/* * Copyright (C) 2019 Gunar Schorcht * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_esp_common * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver software implementation using for ESP SoCs * * @author Gunar Schorcht * * @} */ /* PLEASE NOTE: The implementation bases on the bit-banging I2C master implementation as described in [wikipedia](https://en.wikipedia.org/wiki/I%C2%B2C#Example_of_bit-banging_the_I%C2%B2C_master_protocol). */ #include "esp_err.h" #define DEBUG printf #include #include #include #include #include "esp_attr.h" #include "rom/ets_sys.h" // seems to work for both...for now..deprecated #include "soc/gpio_reg.h" #include "soc/gpio_struct.h" // IMPORTS FROM esp-idf hw implem #include #include #include "esp_types.h" #include "esp_attr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "malloc.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/xtensa_api.h" #include "freertos/task.h" #include "freertos/ringbuf.h" #include "soc/dport_reg.h" #include "esp_pm.h" #include "soc/soc_memory_layout.h" //#include "hal/i2c_hal.h" #include "soc/i2c_periph.h" #include "driver/i2c.h" #include "driver/periph_ctrl.h" #include "lwip/netdb.h" #include "i2c_sw.h" /* max clock stretching counter */ #define I2C_CLOCK_STRETCH 200 /* gpio access macros */ #define GPIO_SET(l,h,b) if (b < 32) GPIO.l = BIT(b); else GPIO.h.val = BIT(b-32) #define GPIO_GET(l,h,b) ((b < 32) ? GPIO.l & BIT(b) : GPIO.h.val & BIT(b-32)) /* to ensure that I2C is always optimized with -O2 to use the defined delays */ #pragma GCC optimize ("O2") static const uint32_t _i2c_delays[][3] = { /* values specify one half-period and are only valid for -O2 option */ /* value = [period - 0.25 us (240 MHz) / 0.5us(160MHz) / 1.0us(80MHz)] */ /* * cycles per second / 2 */ /* 1 us = 16 cycles (80 MHz) / 32 cycles (160 MHz) / 48 cycles (240) */ /* values for 80, 160, 240 MHz */ [I2C_SPEED_LOW] = {790, 1590, 2390}, /* 10 kbps (period 100 us) */ [I2C_SPEED_NORMAL] = { 70, 150, 230}, /* 100 kbps (period 10 us) */ [I2C_SPEED_FAST] = { 11, 31, 51}, /* 400 kbps (period 2.5 us) */ [I2C_SPEED_FAST_PLUS] = { 0, 7, 15}, /* 1 Mbps (period 1 us) */ [I2C_SPEED_HIGH] = { 0, 0, 0} /* 3.4 Mbps (period 0.3 us) not working */ }; /* forward declaration of internal functions */ static inline void _i2c_delay(_i2c_bus_t* bus); static inline bool _i2c_scl_read(_i2c_bus_t* bus); static inline bool _i2c_sda_read(_i2c_bus_t* bus); static inline void _i2c_scl_high(_i2c_bus_t* bus); static inline void _i2c_scl_low(_i2c_bus_t* bus); static inline void _i2c_sda_high(_i2c_bus_t* bus); static inline void _i2c_sda_low(_i2c_bus_t* bus); static int _i2c_start_cond(_i2c_bus_t* bus); static int _i2c_stop_cond(_i2c_bus_t* bus); static int _i2c_write_bit(_i2c_bus_t* bus, bool bit); static int _i2c_read_bit(_i2c_bus_t* bus, bool* bit); static int _i2c_write_byte(_i2c_bus_t* bus, uint8_t byte); static int _i2c_read_byte(_i2c_bus_t* bus, uint8_t* byte, bool ack); static int _i2c_arbitration_lost(_i2c_bus_t* bus, const char* func); static void _i2c_abort(_i2c_bus_t* bus, const char* func); static void _i2c_clear(_i2c_bus_t* bus); /* implementation of i2c interface */ void i2c_init(_i2c_bus_t* bus) { if (bus->speed == I2C_SPEED_HIGH) { DEBUG("i2c I2C_SPEED_HIGH is not supported\n"); return; } bus->scl_bit = BIT(bus->scl); /* store bit mask for faster access */ bus->sda_bit = BIT(bus->sda); /* store bit mask for faster access */ bus->started = false; /* for handling of repeated start condition */ switch (ets_get_cpu_frequency()) { case 80: bus->delay = _i2c_delays[bus->speed][0]; break; case 160: bus->delay = _i2c_delays[bus->speed][1]; break; case 240: bus->delay = _i2c_delays[bus->speed][2]; break; default : DEBUG("i2c I2C software implementation is not " "supported for this CPU frequency: %u MHz\n", (unsigned int)ets_get_cpu_frequency() ); return; } DEBUG("%s: scl=%d sda=%d speed=%d\n", __func__, bus->scl, bus->sda, bus->speed); /* reset the GPIO usage if the pins were used for I2C before */ gpio_reset_pin(bus->scl); gpio_reset_pin(bus->sda); /* Configure and initialize SDA and SCL pin. */ /* * ESP32 pins are used in input/output mode with open-drain output driver. * Signal levels are then realized as following: * * - HIGH: Output value 1 lets the pin floating and is pulled-up to high. * - LOW : Output value 0 actively drives the pin to low. */ gpio_config_t gpio_conf = { .pin_bit_mask = bus->scl_bit | bus->sda_bit, .mode = GPIO_MODE_INPUT_OUTPUT_OD, .pull_up_en = GPIO_PULLUP_ENABLE, .pull_down_en = GPIO_PULLDOWN_DISABLE, .intr_type = GPIO_INTR_DISABLE }; esp_err_t err = gpio_config(&gpio_conf); assert(!err); /* set SDA and SCL to be floating and pulled-up to high */ _i2c_sda_high(bus); _i2c_scl_high(bus); /* clear the bus if necessary (SDA is driven permanently low) */ _i2c_clear(bus); } int IRAM_ATTR i2c_read_bytes(_i2c_bus_t* bus, uint16_t addr, void *data, size_t len, uint8_t flags) { int res = 0; /* send START condition and address if I2C_NOSTART is not set */ if (!(flags & I2C_NOSTART)) { /* START condition */ if ((res = _i2c_start_cond(bus)) != 0) { return res; } /* send 10 bit or 7 bit address */ if (flags & I2C_ADDR10) { /* prepare 10 bit address bytes */ uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7 | I2C_READ; uint8_t addr2 = addr & 0xff; /* send address bytes with read flag */ if ((res = _i2c_write_byte(bus, addr1)) != 0 || (res = _i2c_write_byte(bus, addr2)) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return -ENXIO; } } else { /* send address byte with read flag */ if ((res = _i2c_write_byte(bus, (addr << 1 | I2C_READ))) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return -ENXIO; } } } /* receive bytes if send address was successful */ for (unsigned int i = 0; i < len; i++) { if ((res = _i2c_read_byte(bus, &(((uint8_t*)data)[i]), i < len-1)) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return res; } } /* send STOP condition if I2C_NOSTOP flag is not set */ if (!(flags & I2C_NOSTOP)) { res = _i2c_stop_cond(bus); } return res; } int IRAM_ATTR i2c_write_bytes(_i2c_bus_t* bus, uint16_t addr, const void *data, size_t len, uint8_t flags) { int res = 0; /* if I2C_NOSTART is not set, send START condition and ADDR */ if (!(flags & I2C_NOSTART)) { /* START condition */ if ((res = _i2c_start_cond(bus)) != 0) { return res; } /* send 10 bit or 7 bit address */ if (flags & I2C_ADDR10) { /* prepare 10 bit address bytes */ uint8_t addr1 = 0xf0 | (addr & 0x0300) >> 7; uint8_t addr2 = addr & 0xff; /* send address bytes without read flag */ if ((res = _i2c_write_byte(bus, addr1)) != 0 || (res = _i2c_write_byte(bus, addr2)) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return -ENXIO; } } else { /* send address byte without read flag */ if ((res = _i2c_write_byte(bus, addr << 1)) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return -ENXIO; } } } /* send bytes if send address was successful */ for (unsigned int i = 0; i < len; i++) { if ((res = _i2c_write_byte(bus, ((uint8_t*)data)[i])) != 0) { /* abort transfer */ _i2c_abort(bus, __func__); return res; } } /* send STOP condition if I2C_NOSTOP flag is not set */ if (!(flags & I2C_NOSTOP)) { res = _i2c_stop_cond(bus); } return res; } /* --- internal functions --- */ static inline void _i2c_delay(_i2c_bus_t* bus) { /* produces a delay */ uint32_t cycles = bus->delay; if (cycles) { __asm__ volatile ("1: _addi.n %0, %0, -1 \n" " bnez %0, 1b \n" : "=r" (cycles) : "0" (cycles)); } } /* * Please note: SDA and SDL pins are used in GPIO_OD_PU mode * (open-drain with pull-ups). * * Setting a pin which is in open-drain mode leaves the pin floating and * the signal is pulled up to high. The signal can then be actively driven * to low by a slave. A read operation returns the current signal at the pin. * * Clearing a pin which is in open-drain mode actively drives the signal to * low. */ static inline bool _i2c_scl_read(_i2c_bus_t* bus) { // return gpio_get_level(bus->scl); /* read SCL status (pin is in open-drain mode and set) */ return GPIO_GET(in, in1, bus->scl); } static inline bool _i2c_sda_read(_i2c_bus_t* bus) { // return gpio_get_level(bus->sda); /* read SDA status (pin is in open-drain mode and set) */ return GPIO_GET(in, in1, bus->sda); } static inline void _i2c_scl_high(_i2c_bus_t* bus) { // gpio_set_level(bus->scl, 1); // return; /* set SCL signal high (pin is in open-drain mode and pulled-up) */ GPIO_SET(out_w1ts, out1_w1ts, bus->scl); } static inline void _i2c_scl_low(_i2c_bus_t* bus) { // gpio_set_level(bus->scl, 0); // return; /* set SCL signal low (actively driven to low) */ GPIO_SET(out_w1tc, out1_w1tc, bus->scl); } static inline void _i2c_sda_high(_i2c_bus_t* bus) { // gpio_set_level(bus->sda, 1); // return; /* set SDA signal high (pin is in open-drain mode and pulled-up) */ GPIO_SET(out_w1ts, out1_w1ts, bus->sda); } static inline void _i2c_sda_low(_i2c_bus_t* bus) { // gpio_set_level(bus->sda, 0); // return; /* set SDA signal low (actively driven to low) */ GPIO_SET(out_w1tc, out1_w1tc, bus->sda); } static void _i2c_clear(_i2c_bus_t* bus) { //DEBUG("%s: dev=%u\n", __func__, bus->dev); /** * Sometimes a slave blocks and drives the SDA line permanently low. * Send some clock pulses in that case (10 at maximum) */ /* * If SDA is low while SCL is high for 10 half cycles, it is not an * arbitration lost but a bus lock. */ int count = 10; while (!_i2c_sda_read(bus) && _i2c_scl_read(bus) && count) { count--; _i2c_delay(bus); } if (count) { /* was not a bus lock */ return; } /* send 10 clock pulses in case of bus lock */ count = 10; while (!_i2c_sda_read(bus) && count--) { _i2c_scl_low(bus); _i2c_delay(bus); _i2c_scl_high(bus); _i2c_delay(bus); } } static void _i2c_abort(_i2c_bus_t* bus, const char* func) { //DEBUG("%s: dev=%u\n", func, bus->dev); /* reset SCL and SDA to passive HIGH (floating and pulled-up) */ _i2c_sda_high(bus); _i2c_scl_high(bus); /* reset repeated start indicator */ bus->started = false; /* clear the bus if necessary (SDA is driven permanently low) */ _i2c_clear(bus); } static IRAM_ATTR int _i2c_arbitration_lost(_i2c_bus_t* bus, const char* func) { //DEBUG("%s: arbitration lost dev=%u\n", func, bus->dev); /* reset SCL and SDA to passive HIGH (floating and pulled-up) */ _i2c_sda_high(bus); _i2c_scl_high(bus); /* reset repeated start indicator */ bus->started = false; /* clear the bus if necessary (SDA is driven permanently low) */ _i2c_clear(bus); return -EAGAIN; } static IRAM_ATTR int _i2c_start_cond(_i2c_bus_t* bus) { /* * send start condition * on entry: SDA and SCL are set to be floating and pulled-up to high * on exit : SDA and SCL are actively driven to low */ int res = 0; if (bus->started) { /* prepare the repeated start condition */ /* SDA = passive HIGH (floating and pulled-up) */ _i2c_sda_high(bus); /* t_VD;DAT not necessary */ /* _i2c_delay(bus); */ /* SCL = passive HIGH (floating and pulled-up) */ _i2c_scl_high(bus); /* clock stretching, wait as long as clock is driven to low by the slave */ uint32_t stretch = I2C_CLOCK_STRETCH; while (stretch && !_i2c_scl_read(bus)) { stretch--; } if (stretch == 0) { //DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev); res = -ETIMEDOUT; } /* wait t_SU;STA - set-up time for a repeated START condition */ /* min. in us: 4.7 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */ _i2c_delay(bus); } /* if SDA is low, arbitration is lost and someone else is driving the bus */ if (!_i2c_sda_read(bus)) { return _i2c_arbitration_lost(bus, __func__); } /* begin the START condition: SDA = active LOW */ _i2c_sda_low(bus); /* wait t_HD;STA - hold time (repeated) START condition, */ /* max none */ /* min 4.0 us (SM), 0.6 us (FM), 0.26 us (FPM), 0.16 us (HSM) */ _i2c_delay(bus); /* complete the START condition: SCL = active LOW */ _i2c_scl_low(bus); /* needed for repeated start condition */ bus->started = true; return res; } static IRAM_ATTR int _i2c_stop_cond(_i2c_bus_t* bus) { /* * send stop condition * on entry: SCL is active low and SDA can be changed * on exit : SCL and SDA are set to be floating and pulled-up to high */ int res = 0; /* begin the STOP condition: SDA = active LOW */ _i2c_sda_low(bus); /* wait t_LOW - LOW period of SCL clock */ /* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */ _i2c_delay(bus); /* SCL = passive HIGH (floating and pulled up) while SDA = active LOW */ _i2c_scl_high(bus); /* clock stretching, wait as long as clock is driven to low by the slave */ uint32_t stretch = I2C_CLOCK_STRETCH; while (stretch && !_i2c_scl_read(bus)) { stretch--; } if (stretch == 0) { //DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev); res = -ETIMEDOUT; } /* wait t_SU;STO - hold time STOP condition, */ /* min. in us: 4.0 (SM), 0.6 (FM), 0.26 (FPM), 0.16 (HSM); no max. */ _i2c_delay(bus); /* complete the STOP condition: SDA = passive HIGH (floating and pulled up) */ _i2c_sda_high(bus); /* reset repeated start indicator */ bus->started = false; /* wait t_BUF - bus free time between a STOP and a START condition */ /* min. in us: 4.7 (SM), 1.3 (FM), 0.5 (FPM), 0.16 (HSM); no max. */ _i2c_delay(bus); /* one additional delay */ _i2c_delay(bus); /* if SDA is low, arbitration is lost and someone else is driving the bus */ if (_i2c_sda_read(bus) == 0) { return _i2c_arbitration_lost(bus, __func__); } return res; } static IRAM_ATTR int _i2c_write_bit(_i2c_bus_t* bus, bool bit) { /* * send one bit * on entry: SCL is active low, SDA can be changed * on exit : SCL is active low, SDA can be changed */ int res = 0; /* SDA = bit */ if (bit) { _i2c_sda_high(bus); } else { _i2c_sda_low(bus); } /* wait t_VD;DAT - data valid time (time until data are valid) */ /* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */ _i2c_delay(bus); /* SCL = passive HIGH (floating and pulled-up), SDA value is available */ _i2c_scl_high(bus); /* wait t_HIGH - time for the slave to read SDA */ /* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */ _i2c_delay(bus); /* clock stretching, wait as long as clock is driven low by the slave */ uint32_t stretch = I2C_CLOCK_STRETCH; while (stretch && !_i2c_scl_read(bus)) { stretch--; } if (stretch == 0) { //DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev); res = -ETIMEDOUT; } /* if SCL is high, now data is valid */ /* if SDA is high, check that nobody else is driving SDA low */ if (bit && !_i2c_sda_read(bus)) { return _i2c_arbitration_lost(bus, __func__); } /* SCL = active LOW to allow next SDA change */ _i2c_scl_low(bus); return res; } static IRAM_ATTR int _i2c_read_bit(_i2c_bus_t* bus, bool* bit) { /* read one bit * on entry: SCL is active low, SDA can be changed * on exit : SCL is active low, SDA can be changed */ int res = 0; /* SDA = passive HIGH (floating and pulled-up) to let the slave drive data */ _i2c_sda_high(bus); /* wait t_VD;DAT - data valid time (time until data are valid) */ /* max. in us: 3.45 (SM), 0.9 (FM), 0.45 (FPM); no min */ _i2c_delay(bus); /* SCL = passive HIGH (floating and pulled-up), SDA value is available */ _i2c_scl_high(bus); /* clock stretching, wait as long as clock is driven to low by the slave */ uint32_t stretch = I2C_CLOCK_STRETCH; while (stretch && !_i2c_scl_read(bus)) { stretch--; } if (stretch == 0) { //DEBUG("%s: clock stretching timeout dev=%u\n", __func__, bus->dev); res = -ETIMEDOUT; } /* wait t_HIGH - time for the slave to read SDA */ /* min. in us: 4 (SM), 0.6 (FM), 0.26 (FPM), 0.09 (HSM); no max. */ _i2c_delay(bus); /* SCL is high, read out bit */ *bit = _i2c_sda_read(bus); /* SCL = active LOW to allow next SDA change */ _i2c_scl_low(bus); return res; } static IRAM_ATTR int _i2c_write_byte(_i2c_bus_t* bus, uint8_t byte) { /* send one byte and returns 0 in case of ACK from slave */ /* send the byte from MSB to LSB */ for (unsigned i = 0; i < 8; i++) { int res = _i2c_write_bit(bus, (byte & 0x80) != 0); if (res != 0) { return res; } byte = byte << 1; } /* read acknowledge bit (low) from slave */ bool bit; int res = _i2c_read_bit(bus, &bit); if (res != 0) { return res; } return !bit ? 0 : -EIO; } static IRAM_ATTR int _i2c_read_byte(_i2c_bus_t* bus, uint8_t *byte, bool ack) { bool bit; /* read the byte */ for (unsigned i = 0; i < 8; i++) { int res = _i2c_read_bit(bus, &bit); if (res != 0) { return res; } *byte = (*byte << 1) | (bit ? 1 : 0); } /* write acknowledgement flag */ _i2c_write_bit(bus, !ack); return 0; } int i2c_read_regs(_i2c_bus_t* bus, uint16_t addr, uint16_t reg, void *data, size_t len, uint8_t flags) { uint16_t reg_end = reg; if (flags & (I2C_NOSTOP | I2C_NOSTART)) { return -EOPNOTSUPP; } /* Handle endianness of register if 16 bit */ if (flags & I2C_REG16) { reg_end = htons(reg); /* Make sure register is in big-endian on I2C bus */ } /* First set ADDR and register with no stop */ int ret = i2c_write_bytes(bus, addr, ®_end, (flags & I2C_REG16) ? 2 : 1, flags | I2C_NOSTOP); if (ret < 0) { return ret; } /* Then get the data from device */ return i2c_read_bytes(bus, addr, data, len, flags); } int i2c_read_reg(_i2c_bus_t* bus, uint16_t addr, uint16_t reg, void *data, uint8_t flags) { return i2c_read_regs(bus, addr, reg, data, 1, flags); } int i2c_read_byte(_i2c_bus_t* bus, uint16_t addr, void *data, uint8_t flags) { return i2c_read_bytes(bus, addr, data, 1, flags); } int i2c_write_byte(_i2c_bus_t* bus, uint16_t addr, uint8_t data, uint8_t flags) { return i2c_write_bytes(bus, addr, &data, 1, flags); } int i2c_write_regs(_i2c_bus_t* bus, uint16_t addr, uint16_t reg, const void *data, size_t len, uint8_t flags) { uint16_t reg_end = reg; if (flags & (I2C_NOSTOP | I2C_NOSTART)) { return -EOPNOTSUPP; } /* Handle endianness of register if 16 bit */ if (flags & I2C_REG16) { reg_end = htons(reg); /* Make sure register is in big-endian on I2C bus */ } /* First set ADDR and register with no stop */ int ret = i2c_write_bytes(bus, addr, ®_end, (flags & I2C_REG16) ? 2 : 1, flags | I2C_NOSTOP); if (ret < 0) { return ret; } /* Then write data to the device */ return i2c_write_bytes(bus, addr, data, len, flags | I2C_NOSTART); } int i2c_write_reg(_i2c_bus_t* bus, uint16_t addr, uint16_t reg, uint8_t data, uint8_t flags) { return i2c_write_regs(bus, addr, reg, &data, 1, flags); }