get_interval_for_stream(GCS_MAVLINK::streams id) const
{
const int16_t frate = streamRates[id].get();
if (frate == 0) {
return 0;
}
const uint32_t ret = 1000/frate;
if (ret > 60000) {
return 60000;
}
return ret;
}
void GCS_MAVLINK::initialise_message_intervals_for_stream(GCS_MAVLINK::streams id)
{
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
const GCS_MAVLINK::stream_entries &entries = all_stream_entries[i];
if (entries.stream_id != id) {
continue;
}
// found it!
const uint16_t interval_ms = get_interval_for_stream(id);
for (uint8_t j=0; j<entries.num_ap_message_ids; j++) {
set_ap_message_interval(entries.ap_message_ids[j], interval_ms);
}
break;
}
}
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
// open and read contents of path, setting message intervals from each
// line
DefaultIntervalsFromFiles::DefaultIntervalsFromFiles(uint16_t max_num)
{
if (max_num == 0) {
return;
}
_intervals = NEW_NOTHROW from_file_default_interval[max_num];
_max_intervals = max_num;
}
DefaultIntervalsFromFiles::~DefaultIntervalsFromFiles()
{
delete[] (_intervals);
}
void DefaultIntervalsFromFiles::set(ap_message id, uint16_t interval)
{
if (_intervals == nullptr) {
return;
}
// update any existing interval (last-one-in wins)
for (uint8_t i=0; i<_num_intervals; i++) {
if (_intervals[i].id == id) {
_intervals[i].interval = interval;
return;
}
}
// store an interval we've not seen before:
if (_num_intervals == _max_intervals) {
return;
}
_intervals[_num_intervals].id = id;
_intervals[_num_intervals].interval = interval;
_num_intervals++;
}
bool DefaultIntervalsFromFiles::get_interval_for_ap_message_id(ap_message id, uint16_t &interval) const
{
for (uint16_t i=0; i<_num_intervals; i++) {
if (_intervals[i].id == id) {
interval = _intervals[i].interval;
return true;
}
}
return false;
}
ap_message DefaultIntervalsFromFiles::id_at(uint8_t ofs) const
{
if (_intervals == nullptr || ofs >= _num_intervals) {
return MSG_LAST;
}
return _intervals[ofs].id;
}
uint16_t DefaultIntervalsFromFiles::interval_at(uint8_t ofs) const
{
if (_intervals == nullptr || ofs >= _num_intervals) {
return -1; // unsigned-integer wrap
}
return _intervals[ofs].interval;
}
void GCS_MAVLINK::get_intervals_from_filepath(const char *path, DefaultIntervalsFromFiles &intervals)
{
const int f = AP::FS().open(path, O_RDONLY);
if (f == -1) {
return;
}
char line[20];
while (AP::FS().fgets(line, sizeof(line)-1, f)) {
char *saveptr = nullptr;
const char *mavlink_id_str = strtok_r(line, " ", &saveptr);
if (mavlink_id_str == nullptr || strlen(mavlink_id_str) == 0) {
continue;
}
const uint32_t mavlink_id = atoi(mavlink_id_str);
const ap_message msg_id = mavlink_id_to_ap_message_id(mavlink_id);
if (msg_id == MSG_LAST) {
continue;
}
const char *interval_str = strtok_r(nullptr, "\r\n", &saveptr);
if (interval_str == nullptr || strlen(interval_str) == 0) {
continue;
}
const uint16_t interval = atoi(interval_str);
intervals.set(msg_id, interval);
}
AP::FS().close(f);
}
void GCS_MAVLINK::initialise_message_intervals_from_config_files()
{
static const char *path_templates[] {
"@ROMFS/message-intervals-chan%u.txt",
"message-intervals-chan%u.txt"
};
// don't do anything at all if no files exist:
bool exists = false;
for (const char * path_template : path_templates) {
struct stat stats;
char *path;
if (asprintf(&path, path_template, chan) == -1) {
continue;
}
if (AP::FS().stat(path, &stats) < 0) {
free(path);
continue;
}
free(path);
if (stats.st_size == 0) {
continue;
}
exists = true;
break;
}
if (!exists) {
return;
}
// first over-allocate:
DefaultIntervalsFromFiles *overallocated = NEW_NOTHROW DefaultIntervalsFromFiles(128);
if (overallocated == nullptr) {
return;
}
for (const char * path_template : path_templates) {
char *path;
if (asprintf(&path, path_template, chan) == -1) {
continue;
}
get_intervals_from_filepath(path, *overallocated);
free(path);
}
// then allocate just the right number and redo all of the work:
const uint16_t num_required = overallocated->num_intervals();
delete overallocated;
overallocated = nullptr;
default_intervals_from_files = NEW_NOTHROW DefaultIntervalsFromFiles(num_required);
if (default_intervals_from_files == nullptr) {
return;
}
for (const char * path_template : path_templates) {
char *path;
if (asprintf(&path, path_template, chan) == -1) {
continue;
}
get_intervals_from_filepath(path, *default_intervals_from_files);
free(path);
}
// now actually initialise the intervals:
for (uint8_t i=0; i<default_intervals_from_files->num_intervals(); i++) {
const ap_message id = default_intervals_from_files->id_at(i);
if (id == MSG_LAST) {
// internal error
break;
}
const uint16_t interval = default_intervals_from_files->interval_at(i);
set_ap_message_interval(id, interval);
}
}
#endif
void GCS_MAVLINK::initialise_message_intervals_from_streamrates()
{
// this is O(n^2), but it's once at boot and across a 10-entry list...
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
initialise_message_intervals_for_stream(all_stream_entries[i].stream_id);
}
#if HAL_HIGH_LATENCY2_ENABLED
if (!is_high_latency_link) {
set_mavlink_message_id_interval(MAVLINK_MSG_ID_HEARTBEAT, 1000);
} else {
set_mavlink_message_id_interval(MAVLINK_MSG_ID_HIGH_LATENCY2, 5000);
}
#else
set_mavlink_message_id_interval(MAVLINK_MSG_ID_HEARTBEAT, 1000);
#endif
}
bool GCS_MAVLINK::get_default_interval_for_ap_message(const ap_message id, uint16_t &interval) const
{
if (id == MSG_HEARTBEAT) {
// handle heartbeat requests as a special case because heartbeat is not "streamed"
interval = 1000;
return true;
}
#if HAL_HIGH_LATENCY2_ENABLED
if (id == MSG_HIGH_LATENCY2) {
// handle HL2 requests as a special case because HL2 is not "streamed"
interval = 5000;
return true;
}
#endif
#if HAL_MAVLINK_INTERVALS_FROM_FILES_ENABLED
// a user can specify default rates in files, which are read close
// to vehicle startup
if (default_intervals_from_files != nullptr &&
default_intervals_from_files->get_interval_for_ap_message_id(id, interval)) {
return true;
}
#endif
// find which stream this ap_message is in
for (uint8_t i=0; all_stream_entries[i].ap_message_ids != nullptr; i++) {
const GCS_MAVLINK::stream_entries &entries = all_stream_entries[i];
for (uint8_t j=0; j<entries.num_ap_message_ids; j++) {
if (entries.ap_message_ids[j] == id) {
interval = get_interval_for_stream(all_stream_entries[i].stream_id);
return true;
}
}
}
return false;
}
/*
correct an offboard timestamp in microseconds into a local timestamp
since boot in milliseconds. See the JitterCorrection code for details
Return a value in milliseconds since boot (for use by the EKF)
*/
uint32_t GCS_MAVLINK::correct_offboard_timestamp_usec_to_ms(uint64_t offboard_usec, uint16_t payload_size)
{
uint64_t local_us;
// if the HAL supports it then constrain the latest possible time
// the packet could have been sent by the uart receive time and
// the baudrate and packet size.
uint64_t uart_receive_time = _port->receive_time_constraint_us(payload_size);
if (uart_receive_time != 0) {
local_us = uart_receive_time;
} else {
local_us = AP_HAL::micros64();
}
uint64_t corrected_us = lag_correction.correct_offboard_timestamp_usec(offboard_usec, local_us);
return corrected_us / 1000U;
}
/*
return true if we will accept this packet. Used to implement SYSID_ENFORCE
*/
bool GCS_MAVLINK::accept_packet(const mavlink_status_t &status,
const mavlink_message_t &msg) const
{
if (msg.sysid == mavlink_system.sysid) {
// accept packets from our own components
// (e.g. mavlink-connected companion computers)
return true;
}
if (msg.sysid == sysid_my_gcs()) {
return true;
}
if (msg.msgid == MAVLINK_MSG_ID_RADIO ||
msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) {
return true;
}
if (!sysid_enforce()) {
return true;
}
return false;
}
/*
update UART pass-thru, if enabled
*/
void GCS::update_passthru(void)
{
#if APM_BUILD_TYPE(APM_BUILD_UNKNOWN)
// examples don't have AP::serialmanager
return;
#endif
WITH_SEMAPHORE(_passthru.sem);
uint32_t now = AP_HAL::millis();
uint32_t baud1, baud2;
uint8_t parity1 = 0, parity2 = 0;
bool enabled = AP::serialmanager().get_passthru(_passthru.port1, _passthru.port2, _passthru.timeout_s,
baud1, baud2);
if (enabled && !_passthru.enabled) {
_passthru.start_ms = now;
_passthru.last_ms = 0;
_passthru.enabled = true;
_passthru.last_port1_data_ms = now;
_passthru.baud1 = baud1;
_passthru.baud2 = baud2;
_passthru.parity1 = parity1 = _passthru.port1->get_parity();
_passthru.parity2 = parity2 = _passthru.port2->get_parity();
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Passthru enabled");
if (!_passthru.timer_installed) {
_passthru.timer_installed = true;
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&GCS::passthru_timer, void));
}
} else if (!enabled && _passthru.enabled) {
_passthru.enabled = false;
_passthru.port1->lock_port(0, 0);
_passthru.port2->lock_port(0, 0);
// Restore original baudrates
if (_passthru.baud1 != baud1) {
_passthru.port1->end();
_passthru.port1->begin(baud1);
}
if (_passthru.baud2 != baud2) {
_passthru.port2->end();
_passthru.port2->begin(baud2);
}
// Restore original parity
if (_passthru.parity1 != parity1) {
_passthru.port1->configure_parity(parity1);
}
if (_passthru.parity2 != parity2) {
_passthru.port2->configure_parity(parity2);
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Passthru disabled");
} else if (enabled &&
_passthru.timeout_s &&
now - _passthru.last_port1_data_ms > uint32_t(_passthru.timeout_s)*1000U) {
// timed out, disable
_passthru.enabled = false;
_passthru.port1->lock_port(0, 0);
_passthru.port2->lock_port(0, 0);
AP::serialmanager().disable_passthru();
// Restore original baudrates
if (_passthru.baud1 != baud1) {
_passthru.port1->end();
_passthru.port1->begin(baud1);
}
if (_passthru.baud2 != baud2) {
_passthru.port2->end();
_passthru.port2->begin(baud2);
}
// Restore original parity
if (_passthru.parity1 != parity1) {
_passthru.port1->configure_parity(parity1);
}
if (_passthru.parity2 != parity2) {
_passthru.port2->configure_parity(parity2);
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Passthru timed out");
}
}
/*
called at 1kHz to handle pass-thru between SERIAL_PASS1 and SERIAL_PASS2 ports
*/
void GCS::passthru_timer(void)
{
WITH_SEMAPHORE(_passthru.sem);
if (!_passthru.enabled) {
// it has been disabled after starting
return;
}
if (_passthru.start_ms != 0) {
uint32_t now = AP_HAL::millis();
if (now - _passthru.start_ms < 1000) {
// delay for 1s so the reply for the SERIAL_PASS2 param set can be seen by GCS
return;
}
_passthru.start_ms = 0;
_passthru.port1->begin(_passthru.baud1);
_passthru.port2->begin(_passthru.baud2);
}
// while pass-thru is enabled lock both ports. They remain
// locked until disabled again, or reboot
const uint32_t lock_key = 0x3256AB9F;
_passthru.port1->lock_port(lock_key, lock_key);
_passthru.port2->lock_port(lock_key, lock_key);
// Check for requested Baud rates and parity over USB
uint32_t baud = _passthru.port1->get_usb_baud();
uint8_t parity = _passthru.port1->get_usb_parity();
if (baud != 0) { // port1 is USB
if (_passthru.baud2 != baud) {
_passthru.baud2 = baud;
_passthru.port2->end();
_passthru.port2->begin_locked(baud, 0, 0, lock_key);
}
if (_passthru.parity2 != parity) {
_passthru.parity2 = parity;
_passthru.port2->configure_parity(parity);
}
}
baud = _passthru.port2->get_usb_baud();
parity = _passthru.port2->get_usb_parity();
if (baud != 0) { // port2 is USB
if (_passthru.baud1 != baud) {
_passthru.baud1 = baud;
_passthru.port1->end();
_passthru.port1->begin_locked(baud, 0, 0, lock_key);
}
if (_passthru.parity1 != parity) {
_passthru.parity1 = parity;
_passthru.port1->configure_parity(parity);
}
}
uint8_t buf[64];
// read from port1, and write to port2
int16_t nbytes = _passthru.port1->read_locked(buf, MIN(sizeof(buf),_passthru.port2->txspace()), lock_key);
if (nbytes > 0) {
_passthru.last_port1_data_ms = AP_HAL::millis();
_passthru.port2->write_locked(buf, nbytes, lock_key);
}
// read from port2, and write to port1
nbytes = _passthru.port2->read_locked(buf, MIN(sizeof(buf),_passthru.port1->txspace()), lock_key);
if (nbytes > 0) {
_passthru.port1->write_locked(buf, nbytes, lock_key);
}
}
bool GCS_MAVLINK::mavlink_coordinate_frame_to_location_alt_frame(const MAV_FRAME coordinate_frame, Location::AltFrame &frame)
{
switch (coordinate_frame) {
case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT
case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT:
frame = Location::AltFrame::ABOVE_HOME;
return true;
case MAV_FRAME_GLOBAL_TERRAIN_ALT:
case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT:
frame = Location::AltFrame::ABOVE_TERRAIN;
return true;
case MAV_FRAME_GLOBAL:
case MAV_FRAME_GLOBAL_INT:
frame = Location::AltFrame::ABSOLUTE;
return true;
default:
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Unknown mavlink coordinate frame %u", coordinate_frame);
#endif
return false;
}
}
uint64_t GCS_MAVLINK::capabilities() const
{
uint64_t ret = MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT |
MAV_PROTOCOL_CAPABILITY_COMPASS_CALIBRATION;
const auto mavlink_protocol = uartstate->get_protocol();
if (mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLink2 || mavlink_protocol == AP_SerialManager::SerialProtocol_MAVLinkHL) {
ret |= MAV_PROTOCOL_CAPABILITY_MAVLINK2;
}
#if AP_ADVANCEDFAILSAFE_ENABLED
AP_AdvancedFailsafe *failsafe = AP::advancedfailsafe();
if (failsafe != nullptr && failsafe->enabled()) {
// Copter and Sub may also set this bit as they can always terminate
ret |= MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION;
}
#endif
#if HAL_RALLY_ENABLED
if (AP::rally()) {
ret |= MAV_PROTOCOL_CAPABILITY_MISSION_RALLY;
}
#endif
#if AP_FENCE_ENABLED
if (AP::fence()) {
ret |= MAV_PROTOCOL_CAPABILITY_MISSION_FENCE;
}
#endif
#if AP_MAVLINK_FTP_ENABLED
if (!AP_BoardConfig::ftp_disabled()){ //if ftp disable board option is not set
ret |= MAV_PROTOCOL_CAPABILITY_FTP;
}
#endif
return ret;
}
#if AP_RC_CHANNEL_ENABLED
void GCS_MAVLINK::manual_override(RC_Channel *c, int16_t value_in, const uint16_t offset, const float scaler, const uint32_t tnow, const bool reversed)
{
if (c == nullptr) {
return;
}
int16_t override_value = 0;
if (value_in != INT16_MAX) {
const int16_t radio_min = c->get_radio_min();
const int16_t radio_max = c->get_radio_max();
if (reversed) {
value_in *= -1;
}
override_value = radio_min + (radio_max - radio_min) * (value_in + offset) / scaler;
}
c->set_override(override_value, tnow);
}
void GCS_MAVLINK::handle_manual_control(const mavlink_message_t &msg)
{
if (msg.sysid != sysid_my_gcs()) {
return; // only accept control from our gcs
}
mavlink_manual_control_t packet;
mavlink_msg_manual_control_decode(&msg, &packet);
if (packet.target != gcs().sysid_this_mav()) {
return; // only accept control aimed at us
}
uint32_t tnow = AP_HAL::millis();
handle_manual_control_axes(packet, tnow);
// a manual control message is considered to be a 'heartbeat'
// from the ground station for failsafe purposes
gcs().sysid_myggcs_seen(tnow);
}
#endif // AP_RC_CHANNEL_ENABLED
#if AP_RSSI_ENABLED
uint8_t GCS_MAVLINK::receiver_rssi() const
{
AP_RSSI *aprssi = AP::rssi();
if (aprssi == nullptr) {
return 255;
}
if (!aprssi->enabled()) {
return 255;
}
// scale across the full valid range
return aprssi->read_receiver_rssi() * 254;
}
#endif
GCS &gcs()
{
return *GCS::get_singleton();
}
/*
send HIGH_LATENCY2 message
*/
#if HAL_HIGH_LATENCY2_ENABLED
void GCS_MAVLINK::send_high_latency2() const
{
#if AP_AHRS_ENABLED
AP_AHRS &ahrs = AP::ahrs();
Location global_position_current;
UNUSED_RESULT(ahrs.get_location(global_position_current));
#if AP_BATTERY_ENABLED
const int8_t battery_remaining = battery_remaining_pct(AP_BATT_PRIMARY_INSTANCE);
#endif
uint16_t current_waypoint = 0;
#if AP_MISSION_ENABLED
AP_Mission *mission = AP::mission();
if (mission != nullptr) {
current_waypoint = mission->get_current_nav_index();
}
#endif
uint32_t present;
uint32_t enabled;
uint32_t health;
gcs().get_sensor_status_flags(present, enabled, health);
// Remap HL_FAILURE_FLAG from system status flags
static const struct PACKED status_map_t {
MAV_SYS_STATUS_SENSOR sensor;
HL_FAILURE_FLAG failure_flag;
} status_map[] {
{ MAV_SYS_STATUS_SENSOR_GPS, HL_FAILURE_FLAG_GPS },
{ MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE, HL_FAILURE_FLAG_DIFFERENTIAL_PRESSURE },
{ MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE, HL_FAILURE_FLAG_ABSOLUTE_PRESSURE },
{ MAV_SYS_STATUS_SENSOR_3D_ACCEL, HL_FAILURE_FLAG_3D_ACCEL },
{ MAV_SYS_STATUS_SENSOR_3D_GYRO, HL_FAILURE_FLAG_3D_GYRO },
{ MAV_SYS_STATUS_SENSOR_3D_MAG, HL_FAILURE_FLAG_3D_MAG },
{ MAV_SYS_STATUS_TERRAIN, HL_FAILURE_FLAG_TERRAIN },
{ MAV_SYS_STATUS_SENSOR_BATTERY, HL_FAILURE_FLAG_BATTERY },
{ MAV_SYS_STATUS_SENSOR_RC_RECEIVER, HL_FAILURE_FLAG_RC_RECEIVER },
{ MAV_SYS_STATUS_GEOFENCE, HL_FAILURE_FLAG_GEOFENCE },
{ MAV_SYS_STATUS_AHRS, HL_FAILURE_FLAG_ESTIMATOR },
};
uint16_t failure_flags = 0;
for (auto &map_entry : status_map) {
if ((health & map_entry.sensor) == 0) {
failure_flags |= map_entry.failure_flag;
}
}
//send_text(MAV_SEVERITY_INFO, "Yaw: %u", (((uint16_t)ahrs.yaw_sensor / 100) % 360));
mavlink_msg_high_latency2_send(chan,
AP_HAL::millis(), //[ms] Timestamp (milliseconds since boot or Unix epoch)
gcs().frame_type(), // Type of the MAV (quadrotor, helicopter, etc.)
MAV_AUTOPILOT_ARDUPILOTMEGA, // Autopilot type / class. Use MAV_AUTOPILOT_INVALID for components that are not flight controllers.
gcs().custom_mode(), // A bitfield for use for autopilot-specific flags (2 byte version).
global_position_current.lat, // [degE7] Latitude
global_position_current.lng, // [degE7] Longitude
global_position_current.alt * 0.01f, // [m] Altitude above mean sea level
high_latency_target_altitude(), // [m] Altitude setpoint
(((uint16_t)ahrs.yaw_sensor / 100) % 360) / 2, // [deg/2] Heading
high_latency_tgt_heading(), // [deg/2] Heading setpoint
high_latency_tgt_dist(), // [dam] Distance to target waypoint or position
abs(vfr_hud_throttle()), // [%] Throttle
MIN(vfr_hud_airspeed() * 5, UINT8_MAX), // [m/s*5] Airspeed
high_latency_tgt_airspeed(), // [m/s*5] Airspeed setpoint
MIN(ahrs.groundspeed() * 5, UINT8_MAX), // [m/s*5] Groundspeed
high_latency_wind_speed(), // [m/s*5] Windspeed
high_latency_wind_direction(), // [deg/2] Wind heading
0, // [dm] Maximum error horizontal position since last message
0, // [dm] Maximum error vertical position since last message
high_latency_air_temperature(), // [degC] Air temperature from airspeed sensor
0, // [dm/s] Maximum climb rate magnitude since last message
#if AP_BATTERY_ENABLED
battery_remaining, // [%] Battery level (-1 if field not provided).
#else
-1,
#endif
current_waypoint, // Current waypoint number
failure_flags, // Bitmap of failure flags.
base_mode(), // Field for custom payload. base mode (arming status) in ArduPilot's case
0, // Field for custom payload.
0); // Field for custom payload.
#endif
}
int8_t GCS_MAVLINK::high_latency_air_temperature() const
{
#if AP_AIRSPEED_ENABLED
// return units are degC
AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
float air_temperature;
if (airspeed != nullptr && airspeed->enabled() && airspeed->get_temperature(air_temperature)) {
return air_temperature;
}
#endif
return INT8_MIN;
}
/*
handle a MAV_CMD_CONTROL_HIGH_LATENCY command
Enable or disable any marked (via SERIALn_PROTOCOL) high latency connections
*/
MAV_RESULT GCS_MAVLINK::handle_control_high_latency(const mavlink_command_int_t &packet)
{
// high latency mode is enabled if param1=1 or disabled if param1=0
if (is_equal(packet.param1, 0.0f)) {
gcs().enable_high_latency_connections(false);
} else if (is_equal(packet.param1, 1.0f)) {
gcs().enable_high_latency_connections(true);
} else {
return MAV_RESULT_FAILED;
}
// send to all other mavlink components with same sysid
mavlink_command_long_t hl_msg{};
hl_msg.command = MAV_CMD_CONTROL_HIGH_LATENCY;
hl_msg.param1 = packet.param1;
GCS_MAVLINK::send_to_components(MAVLINK_MSG_ID_COMMAND_LONG, (char*)&hl_msg, sizeof(hl_msg));
return MAV_RESULT_ACCEPTED;
}
#endif // HAL_HIGH_LATENCY2_ENABLED
#if AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
void GCS_MAVLINK::handle_radio_rc_channels(const mavlink_message_t &msg)
{
mavlink_radio_rc_channels_t packet;
mavlink_msg_radio_rc_channels_decode(&msg, &packet);
AP::RC().handle_radio_rc_channels(&packet);
}
#endif // AP_RCPROTOCOL_MAVLINK_RADIO_ENABLED
#endif // HAL_GCS_ENABLED