ardupilot/ArduCopter/sensors.pde

186 lines
4.7 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE
static void ReadSCP1000(void) {}
#if CONFIG_SONAR == ENABLED
static void init_sonar(void)
{
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
sonar.calculate_scaler(g.sonar_type, 3.3);
#else
sonar.calculate_scaler(g.sonar_type, 5.0);
#endif
}
#endif
static void init_barometer(void)
{
#if HIL_MODE == HIL_MODE_SENSORS
gcs_update(); // look for inbound hil packets for initialization
#endif
ground_temperature = barometer.get_temperature();
int i;
// We take some readings...
for(i = 0; i < 60; i++){
delay(20);
// get new data from absolute pressure sensor
barometer.read();
//Serial.printf("init %ld, %d, -, %ld, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press);
}
for(i = 0; i < 20; i++){
delay(20);
#if HIL_MODE == HIL_MODE_SENSORS
gcs_update(); // look for inbound hil packets
#endif
// Get initial data from absolute pressure sensor
barometer.read();
ground_pressure = barometer.get_pressure();
ground_temperature = (ground_temperature * 9 + barometer.get_temperature()) / 10;
//Serial.printf("init %ld, %d, -, %ld, %ld, -, %d, %ld\n", barometer.RawTemp, barometer.Temp, barometer.RawPress, barometer.Press, ground_temperature, ground_pressure);
}
abs_pressure = ground_pressure;
//Serial.printf("init %ld\n", abs_pressure);
//SendDebugln("barometer calibration complete.");
}
/*
static int32_t read_baro_filtered(void)
{
// get new data from absolute pressure sensor
barometer.Read();
return barometer.Press;
int32_t pressure = 0;
// add new data into our filter
baro_filter[baro_filter_index] = barometer.Press;
baro_filter_index++;
// loop our filter
if(baro_filter_index >= BARO_FILTER_SIZE)
baro_filter_index = 0;
// zero out our accumulator
// sum our filter
for(byte i = 0; i < BARO_FILTER_SIZE; i++){
pressure += baro_filter[i];
}
// average our sampels
return pressure /= BARO_FILTER_SIZE;
//
}
*/
static int32_t read_barometer(void)
{
float x, scaling, temp;
barometer.read();
abs_pressure = barometer.get_pressure();
//Serial.printf("%ld, %ld, %ld, %ld\n", barometer.RawTemp, barometer.RawPress, barometer.Press, abs_pressure);
scaling = (float)ground_pressure / (float)abs_pressure;
temp = ((float)ground_temperature / 10.0f) + 273.15f;
x = log(scaling) * temp * 29271.267f;
return (x / 10);
}
// in M/S * 100
static void read_airspeed(void)
{
}
static void zero_airspeed(void)
{
}
static void init_compass()
{
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
dcm.set_compass(&compass);
compass.init();
compass.get_offsets(); // load offsets to account for airframe magnetic interference
}
static void init_optflow()
{
#ifdef OPTFLOW_ENABLED
if( optflow.init(false) == false ) {
g.optflow_enabled = false;
SendDebug("\nFailed to Init OptFlow ");
}
optflow.set_orientation(OPTFLOW_ORIENTATION); // set optical flow sensor's orientation on aircraft
optflow.set_field_of_view(OPTFLOW_FOV); // set optical flow sensor's field of view
// setup timed read of sensor
//timer_scheduler.register_process(&AP_OpticalFlow::read);
#endif
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
static void read_battery(void)
{
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9;
battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9;
battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9;
battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9;
if(g.battery_monitoring == 1)
battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream
2011-09-16 22:56:51 -03:00
if(g.battery_monitoring == 2)
battery_voltage = battery_voltage4;
2011-09-16 22:56:51 -03:00
if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage = battery_voltage1;
2011-09-16 22:56:51 -03:00
if(g.battery_monitoring == 4) {
current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin
current_total += current_amps * 0.0278; // called at 100ms on average
}
#if BATTERY_EVENT == 1
2011-09-18 21:12:28 -03:00
//if(battery_voltage < g.low_voltage)
// low_battery_event();
2011-09-18 21:12:28 -03:00
if((battery_voltage < g.low_voltage) || (g.battery_monitoring == 4 && current_total > g.pack_capacity)){
low_battery_event();
2011-09-18 21:12:28 -03:00
#if PIEZO_LOW_VOLTAGE == 1
// Only Activate if a battery is connected to avoid alarm on USB only
if (battery_voltage1 > 1){
piezo_on();
}else{
piezo_off();
}
#endif
}else{
#if PIEZO_LOW_VOLTAGE == 1
piezo_off();
#endif
}
#endif
}
//v: 10.9453, a: 17.4023, mah: 8.2