ardupilot/ArduCopterMega/sensors.pde

114 lines
3.2 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE
void ReadSCP1000(void) {}
void init_barometer(void)
{
int flashcount;
#if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets for initialization
#endif
ground_pressure = 0;
while(ground_pressure == 0){
barometer.Read(); // Get initial data from absolute pressure sensor
ground_pressure = barometer.Press;
ground_temperature = barometer.Temp;
delay(20);
//Serial.printf("barometer.Press %ld\n", barometer.Press);
}
for(int i = 0; i < 30; i++){ // We take some readings...
#if HIL_MODE == HIL_MODE_SENSORS
hil.update(); // look for inbound hil packets
#endif
barometer.Read(); // Get initial data from absolute pressure sensor
ground_pressure = (ground_pressure * 9l + barometer.Press) / 10l;
ground_temperature = (ground_temperature * 9 + barometer.Temp) / 10;
delay(20);
if(flashcount == 5) {
digitalWrite(C_LED_PIN, LOW);
digitalWrite(A_LED_PIN, HIGH);
digitalWrite(B_LED_PIN, LOW);
}
if(flashcount >= 10) {
flashcount = 0;
digitalWrite(C_LED_PIN, HIGH);
digitalWrite(A_LED_PIN, LOW);
digitalWrite(B_LED_PIN, HIGH);
}
flashcount++;
}
// makes the filtering work later
abs_pressure = barometer.Press;
// save home pressure
ground_pressure = abs_pressure;
//Serial.printf("abs_pressure %ld\n", abs_pressure);
//SendDebugln("barometer calibration complete.");
}
long read_barometer(void)
{
float x, scaling, temp;
barometer.Read(); // Get new data from absolute pressure sensor
//abs_pressure = (abs_pressure + barometer.Press) >> 1; // Small filtering
abs_pressure = ((float)abs_pressure * .7) + ((float)barometer.Press * .3); // large filtering
scaling = (float)ground_pressure / (float)abs_pressure;
temp = ((float)ground_temperature / 10.0f) + 273.15f;
x = log(scaling) * temp * 29271.267f;
return (x / 10);
}
// in M/S * 100
void read_airspeed(void)
{
}
void zero_airspeed(void)
{
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
void read_battery(void)
{
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9;
battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9;
battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9;
battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9;
if(g.battery_monitoring == 1)
battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream
if(g.battery_monitoring == 2)
battery_voltage = battery_voltage4;
if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage = battery_voltage1;
if(g.battery_monitoring == 4) {
current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin
current_total += current_amps * (float)delta_ms_medium_loop * 0.000278;
}
#if BATTERY_EVENT == 1
if(battery_voltage < LOW_VOLTAGE) low_battery_event();
if(g.battery_monitoring == 4 && current_total > g.pack_capacity) low_battery_event();
#endif
}
//v: 10.9453, a: 17.4023, mah: 8.2