ardupilot/libraries/AP_Motors/AP_MotorsHeli_Dual.cpp

600 lines
23 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_MotorsHeli_Dual.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Dual, _servo1_pos, AP_MOTORS_HELI_DUAL_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Dual, _servo2_pos, AP_MOTORS_HELI_DUAL_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Dual, _servo3_pos, AP_MOTORS_HELI_DUAL_SERVO3_POS),
// @Param: SV4_POS
// @DisplayName: Servo 4 Position
// @Description: Angular location of swash servo #4
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV4_POS", 4, AP_MotorsHeli_Dual, _servo4_pos, AP_MOTORS_HELI_DUAL_SERVO4_POS),
// @Param: SV5_POS
// @DisplayName: Servo 5 Position
// @Description: Angular location of swash servo #5
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV5_POS", 5, AP_MotorsHeli_Dual, _servo5_pos, AP_MOTORS_HELI_DUAL_SERVO5_POS),
// @Param: SV6_POS
// @DisplayName: Servo 6 Position
// @Description: Angular location of swash servo #6
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV6_POS", 6, AP_MotorsHeli_Dual, _servo6_pos, AP_MOTORS_HELI_DUAL_SERVO6_POS),
// @Param: PHANG1
// @DisplayName: Swashplate 1 Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG1", 7, AP_MotorsHeli_Dual, _swash1_phase_angle, 0),
// @Param: PHANG2
// @DisplayName: Swashplate 2 Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG2", 8, AP_MotorsHeli_Dual, _swash2_phase_angle, 0),
// @Param: DUAL_MODE
// @DisplayName: Dual Mode
// @Description: Sets the dual mode of the heli, either as tandem or as transverse.
// @Values: 0:Longitudinal, 1:Transverse
// @User: Standard
AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM),
// @Param: DCP_SCALER
// @DisplayName: Differential-Collective-Pitch Scaler
// @Description: Scaling factor applied to the differential-collective-pitch
// @Range: 0 1
// @User: Standard
AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER),
// @Param: DCP_YAW
// @DisplayName: Differential-Collective-Pitch Yaw Mixing
// @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0),
// @Param: YAW_SCALER
// @DisplayName: Scaler for yaw mixing
// @Description: Scaler for mixing yaw into roll or pitch.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f),
// @Param: RSC_PWM_MIN
// @DisplayName: RSC PWM output miniumum
// @Description: This sets the PWM output on RSC channel for maximum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MIN", 13, AP_MotorsHeli_Dual, _rotor._pwm_min, 1000),
// @Param: RSC_PWM_MAX
// @DisplayName: RSC PWM output maxiumum
// @Description: This sets the PWM output on RSC channel for miniumum rotor speed
// @Range: 0 2000
// @User: Standard
AP_GROUPINFO("RSC_PWM_MAX", 14, AP_MotorsHeli_Dual, _rotor._pwm_max, 2000),
// @Param: RSC_PWM_REV
// @DisplayName: RSC PWM reversal
// @Description: This controls reversal of the RSC channel output
// @Values: -1:Reversed,1:Normal
// @User: Standard
AP_GROUPINFO("RSC_PWM_REV", 15, AP_MotorsHeli_Dual, _rotor._pwm_rev, 1),
// @Param: COL2_MIN
// @DisplayName: Collective Pitch Minimum for rear swashplate
// @Description: Lowest possible servo position for the rear swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN),
// @Param: COL2_MAX
// @DisplayName: Collective Pitch Maximum for rear swashplate
// @Description: Highest possible servo position for the rear swashplate
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX),
// @Param: COL2_MID
// @DisplayName: Collective Pitch Mid-Point for rear swashplate
// @Description: Swash servo position corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades)
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID),
AP_GROUPEND
};
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4 |
1U << AP_MOTORS_MOT_5 |
1U << AP_MOTORS_MOT_6;
rc_set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli_Dual::enable()
{
// enable output channels
rc_enable_ch(AP_MOTORS_MOT_1);
rc_enable_ch(AP_MOTORS_MOT_2);
rc_enable_ch(AP_MOTORS_MOT_3);
rc_enable_ch(AP_MOTORS_MOT_4);
rc_enable_ch(AP_MOTORS_MOT_5);
rc_enable_ch(AP_MOTORS_MOT_6);
rc_enable_ch(AP_MOTORS_HELI_DUAL_RSC);
}
// init_outputs
bool AP_MotorsHeli_Dual::init_outputs()
{
if (!_flags.initialised_ok) {
_swash_servo_1 = SRV_Channels::get_channel_for(SRV_Channel::k_motor1, CH_1);
_swash_servo_2 = SRV_Channels::get_channel_for(SRV_Channel::k_motor2, CH_2);
_swash_servo_3 = SRV_Channels::get_channel_for(SRV_Channel::k_motor3, CH_3);
_swash_servo_4 = SRV_Channels::get_channel_for(SRV_Channel::k_motor4, CH_4);
_swash_servo_5 = SRV_Channels::get_channel_for(SRV_Channel::k_motor5, CH_5);
_swash_servo_6 = SRV_Channels::get_channel_for(SRV_Channel::k_motor6, CH_6);
if (!_swash_servo_1 || !_swash_servo_2 || !_swash_servo_3 ||
!_swash_servo_4 || !_swash_servo_5 || !_swash_servo_6) {
return false;
}
}
// reset swash servo range and endpoints
reset_swash_servo (_swash_servo_1);
reset_swash_servo (_swash_servo_2);
reset_swash_servo (_swash_servo_3);
reset_swash_servo (_swash_servo_4);
reset_swash_servo (_swash_servo_5);
reset_swash_servo (_swash_servo_6);
// set rotor servo range
_rotor.init_servo();
_flags.initialised_ok = true;
return true;
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Dual::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// swash servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// swash servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// swash servo 4
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// swash servo 5
rc_write(AP_MOTORS_MOT_5, pwm);
break;
case 6:
// swash servo 6
rc_write(AP_MOTORS_MOT_6, pwm);
break;
case 7:
// main rotor
rc_write(AP_MOTORS_HELI_DUAL_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed)
{
_rotor.set_desired_speed(desired_speed);
}
// calculate_armed_scalars
void AP_MotorsHeli_Dual::calculate_armed_scalars()
{
_rotor.set_ramp_time(_rsc_ramp_time);
_rotor.set_runup_time(_rsc_runup_time);
_rotor.set_critical_speed(_rsc_critical/1000.0f);
_rotor.set_idle_output(_rsc_idle_output/1000.0f);
_rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_high/1000.0f, 0);
}
// calculate_scalars
void AP_MotorsHeli_Dual::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
// range check collective min, max and mid for rear swashplate
if( _collective2_min >= _collective2_max ) {
_collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN;
_collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
_collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min));
_collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min));
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set mode of main rotor controller and trigger recalculation of scalars
_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
calculate_armed_scalars();
}
// calculate_swash_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Dual::calculate_roll_pitch_collective_factors()
{
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
// roll factors
_rollFactor[CH_1] = _dcp_scaler;
_rollFactor[CH_2] = _dcp_scaler;
_rollFactor[CH_3] = _dcp_scaler;
_rollFactor[CH_4] = -_dcp_scaler;
_rollFactor[CH_5] = -_dcp_scaler;
_rollFactor[CH_6] = -_dcp_scaler;
// pitch factors
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _swash1_phase_angle));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _swash1_phase_angle));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _swash1_phase_angle));
_pitchFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle));
_pitchFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle));
_pitchFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle));
// yaw factors
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 180 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 180 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 180 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)) * _yaw_scaler;
_yawFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)) * _yaw_scaler;
_yawFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)) * _yaw_scaler;
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
// roll factors
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle));
_rollFactor[CH_4] = cosf(radians(_servo4_pos + 90 - _swash2_phase_angle));
_rollFactor[CH_5] = cosf(radians(_servo5_pos + 90 - _swash2_phase_angle));
_rollFactor[CH_6] = cosf(radians(_servo6_pos + 90 - _swash2_phase_angle));
// pitch factors
_pitchFactor[CH_1] = _dcp_scaler;
_pitchFactor[CH_2] = _dcp_scaler;
_pitchFactor[CH_3] = _dcp_scaler;
_pitchFactor[CH_4] = -_dcp_scaler;
_pitchFactor[CH_5] = -_dcp_scaler;
_pitchFactor[CH_6] = -_dcp_scaler;
// yaw factors
_yawFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)) * _yaw_scaler;
_yawFactor[CH_4] = cosf(radians(_servo4_pos + 270 - _swash2_phase_angle)) * _yaw_scaler;
_yawFactor[CH_5] = cosf(radians(_servo5_pos + 270 - _swash2_phase_angle)) * _yaw_scaler;
_yawFactor[CH_6] = cosf(radians(_servo6_pos + 270 - _swash2_phase_angle)) * _yaw_scaler;
}
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
_collectiveFactor[CH_4] = 1;
_collectiveFactor[CH_5] = 1;
_collectiveFactor[CH_6] = 1;
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Dual::get_motor_mask()
{
// dual heli uses channels 1,2,3,4,5,6 and 8
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 4 | 1U << 5 | 1U << 6 | 1U << AP_MOTORS_HELI_DUAL_RSC);
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state)
{
// Send state update to motors
_rotor.output(state);
if (state == ROTOR_CONTROL_STOP) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX);
}
// Check if rotors are run-up
_heliflags.rotor_runup_complete = _rotor.is_runup_complete();
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
if (pitch_out < -_cyclic_max/4500.0f) {
pitch_out = -_cyclic_max/4500.0f;
limit.roll_pitch = true;
}
if (pitch_out > _cyclic_max/4500.0f) {
pitch_out = _cyclic_max/4500.0f;
limit.roll_pitch = true;
}
} else {
if (roll_out < -_cyclic_max/4500.0f) {
roll_out = -_cyclic_max/4500.0f;
limit.roll_pitch = true;
}
if (roll_out > _cyclic_max/4500.0f) {
roll_out = _cyclic_max/4500.0f;
limit.roll_pitch = true;
}
}
float yaw_compensation = 0.0f;
// if servo output not in manual mode, process pre-compensation factors
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
// add differential collective pitch yaw compensation
if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) {
yaw_compensation = _dcp_yaw_effect * roll_out;
} else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM
yaw_compensation = _dcp_yaw_effect * pitch_out;
}
yaw_out = yaw_out + yaw_compensation;
}
// scale yaw and update limits
if (yaw_out < -_cyclic_max/4500.0f) {
yaw_out = -_cyclic_max/4500.0f;
limit.yaw = true;
}
if (yaw_out > _cyclic_max/4500.0f) {
yaw_out = _cyclic_max/4500.0f;
limit.yaw = true;
}
// constrain collective input
float collective_out = collective_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// Set rear collective to midpoint if required
float collective2_out = collective_out;
if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) {
collective2_out = _collective2_mid_pct;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) {
collective_out = _land_collective_min/1000.0f;
limit.throttle_lower = true;
}
// scale collective pitch for front swashplate (servos 1,2,3)
float collective_scaler = ((float)(_collective_max-_collective_min))/1000.0f;
float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)/1000.0f;
// scale collective pitch for rear swashplate (servos 4,5,6)
float collective2_scaler = ((float)(_collective2_max-_collective2_min))/1000.0f;
float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)/1000.0f;
// feed power estimate into main rotor controller
// ToDo: add main rotor cyclic power?
_rotor.set_motor_load(fabsf(collective_out - _collective_mid_pct));
// swashplate servos
float servo1_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out + _yawFactor[CH_1] * yaw_out)*0.45f + _collectiveFactor[CH_1] * collective_out_scaled;
float servo2_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out + _yawFactor[CH_2] * yaw_out)*0.45f + _collectiveFactor[CH_2] * collective_out_scaled;
float servo3_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out + _yawFactor[CH_3] * yaw_out)*0.45f + _collectiveFactor[CH_3] * collective_out_scaled;
float servo4_out = (_rollFactor[CH_4] * roll_out + _pitchFactor[CH_4] * pitch_out + _yawFactor[CH_4] * yaw_out)*0.45f + _collectiveFactor[CH_4] * collective2_out_scaled;
float servo5_out = (_rollFactor[CH_5] * roll_out + _pitchFactor[CH_5] * pitch_out + _yawFactor[CH_5] * yaw_out)*0.45f + _collectiveFactor[CH_5] * collective2_out_scaled;
float servo6_out = (_rollFactor[CH_6] * roll_out + _pitchFactor[CH_6] * pitch_out + _yawFactor[CH_6] * yaw_out)*0.45f + _collectiveFactor[CH_6] * collective2_out_scaled;
// rescale from -1..1, so we can use the pwm calc that includes trim
servo1_out = 2*servo1_out - 1;
servo2_out = 2*servo2_out - 1;
servo3_out = 2*servo3_out - 1;
servo4_out = 2*servo4_out - 1;
servo5_out = 2*servo5_out - 1;
servo6_out = 2*servo6_out - 1;
// actually move the servos
rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1));
rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2));
rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3));
rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(servo4_out, _swash_servo_4));
rc_write(AP_MOTORS_MOT_5, calc_pwm_output_1to1(servo5_out, _swash_servo_5));
rc_write(AP_MOTORS_MOT_6, calc_pwm_output_1to1(servo6_out, _swash_servo_6));
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Dual::servo_test()
{
// this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding
// mixing of yaw, as that physical movement is represented by pitch and roll
_servo_test_cycle_time += 1.0f / _loop_rate;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_roll_test = sinf(_oscillate_angle);
_pitch_test = cosf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (1.0f / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test = 1.0f;
_oscillate_angle += 2 * M_PI / _loop_rate;
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test = 0.0f;
_oscillate_angle += 2 * M_PI / _loop_rate;
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;
_collective_test = 0.0f;
_roll_test = 0.0f;
_pitch_test = 0.0f;
// decrement servo test cycle counter at the end of the cycle
if (_servo_test_cycle_counter > 0){
_servo_test_cycle_counter--;
}
}
// over-ride servo commands to move servos through defined ranges
_throttle_filter.reset(_collective_test);
_roll_in = _roll_test;
_pitch_in = _pitch_test;
}