ardupilot/libraries/AC_AutoTune/AC_AutoTune_Heli.h

314 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of helicopters
*/
#pragma once
#include "AC_AutoTune_config.h"
#if AC_AUTOTUNE_ENABLED
#include "AC_AutoTune.h"
#include <AP_Math/chirp.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Scheduler/AP_Scheduler.h>
class AC_AutoTune_Heli : public AC_AutoTune
{
public:
// constructor
AC_AutoTune_Heli();
// save gained, called on disarm
void save_tuning_gains() override;
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
protected:
//
// methods to load and save gains
//
// backup original gains and prepare for start of tuning
void backup_gains_and_initialise() override;
// load gains
void load_gain_set(AxisType s_axis, float rate_p, float rate_i, float rate_d, float rate_ff, float angle_p, float max_accel, float rate_fltt, float rate_flte, float smax, float max_rate);
// switch to use original gains
void load_orig_gains() override;
// switch to gains found by last successful autotune
void load_tuned_gains() override;
// load gains used between tests. called during testing mode's update-gains step to set gains ahead of return-to-level step
void load_intra_test_gains() override;
// load test gains
void load_test_gains() override;
// reset the test variables for heli
void reset_vehicle_test_variables() override;
// reset the update gain variables for heli
void reset_update_gain_variables() override;
// initializes test
void test_init() override;
// runs test
void test_run(AxisType test_axis, const float dir_sign) override;
// update gains for the rate p up tune type
void updating_rate_p_up_all(AxisType test_axis) override;
// update gains for the rate d up tune type
void updating_rate_d_up_all(AxisType test_axis) override;
// update gains for the rate d down tune type
void updating_rate_d_down_all(AxisType test_axis) override {};
// update gains for the rate ff up tune type
void updating_rate_ff_up_all(AxisType test_axis) override;
// update gains for the angle p up tune type
void updating_angle_p_up_all(AxisType test_axis) override;
// update gains for the angle p down tune type
void updating_angle_p_down_all(AxisType test_axis) override {};
// update gains for the max gain tune type
void updating_max_gains_all(AxisType test_axis) override;
// set gains post tune for the tune type
void set_gains_post_tune(AxisType test_axis) override;
// reverse direction for twitch test
bool twitch_reverse_direction() override { return positive_direction; }
#if HAL_LOGGING_ENABLED
// methods to log autotune summary data
void Log_AutoTune() override;
void Log_Write_AutoTune(AxisType _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel);
// methods to log autotune time history results for command, angular rate, and attitude.
void Log_AutoTuneDetails() override;
void Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad);
// methods to log autotune frequency response results
void Log_AutoTuneSweep() override;
void Log_Write_AutoTuneSweep(float freq_mtr, float gain_mtr, float phase_mtr, float freq_tgt, float gain_tgt, float phase_tgt);
#endif
// send intermittent updates to user on status of tune
void do_gcs_announcements() override;
// send post test updates to user
void do_post_test_gcs_announcements() override;
// report final gains for a given axis to GCS
void report_final_gains(AxisType test_axis) const override;
// set the tuning test sequence
void set_tune_sequence() override;
// get_axis_bitmask accessor
uint8_t get_axis_bitmask() const override { return axis_bitmask; }
// get_testing_step_timeout_ms accessor
uint32_t get_testing_step_timeout_ms() const override;
private:
// sweep_info contains information about a specific test's sweep results
struct sweep_info {
float freq;
float gain;
float phase;
};
// max_gain_data type stores information from the max gain test
struct max_gain_data {
float freq;
float phase;
float gain;
float max_allowed;
};
// FreqRespCalcType is the type of calculation done for the frequency response
enum FreqRespCalcType {
RATE = 0,
ANGLE = 1,
DRB = 2,
};
enum FreqRespInput {
MOTOR = 0,
TARGET = 1,
};
float target_angle_max_rp_cd() const override;
float target_angle_max_y_cd() const override;
float target_angle_min_rp_cd() const override;
float target_angle_min_y_cd() const override;
float angle_lim_max_rp_cd() const override;
float angle_lim_neg_rpy_cd() const override;
// initialize dwell test or angle dwell test variables
void dwell_test_init(float start_frq, float stop_frq, float amplitude, float filt_freq, FreqRespInput freq_resp_input, FreqRespCalcType calc_type, AC_AutoTune_FreqResp::ResponseType resp_type, AC_AutoTune_FreqResp::InputType waveform_input_type);
// dwell test used to perform frequency dwells for rate gains
void dwell_test_run(sweep_info &test_data);
// updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is achieved
void updating_rate_ff_up(float &tune_ff, sweep_info &test_data, float &next_freq);
// updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain
void updating_rate_p_up(float &tune_p, sweep_info &test_data, float &next_freq, max_gain_data &max_gain_p);
// updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum
void updating_rate_d_up(float &tune_d, sweep_info &test_data, float &next_freq, max_gain_data &max_gain_d);
// updating_angle_p_up - determines maximum angle p gain for pitch and roll
void updating_angle_p_up(float &tune_p, sweep_info &test_data, float &next_freq);
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
void updating_max_gains(sweep_info &test_data, float &next_freq, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d);
// freq_search_for_phase: general search strategy for specified phase. interpolation done once specified phase has been bounded.
bool freq_search_for_phase(sweep_info test, float desired_phase, float freq_incr, sweep_info &est_data, float &new_freq);
// reset the max_gains update gain variables
void reset_maxgains_update_gain_variables();
// reset the sweep variables
void reset_sweep_variables();
// exceeded_freq_range - ensures tuning remains inside frequency range
bool exceeded_freq_range(float frequency);
// report gain formatting helper
void report_axis_gains(const char* axis_string, float rate_P, float rate_I, float rate_D, float rate_ff, float angle_P, float max_accel) const;
// define input type as Dwell or Sweep. Used through entire class
AC_AutoTune_FreqResp::InputType input_type;
sweep_info curr_data; // frequency response test results
float next_test_freq; // next test frequency for next test cycle setup
// max gain data for rate p tuning
max_gain_data max_rate_p;
// max gain data for rate d tuning
max_gain_data max_rate_d;
// updating max gain variables
// flag for finding maximum p gain
bool found_max_p;
// flag for finding maximum d gain
bool found_max_d;
// updating angle P up variables
float phase_max; // track the maximum phase and freq
float freq_max;
float sp_prev_gain; // previous gain
bool found_max_gain_freq; // flag for finding max gain frequency
bool found_peak; // flag for finding the peak of the gain response
// updating rate D up
float rd_prev_gain; // previous gain
// freq search for phase
sweep_info prev_test; // data from previous dwell
// Dwell Test variables
AC_AutoTune_FreqResp::InputType test_input_type;
FreqRespCalcType test_calc_type;
FreqRespInput test_freq_resp_input;
uint8_t num_dwell_cycles;
float test_start_freq;
float tgt_attitude;
float pre_calc_cycles; // number of cycles to complete before running frequency response calculations
float command_out; // test axis command output
float filt_target_rate; // filtered target rate
float dwell_start_time_ms; // start time in ms of dwell test
sweep_info curr_test;
sweep_info curr_test_mtr;
sweep_info curr_test_tgt;
Vector3f start_angles; // aircraft attitude at the start of test
uint32_t settle_time; // time in ms for allowing aircraft to stabilize before initiating test
// variables from dwell test
LowPassFilterVector2f filt_att_fdbk_from_velxy_cd;
LowPassFilterFloat filt_command_reading; // filtered command reading to keep oscillation centered
LowPassFilterFloat filt_gyro_reading; // filtered gyro reading to keep oscillation centered
LowPassFilterFloat filt_tgt_rate_reading; // filtered target rate reading to keep oscillation centered
// trim variables for determining trim state prior to test starting
float trim_yaw_tgt_reading_cd; // trim target yaw reading before starting test
float trim_yaw_heading_reading_cd; // trim heading reading before starting test
LowPassFilterFloat command_filt; // filtered command - filtering intended to remove noise
LowPassFilterFloat target_rate_filt; // filtered target rate in radians/second - filtering intended to remove noise
// sweep_data tracks the overall characteristics in the response to the frequency sweep
struct sweep_data {
sweep_info maxgain;
sweep_info ph180;
sweep_info ph270;
uint8_t progress; // set based on phase of frequency response. 0 - start; 1 - reached 180 deg; 2 - reached 270 deg;
};
sweep_data sweep_mtr;
sweep_data sweep_tgt;
bool sweep_complete;
// fix the frequency sweep time to 23 seconds
const float sweep_time_ms = 23000;
// parameters
AP_Int8 axis_bitmask; // axes to be tuned
AP_Int8 seq_bitmask; // tuning sequence bitmask
AP_Float min_sweep_freq; // minimum sweep frequency
AP_Float max_sweep_freq; // maximum sweep frequency
AP_Float max_resp_gain; // maximum response gain
AP_Float vel_hold_gain; // gain for velocity hold
AP_Float accel_max; // maximum autotune angular acceleration
AP_Float rate_max; // maximum autotune angular rate
// freqresp object for the frequency response tests
AC_AutoTune_FreqResp freqresp_mtr; // frequency response of output to motor mixer input
AC_AutoTune_FreqResp freqresp_tgt; // frequency response of output to target input
// allow tracking of cycles complete for frequency response object
bool cycle_complete_tgt;
bool cycle_complete_mtr;
Chirp chirp_input;
};
#endif // AC_AUTOTUNE_ENABLED