Constructor allocate '_samples' but there was no destructor to
deallocate it. Also, initializes '_gain' to silence CID 9144 although
'_gain' wasn't being used uninitialized because of ::init().
CID 91424
This is the only user of ADS7844 - we don't have it actually used in our
boards. Remove the example since we can later add a more generic one or
at least one that reuses a driver from our boards.
The minimum version for gcc was supposed to be 4.9 for any platform.
However our build instructions are outdated. Remove the problematic
parts that use the sparse-endian.h header while we don't fix the setup
for windows.
In _start_conversion(), the check for return code of _dev->transfer() was
inverted. The structure also needs to be PACKED, otherwise there will be
a hole in the middle. Fix these issues and use be16_t where it makes
sense.
In read() we need to check for the second byte of config register, so
either make it an array of uint8_t or convert from big endian to host
endianness. It's simpler to leave it as it was, accessing just the
first byte. Also the conversion value is in be16 type an needs to be
converted to host endiannes, not the opposite.
Fix bus number: all boards that use it expect it to be on bus 1, not 0.
../../libraries/AP_ADC/examples/AP_ADC_test/AP_ADC_test.cpp: In function ‘void show_timing()’:
../../libraries/AP_ADC/examples/AP_ADC_test/AP_ADC_test.cpp:61:88: warning: format ‘%lu’ expects argument of type ‘long unsigned int’, but argument 3 has type ‘uint32_t {aka unsigned int}’ [-Wformat=]
hal.console->printf("timing: mint=%lu maxt=%lu avg=%lu\n", mint, maxt, totalt/count);
^
../../libraries/AP_ADC/examples/AP_ADC_test/AP_ADC_test.cpp:61:88: warning: format ‘%lu’ expects argument of type ‘long unsigned int’, but argument 4 has type ‘uint32_t {aka unsigned int}’ [-Wformat=]
../../libraries/AP_ADC/examples/AP_ADC_test/AP_ADC_test.cpp:61:88: warning: format ‘%lu’ expects argument of type ‘long unsigned int’, but argument 5 has type ‘uint32_t {aka unsigned int}’ [-Wformat=]
Most of AP_Progmem is already gone so we can stop including it in most
of the places. The only places that need it are the ones using
pgm_read_*() APIs.
In some cases the header needed to be added in the .cpp since it was
removed from the .h to reduce scope. In those cases the headers were
also reordered.
The PSTR is already define as a NOP for all supported platforms. It's
only needed for AVR so here we remove all the uses throughout the
codebase.
This was automated with a simple python script so it also converts
places which spans to multiple lines, removing the matching parentheses.
AVR-specific places were not changed.
Instead of requiring every program to specify the HAL related modules,
let the build system do it (in practice everything we compiled depended
on HAL anyway). This allow including only the necessary files in the
compilation.
The switching between different AP_HAL was happening by giving different
definitions of AP_HAL_BOARD_DRIVER, and the programs would use it to
instantiate.
A program or library code would have to explicitly include (and depend)
on the concrete implementation of the HAL, even when using it only via
interface.
The proposed change move this dependency to be link time. There is a
AP_HAL::get_HAL() function that is used by the client code. Each
implementation of HAL provides its own definition of this function,
returning the appropriate concrete instance.
Since this replaces the job of AP_HAL_BOARD_DRIVER, the definition was
removed.
The static variables for PX4 and VRBRAIN were named differently to avoid
shadowing the extern symbol 'hal'.
This commit changes the way libraries headers are included in source files:
- If the header is in the same directory the source belongs to, so the
notation '#include ""' is used with the path relative to the directory
containing the source.
- If the header is outside the directory containing the source, then we use
the notation '#include <>' with the path relative to libraries folder.
Some of the advantages of such approach:
- Only one search path for libraries headers.
- OSs like Windows may have a better lookup time.
- Allows use of hardware floating point on the Cortex-M4.
- Added "f" suffix to floating point literals.
- Call floating point versions of stdlib math functions.