ardupilot/libraries/AP_HAL_ESP32/i2c_sw.c

728 lines
21 KiB
C

/*
* Copyright (C) 2019 Gunar Schorcht
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*/
/**
* @ingroup cpu_esp_common
* @ingroup drivers_periph_i2c
* @{
*
* @file
* @brief Low-level I2C driver software implementation using for ESP SoCs
*
* @author Gunar Schorcht <gunar@schorcht.net>
*
* @}
*/
/*
PLEASE NOTE:
The implementation bases on the bit-banging I2C master implementation as
described in [wikipedia](https://en.wikipedia.org/wiki/I%C2%B2C#Example_of_bit-banging_the_I%C2%B2C_master_protocol).
*/
#include "esp_err.h"
#define DEBUG printf
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include "esp_attr.h"
#include "rom/ets_sys.h" // seems to work for both...for now..deprecated
#include "soc/gpio_reg.h"
#include "soc/gpio_struct.h"
// IMPORTS FROM esp-idf hw implem
#include <string.h>
#include <stdio.h>
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "malloc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/ringbuf.h"
#include "soc/dport_reg.h"
#include "esp_pm.h"
#include "soc/soc_memory_layout.h"
//#include "hal/i2c_hal.h"
#include "soc/i2c_periph.h"
#include "driver/i2c.h"
#include "driver/periph_ctrl.h"
#include "lwip/netdb.h"
#include "i2c_sw.h"
/* max clock stretching counter */
#define I2C_CLOCK_STRETCH 200
/* gpio access macros */
#define GPIO_SET(l,h,b) if (b < 32) GPIO.l = BIT(b); else GPIO.h.val = BIT(b-32)
#define GPIO_GET(l,h,b) ((b < 32) ? GPIO.l & BIT(b) : GPIO.h.val & BIT(b-32))
/* to ensure that I2C is always optimized with -O2 to use the defined delays */
#pragma GCC optimize ("O2")
static const uint32_t _i2c_delays[][3] =
{
/* values specify one half-period and are only valid for -O2 option */
/* value = [period - 0.25 us (240 MHz) / 0.5us(160MHz) / 1.0us(80MHz)] */
/* * cycles per second / 2 */
/* 1 us = 16 cycles (80 MHz) / 32 cycles (160 MHz) / 48 cycles (240) */
/* values for 80, 160, 240 MHz */
[I2C_SPEED_LOW] = {790, 1590, 2390}, /* 10 kbps (period 100 us) */
[I2C_SPEED_NORMAL] = { 70, 150, 230}, /* 100 kbps (period 10 us) */
[I2C_SPEED_FAST] = { 11, 31, 51}, /* 400 kbps (period 2.5 us) */
[I2C_SPEED_FAST_PLUS] = { 0, 7, 15}, /* 1 Mbps (period 1 us) */
[I2C_SPEED_HIGH] = { 0, 0, 0} /* 3.4 Mbps (period 0.3 us) not working */
};
/* forward declaration of internal functions */
static inline void _i2c_delay(_i2c_bus_t* bus);
static inline bool _i2c_scl_read(_i2c_bus_t* bus);
static inline bool _i2c_sda_read(_i2c_bus_t* bus);
static inline void _i2c_scl_high(_i2c_bus_t* bus);
static inline void _i2c_scl_low(_i2c_bus_t* bus);
static inline void _i2c_sda_high(_i2c_bus_t* bus);
static inline void _i2c_sda_low(_i2c_bus_t* bus);
static int _i2c_start_cond(_i2c_bus_t* bus);
static int _i2c_stop_cond(_i2c_bus_t* bus);
static int _i2c_write_bit(_i2c_bus_t* bus, bool bit);
static int _i2c_read_bit(_i2c_bus_t* bus, bool* bit);
static int _i2c_write_byte(_i2c_bus_t* bus, uint8_t byte);
static int _i2c_read_byte(_i2c_bus_t* bus, uint8_t* byte, bool ack);
static int _i2c_arbitration_lost(_i2c_bus_t* bus, const char* func);
static void _i2c_abort(_i2c_bus_t* bus, const char* func);
static void _i2c_clear(_i2c_bus_t* bus);
/* implementation of i2c interface */
void i2c_init(_i2c_bus_t* bus)
{
if (bus->speed == I2C_SPEED_HIGH) {
DEBUG("i2c I2C_SPEED_HIGH is not supported\n");
return;
}
bus->scl_bit = BIT(bus->scl); /* store bit mask for faster access */
bus->sda_bit = BIT(bus->sda); /* store bit mask for faster access */
bus->started = false; /* for handling of repeated start condition */
switch (ets_get_cpu_frequency()) {
case 80: bus->delay = _i2c_delays[bus->speed][0]; break;
case 160: bus->delay = _i2c_delays[bus->speed][1]; break;
case 240: bus->delay = _i2c_delays[bus->speed][2]; break;
default : DEBUG("i2c I2C software implementation is not "
"supported for this CPU frequency: %u MHz\n",
(unsigned int)ets_get_cpu_frequency()
);
return;
}
DEBUG("%s: scl=%d sda=%d speed=%d\n", __func__,
bus->scl, bus->sda, bus->speed);
/* reset the GPIO usage if the pins were used for I2C before */
gpio_reset_pin(bus->scl);
gpio_reset_pin(bus->sda);
/* Configure and initialize SDA and SCL pin. */
/*
* ESP32 pins are used in input/output mode with open-drain output driver.
* Signal levels are then realized as following:
*
* - HIGH: Output value 1 lets the pin floating and is pulled-up to high.
* - LOW : Output value 0 actively drives the pin to low.
*/
gpio_config_t gpio_conf = {
.pin_bit_mask = bus->scl_bit | bus->sda_bit,
.mode = GPIO_MODE_INPUT_OUTPUT_OD,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = GPIO_INTR_DISABLE
};
esp_err_t err = gpio_config(&gpio_conf);
assert(!err);
/* set SDA and SCL to be floating and pulled-up to high */
_i2c_sda_high(bus);
_i2c_scl_high(bus);
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear(bus);
}
int IRAM_ATTR i2c_read_bytes(_i2c_bus_t* bus, uint16_t addr, void *data, size_t len, uint8_t flags)
{
int res = 0;
/* send START condition and address if I2C_NOSTART is not set */
if (!(flags & I2C_NOSTART)) {
/* START condition */
if ((res = _i2c_start_cond(bus)) != 0) {
return res;
}
/* send 10 bit or 7 bit address */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7 | I2C_READ;
uint8_t addr2 = addr & 0xff;
/* send address bytes with read flag */
if ((res = _i2c_write_byte(bus, addr1)) != 0 ||
(res = _i2c_write_byte(bus, addr2)) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return -ENXIO;
}
}
else {
/* send address byte with read flag */
if ((res = _i2c_write_byte(bus, (addr << 1 | I2C_READ))) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return -ENXIO;
}
}
}
/* receive bytes if send address was successful */
for (unsigned int i = 0; i < len; i++) {
if ((res = _i2c_read_byte(bus, &(((uint8_t*)data)[i]), i < len-1)) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return res;
}
}
/* send STOP condition if I2C_NOSTOP flag is not set */
if (!(flags & I2C_NOSTOP)) {
res = _i2c_stop_cond(bus);
}
return res;
}
int IRAM_ATTR i2c_write_bytes(_i2c_bus_t* bus, uint16_t addr, const void *data, size_t len, uint8_t flags)
{
int res = 0;
/* if I2C_NOSTART is not set, send START condition and ADDR */
if (!(flags & I2C_NOSTART)) {
/* START condition */
if ((res = _i2c_start_cond(bus)) != 0) {
return res;
}
/* send 10 bit or 7 bit address */
if (flags & I2C_ADDR10) {
/* prepare 10 bit address bytes */
uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7;
uint8_t addr2 = addr & 0xff;
/* send address bytes without read flag */
if ((res = _i2c_write_byte(bus, addr1)) != 0 ||
(res = _i2c_write_byte(bus, addr2)) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return -ENXIO;
}
}
else {
/* send address byte without read flag */
if ((res = _i2c_write_byte(bus, addr << 1)) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return -ENXIO;
}
}
}
/* send bytes if send address was successful */
for (unsigned int i = 0; i < len; i++) {
if ((res = _i2c_write_byte(bus, ((uint8_t*)data)[i])) != 0) {
/* abort transfer */
_i2c_abort(bus, __func__);
return res;
}
}
/* send STOP condition if I2C_NOSTOP flag is not set */
if (!(flags & I2C_NOSTOP)) {
res = _i2c_stop_cond(bus);
}
return res;
}
/* --- internal functions --- */
static inline void _i2c_delay(_i2c_bus_t* bus)
{
/* produces a delay */
uint32_t cycles = bus->delay;
if (cycles) {
__asm__ volatile ("1: _addi.n %0, %0, -1 \n"
" bnez %0, 1b \n" : "=r" (cycles) : "0" (cycles));
}
}
/*
* Please note: SDA and SDL pins are used in GPIO_OD_PU mode
* (open-drain with pull-ups).
*
* Setting a pin which is in open-drain mode leaves the pin floating and
* the signal is pulled up to high. The signal can then be actively driven
* to low by a slave. A read operation returns the current signal at the pin.
*
* Clearing a pin which is in open-drain mode actively drives the signal to
* low.
*/
static inline bool _i2c_scl_read(_i2c_bus_t* bus)
{
// return gpio_get_level(bus->scl);
/* read SCL status (pin is in open-drain mode and set) */
return GPIO_GET(in, in1, bus->scl);
}
static inline bool _i2c_sda_read(_i2c_bus_t* bus)
{
// return gpio_get_level(bus->sda);
/* read SDA status (pin is in open-drain mode and set) */
return GPIO_GET(in, in1, bus->sda);
}
static inline void _i2c_scl_high(_i2c_bus_t* bus)
{
// gpio_set_level(bus->scl, 1);
// return;
/* set SCL signal high (pin is in open-drain mode and pulled-up) */
GPIO_SET(out_w1ts, out1_w1ts, bus->scl);
}
static inline void _i2c_scl_low(_i2c_bus_t* bus)
{
// gpio_set_level(bus->scl, 0);
// return;
/* set SCL signal low (actively driven to low) */
GPIO_SET(out_w1tc, out1_w1tc, bus->scl);
}
static inline void _i2c_sda_high(_i2c_bus_t* bus)
{
// gpio_set_level(bus->sda, 1);
// return;
/* set SDA signal high (pin is in open-drain mode and pulled-up) */
GPIO_SET(out_w1ts, out1_w1ts, bus->sda);
}
static inline void _i2c_sda_low(_i2c_bus_t* bus)
{
// gpio_set_level(bus->sda, 0);
// return;
/* set SDA signal low (actively driven to low) */
GPIO_SET(out_w1tc, out1_w1tc, bus->sda);
}
static void _i2c_clear(_i2c_bus_t* bus)
{
//DEBUG("%s: dev=%u\n", __func__, bus->dev);
/**
* Sometimes a slave blocks and drives the SDA line permanently low.
* Send some clock pulses in that case (10 at maximum)
*/
/*
* If SDA is low while SCL is high for 10 half cycles, it is not an
* arbitration lost but a bus lock.
*/
int count = 10;
while (!_i2c_sda_read(bus) && _i2c_scl_read(bus) && count) {
count--;
_i2c_delay(bus);
}
if (count) {
/* was not a bus lock */
return;
}
/* send 10 clock pulses in case of bus lock */
count = 10;
while (!_i2c_sda_read(bus) && count--) {
_i2c_scl_low(bus);
_i2c_delay(bus);
_i2c_scl_high(bus);
_i2c_delay(bus);
}
}
static void _i2c_abort(_i2c_bus_t* bus, const char* func)
{
//DEBUG("%s: dev=%u\n", func, bus->dev);
/* reset SCL and SDA to passive HIGH (floating and pulled-up) */
_i2c_sda_high(bus);
_i2c_scl_high(bus);
/* reset repeated start indicator */
bus->started = false;
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear(bus);
}
static IRAM_ATTR int _i2c_arbitration_lost(_i2c_bus_t* bus, const char* func)
{
//DEBUG("%s: arbitration lost dev=%u\n", func, bus->dev);
/* reset SCL and SDA to passive HIGH (floating and pulled-up) */
_i2c_sda_high(bus);
_i2c_scl_high(bus);
/* reset repeated start indicator */
bus->started = false;
/* clear the bus if necessary (SDA is driven permanently low) */
_i2c_clear(bus);
return -EAGAIN;
}
static IRAM_ATTR int _i2c_start_cond(_i2c_bus_t* bus)
{
/*
* send start condition
* on entry: SDA and SCL are set to be floating and pulled-up to high
* on exit : SDA and SCL are actively driven to low
*/
int res = 0;
if (bus->started) {
/* prepare the repeated start condition */
/* SDA = passive HIGH (floating and pulled-up) */
_i2c_sda_high(bus);
/* t_VD;DAT not necessary */
/* _i2c_delay(bus); */
/* SCL = passive HIGH (floating and pulled-up) */
_i2c_scl_high(bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read(bus)) {
stretch--;
}
if (stretch == 0) {
//DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_SU;STA - set-up time for a repeated START condition */
/* min. in us: 4.7 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */
_i2c_delay(bus);
}
/* if SDA is low, arbitration is lost and someone else is driving the bus */
if (!_i2c_sda_read(bus)) {
return _i2c_arbitration_lost(bus, __func__);
}
/* begin the START condition: SDA = active LOW */
_i2c_sda_low(bus);
/* wait t_HD;STA - hold time (repeated) START condition, */
/* max none */
/* min 4.0 us (SM), 0.6 us (FM), 0.26 us (FPM), 0.16 us (HSM) */
_i2c_delay(bus);
/* complete the START condition: SCL = active LOW */
_i2c_scl_low(bus);
/* needed for repeated start condition */
bus->started = true;
return res;
}
static IRAM_ATTR int _i2c_stop_cond(_i2c_bus_t* bus)
{
/*
* send stop condition
* on entry: SCL is active low and SDA can be changed
* on exit : SCL and SDA are set to be floating and pulled-up to high
*/
int res = 0;
/* begin the STOP condition: SDA = active LOW */
_i2c_sda_low(bus);
/* wait t_LOW - LOW period of SCL clock */
/* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */
_i2c_delay(bus);
/* SCL = passive HIGH (floating and pulled up) while SDA = active LOW */
_i2c_scl_high(bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read(bus)) {
stretch--;
}
if (stretch == 0) {
//DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_SU;STO - hold time STOP condition, */
/* min. in us: 4.0 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */
_i2c_delay(bus);
/* complete the STOP condition: SDA = passive HIGH (floating and pulled up) */
_i2c_sda_high(bus);
/* reset repeated start indicator */
bus->started = false;
/* wait t_BUF - bus free time between a STOP and a START condition */
/* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */
_i2c_delay(bus);
/* one additional delay */
_i2c_delay(bus);
/* if SDA is low, arbitration is lost and someone else is driving the bus */
if (_i2c_sda_read(bus) == 0) {
return _i2c_arbitration_lost(bus, __func__);
}
return res;
}
static IRAM_ATTR int _i2c_write_bit(_i2c_bus_t* bus, bool bit)
{
/*
* send one bit
* on entry: SCL is active low, SDA can be changed
* on exit : SCL is active low, SDA can be changed
*/
int res = 0;
/* SDA = bit */
if (bit) {
_i2c_sda_high(bus);
}
else {
_i2c_sda_low(bus);
}
/* wait t_VD;DAT - data valid time (time until data are valid) */
/* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */
_i2c_delay(bus);
/* SCL = passive HIGH (floating and pulled-up), SDA value is available */
_i2c_scl_high(bus);
/* wait t_HIGH - time for the slave to read SDA */
/* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */
_i2c_delay(bus);
/* clock stretching, wait as long as clock is driven low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read(bus)) {
stretch--;
}
if (stretch == 0) {
//DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* if SCL is high, now data is valid */
/* if SDA is high, check that nobody else is driving SDA low */
if (bit && !_i2c_sda_read(bus)) {
return _i2c_arbitration_lost(bus, __func__);
}
/* SCL = active LOW to allow next SDA change */
_i2c_scl_low(bus);
return res;
}
static IRAM_ATTR int _i2c_read_bit(_i2c_bus_t* bus, bool* bit)
{
/* read one bit
* on entry: SCL is active low, SDA can be changed
* on exit : SCL is active low, SDA can be changed
*/
int res = 0;
/* SDA = passive HIGH (floating and pulled-up) to let the slave drive data */
_i2c_sda_high(bus);
/* wait t_VD;DAT - data valid time (time until data are valid) */
/* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */
_i2c_delay(bus);
/* SCL = passive HIGH (floating and pulled-up), SDA value is available */
_i2c_scl_high(bus);
/* clock stretching, wait as long as clock is driven to low by the slave */
uint32_t stretch = I2C_CLOCK_STRETCH;
while (stretch && !_i2c_scl_read(bus)) {
stretch--;
}
if (stretch == 0) {
//DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev);
res = -ETIMEDOUT;
}
/* wait t_HIGH - time for the slave to read SDA */
/* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */
_i2c_delay(bus);
/* SCL is high, read out bit */
*bit = _i2c_sda_read(bus);
/* SCL = active LOW to allow next SDA change */
_i2c_scl_low(bus);
return res;
}
static IRAM_ATTR int _i2c_write_byte(_i2c_bus_t* bus, uint8_t byte)
{
/* send one byte and returns 0 in case of ACK from slave */
/* send the byte from MSB to LSB */
for (unsigned i = 0; i < 8; i++) {
int res = _i2c_write_bit(bus, (byte & 0x80) != 0);
if (res != 0) {
return res;
}
byte = byte << 1;
}
/* read acknowledge bit (low) from slave */
bool bit;
int res = _i2c_read_bit(bus, &bit);
if (res != 0) {
return res;
}
return !bit ? 0 : -EIO;
}
static IRAM_ATTR int _i2c_read_byte(_i2c_bus_t* bus, uint8_t *byte, bool ack)
{
bool bit;
/* read the byte */
for (unsigned i = 0; i < 8; i++) {
int res = _i2c_read_bit(bus, &bit);
if (res != 0) {
return res;
}
*byte = (*byte << 1) | (bit ? 1 : 0);
}
/* write acknowledgement flag */
_i2c_write_bit(bus, !ack);
return 0;
}
int i2c_read_regs(_i2c_bus_t* bus, uint16_t addr, uint16_t reg,
void *data, size_t len, uint8_t flags)
{
uint16_t reg_end = reg;
if (flags & (I2C_NOSTOP | I2C_NOSTART)) {
return -EOPNOTSUPP;
}
/* Handle endianness of register if 16 bit */
if (flags & I2C_REG16) {
reg_end = htons(reg); /* Make sure register is in big-endian on I2C bus */
}
/* First set ADDR and register with no stop */
int ret = i2c_write_bytes(bus, addr, &reg_end, (flags & I2C_REG16) ? 2 : 1,
flags | I2C_NOSTOP);
if (ret < 0) {
return ret;
}
/* Then get the data from device */
return i2c_read_bytes(bus, addr, data, len, flags);
}
int i2c_read_reg(_i2c_bus_t* bus, uint16_t addr, uint16_t reg,
void *data, uint8_t flags)
{
return i2c_read_regs(bus, addr, reg, data, 1, flags);
}
int i2c_read_byte(_i2c_bus_t* bus, uint16_t addr, void *data, uint8_t flags)
{
return i2c_read_bytes(bus, addr, data, 1, flags);
}
int i2c_write_byte(_i2c_bus_t* bus, uint16_t addr, uint8_t data, uint8_t flags)
{
return i2c_write_bytes(bus, addr, &data, 1, flags);
}
int i2c_write_regs(_i2c_bus_t* bus, uint16_t addr, uint16_t reg,
const void *data, size_t len, uint8_t flags)
{
uint16_t reg_end = reg;
if (flags & (I2C_NOSTOP | I2C_NOSTART)) {
return -EOPNOTSUPP;
}
/* Handle endianness of register if 16 bit */
if (flags & I2C_REG16) {
reg_end = htons(reg); /* Make sure register is in big-endian on I2C bus */
}
/* First set ADDR and register with no stop */
int ret = i2c_write_bytes(bus, addr, &reg_end, (flags & I2C_REG16) ? 2 : 1,
flags | I2C_NOSTOP);
if (ret < 0) {
return ret;
}
/* Then write data to the device */
return i2c_write_bytes(bus, addr, data, len, flags | I2C_NOSTART);
}
int i2c_write_reg(_i2c_bus_t* bus, uint16_t addr, uint16_t reg,
uint8_t data, uint8_t flags)
{
return i2c_write_regs(bus, addr, reg, &data, 1, flags);
}