// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "AP_MotorsHeli_Dual.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_MotorsHeli_Dual::var_info[] = { AP_NESTEDGROUPINFO(AP_MotorsHeli, 0), // @Param: SV1_POS // @DisplayName: Servo 1 Position // @Description: Angular location of swash servo #1 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Dual, _servo1_pos, AP_MOTORS_HELI_DUAL_SERVO1_POS), // @Param: SV2_POS // @DisplayName: Servo 2 Position // @Description: Angular location of swash servo #2 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Dual, _servo2_pos, AP_MOTORS_HELI_DUAL_SERVO2_POS), // @Param: SV3_POS // @DisplayName: Servo 3 Position // @Description: Angular location of swash servo #3 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Dual, _servo3_pos, AP_MOTORS_HELI_DUAL_SERVO3_POS), // @Param: SV4_POS // @DisplayName: Servo 4 Position // @Description: Angular location of swash servo #4 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV4_POS", 4, AP_MotorsHeli_Dual, _servo4_pos, AP_MOTORS_HELI_DUAL_SERVO4_POS), // @Param: SV5_POS // @DisplayName: Servo 5 Position // @Description: Angular location of swash servo #5 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV5_POS", 5, AP_MotorsHeli_Dual, _servo5_pos, AP_MOTORS_HELI_DUAL_SERVO5_POS), // @Param: SV6_POS // @DisplayName: Servo 6 Position // @Description: Angular location of swash servo #6 // @Range: -180 180 // @Units: Degrees // @User: Standard // @Increment: 1 AP_GROUPINFO("SV6_POS", 6, AP_MotorsHeli_Dual, _servo6_pos, AP_MOTORS_HELI_DUAL_SERVO6_POS), // @Param: PHANG1 // @DisplayName: Swashplate 1 Phase Angle Compensation // @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem // @Range: -90 90 // @Units: Degrees // @User: Advanced // @Increment: 1 AP_GROUPINFO("PHANG1", 7, AP_MotorsHeli_Dual, _swash1_phase_angle, 0), // @Param: PHANG2 // @DisplayName: Swashplate 2 Phase Angle Compensation // @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem // @Range: -90 90 // @Units: Degrees // @User: Advanced // @Increment: 1 AP_GROUPINFO("PHANG2", 8, AP_MotorsHeli_Dual, _swash2_phase_angle, 0), // @Param: DUAL_MODE // @DisplayName: Dual Mode // @Description: Sets the dual mode of the heli, either as tandem or as transverse. // @Values: 0:Longitudinal, 1:Transverse // @User: Standard AP_GROUPINFO("DUAL_MODE", 9, AP_MotorsHeli_Dual, _dual_mode, AP_MOTORS_HELI_DUAL_MODE_TANDEM), // @Param: DCP_SCALER // @DisplayName: Differential-Collective-Pitch Scaler // @Description: Scaling factor applied to the differential-collective-pitch // @Range: 0 1 // @User: Standard AP_GROUPINFO("DCP_SCALER", 10, AP_MotorsHeli_Dual, _dcp_scaler, AP_MOTORS_HELI_DUAL_DCP_SCALER), // @Param: DCP_YAW // @DisplayName: Differential-Collective-Pitch Yaw Mixing // @Description: Feed-forward compensation to automatically add yaw input when differential collective pitch is applied. // @Range: -10 10 // @Increment: 0.1 AP_GROUPINFO("DCP_YAW", 11, AP_MotorsHeli_Dual, _dcp_yaw_effect, 0), // @Param: YAW_SCALER // @DisplayName: Scaler for yaw mixing // @Description: Scaler for mixing yaw into roll or pitch. // @Range: -10 10 // @Increment: 0.1 AP_GROUPINFO("YAW_SCALER", 12, AP_MotorsHeli_Dual, _yaw_scaler, 1.0f), // @Param: RSC_PWM_MIN // @DisplayName: RSC PWM output miniumum // @Description: This sets the PWM output on RSC channel for maximum rotor speed // @Range: 0 2000 // @User: Standard AP_GROUPINFO("RSC_PWM_MIN", 13, AP_MotorsHeli_Dual, _rotor._pwm_min, 1000), // @Param: RSC_PWM_MAX // @DisplayName: RSC PWM output maxiumum // @Description: This sets the PWM output on RSC channel for miniumum rotor speed // @Range: 0 2000 // @User: Standard AP_GROUPINFO("RSC_PWM_MAX", 14, AP_MotorsHeli_Dual, _rotor._pwm_max, 2000), // @Param: RSC_PWM_REV // @DisplayName: RSC PWM reversal // @Description: This controls reversal of the RSC channel output // @Values: -1:Reversed,1:Normal // @User: Standard AP_GROUPINFO("RSC_PWM_REV", 15, AP_MotorsHeli_Dual, _rotor._pwm_rev, 1), // @Param: COL2_MIN // @DisplayName: Collective Pitch Minimum for rear swashplate // @Description: Lowest possible servo position for the rear swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MIN", 16, AP_MotorsHeli_Dual, _collective2_min, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN), // @Param: COL2_MAX // @DisplayName: Collective Pitch Maximum for rear swashplate // @Description: Highest possible servo position for the rear swashplate // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MAX", 17, AP_MotorsHeli_Dual, _collective2_max, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX), // @Param: COL2_MID // @DisplayName: Collective Pitch Mid-Point for rear swashplate // @Description: Swash servo position corresponding to zero collective pitch for the rear swashplate (or zero lift for Asymmetrical blades) // @Range: 1000 2000 // @Units: PWM // @Increment: 1 // @User: Standard AP_GROUPINFO("COL2_MID", 18, AP_MotorsHeli_Dual, _collective2_mid, AP_MOTORS_HELI_DUAL_COLLECTIVE2_MID), AP_GROUPEND }; // set update rate to motors - a value in hertz void AP_MotorsHeli_Dual::set_update_rate( uint16_t speed_hz ) { // record requested speed _speed_hz = speed_hz; // setup fast channels uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_3 | 1U << AP_MOTORS_MOT_4 | 1U << AP_MOTORS_MOT_5 | 1U << AP_MOTORS_MOT_6; rc_set_freq(mask, _speed_hz); } // enable - starts allowing signals to be sent to motors void AP_MotorsHeli_Dual::enable() { // enable output channels rc_enable_ch(AP_MOTORS_MOT_1); rc_enable_ch(AP_MOTORS_MOT_2); rc_enable_ch(AP_MOTORS_MOT_3); rc_enable_ch(AP_MOTORS_MOT_4); rc_enable_ch(AP_MOTORS_MOT_5); rc_enable_ch(AP_MOTORS_MOT_6); rc_enable_ch(AP_MOTORS_HELI_DUAL_RSC); } // init_outputs bool AP_MotorsHeli_Dual::init_outputs() { if (!_flags.initialised_ok) { _swash_servo_1 = SRV_Channels::get_channel_for(SRV_Channel::k_motor1, CH_1); _swash_servo_2 = SRV_Channels::get_channel_for(SRV_Channel::k_motor2, CH_2); _swash_servo_3 = SRV_Channels::get_channel_for(SRV_Channel::k_motor3, CH_3); _swash_servo_4 = SRV_Channels::get_channel_for(SRV_Channel::k_motor4, CH_4); _swash_servo_5 = SRV_Channels::get_channel_for(SRV_Channel::k_motor5, CH_5); _swash_servo_6 = SRV_Channels::get_channel_for(SRV_Channel::k_motor6, CH_6); if (!_swash_servo_1 || !_swash_servo_2 || !_swash_servo_3 || !_swash_servo_4 || !_swash_servo_5 || !_swash_servo_6) { return false; } } // reset swash servo range and endpoints reset_swash_servo (_swash_servo_1); reset_swash_servo (_swash_servo_2); reset_swash_servo (_swash_servo_3); reset_swash_servo (_swash_servo_4); reset_swash_servo (_swash_servo_5); reset_swash_servo (_swash_servo_6); // set rotor servo range _rotor.init_servo(); _flags.initialised_ok = true; return true; } // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsHeli_Dual::output_test(uint8_t motor_seq, int16_t pwm) { // exit immediately if not armed if (!armed()) { return; } // output to motors and servos switch (motor_seq) { case 1: // swash servo 1 rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // swash servo 2 rc_write(AP_MOTORS_MOT_2, pwm); break; case 3: // swash servo 3 rc_write(AP_MOTORS_MOT_3, pwm); break; case 4: // swash servo 4 rc_write(AP_MOTORS_MOT_4, pwm); break; case 5: // swash servo 5 rc_write(AP_MOTORS_MOT_5, pwm); break; case 6: // swash servo 6 rc_write(AP_MOTORS_MOT_6, pwm); break; case 7: // main rotor rc_write(AP_MOTORS_HELI_DUAL_RSC, pwm); break; default: // do nothing break; } } // set_desired_rotor_speed void AP_MotorsHeli_Dual::set_desired_rotor_speed(float desired_speed) { _rotor.set_desired_speed(desired_speed); } // calculate_armed_scalars void AP_MotorsHeli_Dual::calculate_armed_scalars() { _rotor.set_ramp_time(_rsc_ramp_time); _rotor.set_runup_time(_rsc_runup_time); _rotor.set_critical_speed(_rsc_critical/1000.0f); _rotor.set_idle_output(_rsc_idle_output/1000.0f); _rotor.set_power_output_range(_rsc_power_low/1000.0f, _rsc_power_high/1000.0f, _rsc_power_high/1000.0f, 0); } // calculate_scalars void AP_MotorsHeli_Dual::calculate_scalars() { // range check collective min, max and mid if( _collective_min >= _collective_max ) { _collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN; _collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX; } // range check collective min, max and mid for rear swashplate if( _collective2_min >= _collective2_max ) { _collective2_min = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MIN; _collective2_max = AP_MOTORS_HELI_DUAL_COLLECTIVE2_MAX; } _collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); _collective2_mid = constrain_int16(_collective2_mid, _collective2_min, _collective2_max); // calculate collective mid point as a number from 0 to 1000 _collective_mid_pct = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min)); _collective2_mid_pct = ((float)(_collective2_mid-_collective2_min))/((float)(_collective2_max-_collective2_min)); // calculate factors based on swash type and servo position calculate_roll_pitch_collective_factors(); // set mode of main rotor controller and trigger recalculation of scalars _rotor.set_control_mode(static_cast(_rsc_mode.get())); calculate_armed_scalars(); } // calculate_swash_factors - calculate factors based on swash type and servo position void AP_MotorsHeli_Dual::calculate_roll_pitch_collective_factors() { if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { // roll factors _rollFactor[CH_1] = _dcp_scaler; _rollFactor[CH_2] = _dcp_scaler; _rollFactor[CH_3] = _dcp_scaler; _rollFactor[CH_4] = -_dcp_scaler; _rollFactor[CH_5] = -_dcp_scaler; _rollFactor[CH_6] = -_dcp_scaler; // pitch factors _pitchFactor[CH_1] = cosf(radians(_servo1_pos - _swash1_phase_angle)); _pitchFactor[CH_2] = cosf(radians(_servo2_pos - _swash1_phase_angle)); _pitchFactor[CH_3] = cosf(radians(_servo3_pos - _swash1_phase_angle)); _pitchFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)); _pitchFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)); _pitchFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)); // yaw factors _yawFactor[CH_1] = cosf(radians(_servo1_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_2] = cosf(radians(_servo2_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_3] = cosf(radians(_servo3_pos + 180 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_4] = cosf(radians(_servo4_pos - _swash2_phase_angle)) * _yaw_scaler; _yawFactor[CH_5] = cosf(radians(_servo5_pos - _swash2_phase_angle)) * _yaw_scaler; _yawFactor[CH_6] = cosf(radians(_servo6_pos - _swash2_phase_angle)) * _yaw_scaler; } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM // roll factors _rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)); _rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)); _rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)); _rollFactor[CH_4] = cosf(radians(_servo4_pos + 90 - _swash2_phase_angle)); _rollFactor[CH_5] = cosf(radians(_servo5_pos + 90 - _swash2_phase_angle)); _rollFactor[CH_6] = cosf(radians(_servo6_pos + 90 - _swash2_phase_angle)); // pitch factors _pitchFactor[CH_1] = _dcp_scaler; _pitchFactor[CH_2] = _dcp_scaler; _pitchFactor[CH_3] = _dcp_scaler; _pitchFactor[CH_4] = -_dcp_scaler; _pitchFactor[CH_5] = -_dcp_scaler; _pitchFactor[CH_6] = -_dcp_scaler; // yaw factors _yawFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _swash1_phase_angle)) * _yaw_scaler; _yawFactor[CH_4] = cosf(radians(_servo4_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; _yawFactor[CH_5] = cosf(radians(_servo5_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; _yawFactor[CH_6] = cosf(radians(_servo6_pos + 270 - _swash2_phase_angle)) * _yaw_scaler; } // collective factors _collectiveFactor[CH_1] = 1; _collectiveFactor[CH_2] = 1; _collectiveFactor[CH_3] = 1; _collectiveFactor[CH_4] = 1; _collectiveFactor[CH_5] = 1; _collectiveFactor[CH_6] = 1; } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint16_t AP_MotorsHeli_Dual::get_motor_mask() { // dual heli uses channels 1,2,3,4,5,6 and 8 return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 4 | 1U << 5 | 1U << 6 | 1U << AP_MOTORS_HELI_DUAL_RSC); } // update_motor_controls - sends commands to motor controllers void AP_MotorsHeli_Dual::update_motor_control(RotorControlState state) { // Send state update to motors _rotor.output(state); if (state == ROTOR_CONTROL_STOP) { // set engine run enable aux output to not run position to kill engine when disarmed SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MIN); } else { // else if armed, set engine run enable output to run position SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::SRV_CHANNEL_LIMIT_MAX); } // Check if rotors are run-up _heliflags.rotor_runup_complete = _rotor.is_runup_complete(); } // // move_actuators - moves swash plate to attitude of parameters passed in // - expected ranges: // roll : -4500 ~ 4500 // pitch: -4500 ~ 4500 // collective: 0 ~ 1000 // yaw: -4500 ~ 4500 // void AP_MotorsHeli_Dual::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out) { // initialize limits flag limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { if (pitch_out < -_cyclic_max/4500.0f) { pitch_out = -_cyclic_max/4500.0f; limit.roll_pitch = true; } if (pitch_out > _cyclic_max/4500.0f) { pitch_out = _cyclic_max/4500.0f; limit.roll_pitch = true; } } else { if (roll_out < -_cyclic_max/4500.0f) { roll_out = -_cyclic_max/4500.0f; limit.roll_pitch = true; } if (roll_out > _cyclic_max/4500.0f) { roll_out = _cyclic_max/4500.0f; limit.roll_pitch = true; } } float yaw_compensation = 0.0f; // if servo output not in manual mode, process pre-compensation factors if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) { // add differential collective pitch yaw compensation if (_dual_mode == AP_MOTORS_HELI_DUAL_MODE_TRANSVERSE) { yaw_compensation = _dcp_yaw_effect * roll_out; } else { // AP_MOTORS_HELI_DUAL_MODE_TANDEM yaw_compensation = _dcp_yaw_effect * pitch_out; } yaw_out = yaw_out + yaw_compensation; } // scale yaw and update limits if (yaw_out < -_cyclic_max/4500.0f) { yaw_out = -_cyclic_max/4500.0f; limit.yaw = true; } if (yaw_out > _cyclic_max/4500.0f) { yaw_out = _cyclic_max/4500.0f; limit.yaw = true; } // constrain collective input float collective_out = collective_in; if (collective_out <= 0.0f) { collective_out = 0.0f; limit.throttle_lower = true; } if (collective_out >= 1.0f) { collective_out = 1.0f; limit.throttle_upper = true; } // Set rear collective to midpoint if required float collective2_out = collective_out; if (_servo_mode == SERVO_CONTROL_MODE_MANUAL_CENTER) { collective2_out = _collective2_mid_pct; } // ensure not below landed/landing collective if (_heliflags.landing_collective && collective_out < (_land_collective_min/1000.0f)) { collective_out = _land_collective_min/1000.0f; limit.throttle_lower = true; } // scale collective pitch for front swashplate (servos 1,2,3) float collective_scaler = ((float)(_collective_max-_collective_min))/1000.0f; float collective_out_scaled = collective_out * collective_scaler + (_collective_min - 1000)/1000.0f; // scale collective pitch for rear swashplate (servos 4,5,6) float collective2_scaler = ((float)(_collective2_max-_collective2_min))/1000.0f; float collective2_out_scaled = collective2_out * collective2_scaler + (_collective2_min - 1000)/1000.0f; // feed power estimate into main rotor controller // ToDo: add main rotor cyclic power? _rotor.set_motor_load(fabsf(collective_out - _collective_mid_pct)); // swashplate servos float servo1_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out + _yawFactor[CH_1] * yaw_out)*0.45f + _collectiveFactor[CH_1] * collective_out_scaled; float servo2_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out + _yawFactor[CH_2] * yaw_out)*0.45f + _collectiveFactor[CH_2] * collective_out_scaled; float servo3_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out + _yawFactor[CH_3] * yaw_out)*0.45f + _collectiveFactor[CH_3] * collective_out_scaled; float servo4_out = (_rollFactor[CH_4] * roll_out + _pitchFactor[CH_4] * pitch_out + _yawFactor[CH_4] * yaw_out)*0.45f + _collectiveFactor[CH_4] * collective2_out_scaled; float servo5_out = (_rollFactor[CH_5] * roll_out + _pitchFactor[CH_5] * pitch_out + _yawFactor[CH_5] * yaw_out)*0.45f + _collectiveFactor[CH_5] * collective2_out_scaled; float servo6_out = (_rollFactor[CH_6] * roll_out + _pitchFactor[CH_6] * pitch_out + _yawFactor[CH_6] * yaw_out)*0.45f + _collectiveFactor[CH_6] * collective2_out_scaled; // rescale from -1..1, so we can use the pwm calc that includes trim servo1_out = 2*servo1_out - 1; servo2_out = 2*servo2_out - 1; servo3_out = 2*servo3_out - 1; servo4_out = 2*servo4_out - 1; servo5_out = 2*servo5_out - 1; servo6_out = 2*servo6_out - 1; // actually move the servos rc_write(AP_MOTORS_MOT_1, calc_pwm_output_1to1(servo1_out, _swash_servo_1)); rc_write(AP_MOTORS_MOT_2, calc_pwm_output_1to1(servo2_out, _swash_servo_2)); rc_write(AP_MOTORS_MOT_3, calc_pwm_output_1to1(servo3_out, _swash_servo_3)); rc_write(AP_MOTORS_MOT_4, calc_pwm_output_1to1(servo4_out, _swash_servo_4)); rc_write(AP_MOTORS_MOT_5, calc_pwm_output_1to1(servo5_out, _swash_servo_5)); rc_write(AP_MOTORS_MOT_6, calc_pwm_output_1to1(servo6_out, _swash_servo_6)); } // servo_test - move servos through full range of movement void AP_MotorsHeli_Dual::servo_test() { // this test cycle is equivalent to that of AP_MotorsHeli_Single, but excluding // mixing of yaw, as that physical movement is represented by pitch and roll _servo_test_cycle_time += 1.0f / _loop_rate; if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back (_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){ _pitch_test += (1.0f / (_loop_rate/2)); _oscillate_angle += 8 * M_PI / _loop_rate; } else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around (_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){ _oscillate_angle += M_PI / (2 * _loop_rate); _roll_test = sinf(_oscillate_angle); _pitch_test = cosf(_oscillate_angle); } else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level (_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){ _pitch_test -= (1.0f / (_loop_rate/2)); _oscillate_angle += 8 * M_PI / _loop_rate; } else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top _collective_test = 1.0f; _oscillate_angle += 2 * M_PI / _loop_rate; } else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom _collective_test = 0.0f; _oscillate_angle += 2 * M_PI / _loop_rate; } else { // reset cycle _servo_test_cycle_time = 0.0f; _oscillate_angle = 0.0f; _collective_test = 0.0f; _roll_test = 0.0f; _pitch_test = 0.0f; // decrement servo test cycle counter at the end of the cycle if (_servo_test_cycle_counter > 0){ _servo_test_cycle_counter--; } } // over-ride servo commands to move servos through defined ranges _throttle_filter.reset(_collective_test); _roll_in = _roll_test; _pitch_in = _pitch_test; }