ardupilot/libraries/AP_NavEKF/AP_NavEKF.h

714 lines
41 KiB
C
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
2014-03-08 16:51:45 -04:00
22 state EKF based on https://github.com/priseborough/InertialNav
Converted from Matlab to C++ by Paul Riseborough
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AP_NavEKF
#define AP_NavEKF
#include <AP_Math.h>
#include <AP_InertialSensor.h>
#include <AP_Baro.h>
#include <AP_Airspeed.h>
#include <AP_Compass.h>
#include <AP_Param.h>
// #define MATH_CHECK_INDEXES 1
#include <vectorN.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
2013-12-30 06:41:28 -04:00
#include <systemlib/perf_counter.h>
#endif
class AP_AHRS;
class NavEKF
{
public:
typedef float ftype;
#if MATH_CHECK_INDEXES
typedef VectorN<ftype,2> Vector2;
typedef VectorN<ftype,3> Vector3;
typedef VectorN<ftype,6> Vector6;
typedef VectorN<ftype,8> Vector8;
typedef VectorN<ftype,11> Vector11;
typedef VectorN<ftype,13> Vector13;
2014-01-03 03:52:37 -04:00
typedef VectorN<ftype,14> Vector14;
typedef VectorN<ftype,15> Vector15;
typedef VectorN<ftype,22> Vector22;
typedef VectorN<ftype,31> Vector31;
typedef VectorN<ftype,34> Vector34;
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
typedef VectorN<VectorN<ftype,22>,22> Matrix22;
typedef VectorN<VectorN<ftype,34>,22> Matrix34_50;
#else
typedef ftype Vector2[2];
typedef ftype Vector3[3];
typedef ftype Vector6[6];
typedef ftype Vector8[8];
typedef ftype Vector11[11];
typedef ftype Vector13[13];
2014-01-03 03:52:37 -04:00
typedef ftype Vector14[14];
typedef ftype Vector15[15];
typedef ftype Vector22[22];
typedef ftype Vector31[31];
typedef ftype Vector34[34];
typedef ftype Matrix3[3][3];
typedef ftype Matrix22[22][22];
typedef ftype Matrix34_50[34][50];
#endif
2014-01-03 03:52:37 -04:00
// Constructor
NavEKF(const AP_AHRS *ahrs, AP_Baro &baro);
2014-01-03 03:52:37 -04:00
// This function is used to initialise the filter whilst moving, using the AHRS DCM solution
// It should NOT be used to re-initialise after a timeout as DCM will also be corrupted
void InitialiseFilterDynamic(void);
// Initialise the states from accelerometer and magnetometer data (if present)
// This method can only be used when the vehicle is static
void InitialiseFilterBootstrap(void);
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter(void);
// Check basic filter health metrics and return a consolidated health status
2014-01-03 20:16:19 -04:00
bool healthy(void) const;
2014-01-02 01:16:16 -04:00
// return the last calculated NED position relative to the reference point (m).
// return false if no position is available
bool getPosNED(Vector3f &pos) const;
2013-12-31 23:03:52 -04:00
// return NED velocity in m/s
void getVelNED(Vector3f &vel) const;
2014-10-31 19:06:04 -03:00
// This returns the specific forces in the NED frame
void getAccelNED(Vector3f &accelNED) const;
// return body axis gyro bias estimates in rad/sec
void getGyroBias(Vector3f &gyroBias) const;
// reset body axis gyro bias estimates
void resetGyroBias(void);
// Commands the EKF to not use GPS.
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
// Returns 0 if command rejected
// Returns 1 if attitude, vertical velocity and vertical position will be provided
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
uint8_t setInhibitGPS(void);
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
// return weighting of first IMU in blending function
void getIMU1Weighting(float &ret) const;
// return the individual Z-accel bias estimates in m/s^2
void getAccelZBias(float &zbias1, float &zbias2) const;
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void getWind(Vector3f &wind) const;
2014-01-30 18:11:54 -04:00
// return earth magnetic field estimates in measurement units / 1000
void getMagNED(Vector3f &magNED) const;
// return body magnetic field estimates in measurement units / 1000
void getMagXYZ(Vector3f &magXYZ) const;
// return the last calculated latitude, longitude and height
bool getLLH(struct Location &loc) const;
// return estimated height above ground level
// return false if ground height is not being estimated.
bool getHAGL(float &HAGL) const;
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles(Vector3f &eulers) const;
// return the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED(Matrix3f &mat) const;
// return the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion(Quaternion &quat) const;
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov) const;
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
// return StaticMode state
bool getStaticMode(void) const { return staticMode; }
2014-08-24 08:00:24 -03:00
// should we use the compass? This is public so it can be used for
// reporting via ahrs.use_compass()
bool use_compass(void) const;
// write the raw optical flow measurements
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// rawSonarRange is the range in metres measured by the range finder
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
void writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas, uint8_t &rangeHealth, float &rawSonarRange);
// return data for debugging optical flow fusion
void getFlowDebug(float &scaleFactor, float &gndPos, float &flowInnovX, float &flowInnovY, float &augFlowInnovX, float &augFlowInnovY, float &rngInnov, float &range) const;
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void getFilterFaults(uint8_t &faults) const;
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
7 = unassigned
*/
void getFilterTimeouts(uint8_t &timeouts) const;
/*
return filter function status as a bitmasked integer
0 = attitude estimate valid
1 = horizontal velocity estimate valid
2 = vertical velocity estimate valid
3 = relative horizontal position estimate valid
4 = absolute horizontal position estimate valid
5 = vertical position estimate valid
6 = terrain height estimate valid
7 = unassigned
*/
void getFilterStatus(uint8_t &status) const;
2014-01-20 01:47:56 -04:00
static const struct AP_Param::GroupInfo var_info[];
private:
const AP_AHRS *_ahrs;
AP_Baro &_baro;
// the states are available in two forms, either as a Vector34, or
// broken down as individual elements. Both are equivalent (same
// memory)
Vector34 states;
struct state_elements {
Quaternion quat; // 0..3
Vector3f velocity; // 4..6
Vector3f position; // 7..9
Vector3f gyro_bias; // 10..12
float accel_zbias1; // 13
Vector2f wind_vel; // 14..15
Vector3f earth_magfield; // 16..18
Vector3f body_magfield; // 19..21
float accel_zbias2; // 22
Vector3f vel1; // 23 .. 25
float posD1; // 26
Vector3f vel2; // 27 .. 29
float posD2; // 30
Vector3f omega; // 31 .. 33
} &state;
// update the quaternion, velocity and position states using IMU measurements
void UpdateStrapdownEquationsNED();
// calculate the predicted state covariance matrix
void CovariancePrediction();
2014-01-03 03:52:37 -04:00
// force symmetry on the state covariance matrix
void ForceSymmetry();
// copy covariances across from covariance prediction calculation and fix numerical errors
void CopyAndFixCovariances();
// constrain variances (diagonal terms) in the state covariance matrix
void ConstrainVariances();
// constrain states
void ConstrainStates();
// fuse selected position, velocity and height measurements
void FuseVelPosNED();
2014-01-03 03:52:37 -04:00
// fuse magnetometer measurements
void FuseMagnetometer();
2014-01-03 03:52:37 -04:00
// fuse true airspeed measurements
void FuseAirspeed();
// fuse sythetic sideslip measurement of zero
void FuseSideslip();
// zero specified range of rows in the state covariance matrix
void zeroRows(Matrix22 &covMat, uint8_t first, uint8_t last);
// zero specified range of columns in the state covariance matrix
void zeroCols(Matrix22 &covMat, uint8_t first, uint8_t last);
// store states along with system time stamp in msces
void StoreStates(void);
// Reset the stored state history and store the current state
void StoreStatesReset(void);
// recall state vector stored at closest time to the one specified by msec
void RecallStates(state_elements &statesForFusion, uint32_t msec);
// calculate nav to body quaternions from body to nav rotation matrix
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const;
// calculate the NED earth spin vector in rad/sec
void calcEarthRateNED(Vector3f &omega, int32_t latitude) const;
// calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed
void SetFlightAndFusionModes();
// initialise the covariance matrix
void CovarianceInit();
// update IMU delta angle and delta velocity measurements
void readIMUData();
// check for new valid GPS data and update stored measurement if available
void readGpsData();
// check for new altitude measurement data and update stored measurement if available
void readHgtData();
// check for new magnetometer data and update store measurements if available
void readMagData();
// check for new airspeed data and update stored measurements if available
void readAirSpdData();
// determine when to perform fusion of GPS position and velocity measurements
void SelectVelPosFusion();
2014-01-03 03:52:37 -04:00
// determine when to perform fusion of true airspeed measurements
void SelectTasFusion();
// determine when to perform fusion of synthetic sideslp measurements
void SelectBetaFusion();
// determine when to perform fusion of magnetometer measurements
void SelectMagFusion();
// force alignment of the yaw angle using GPS velocity data
void alignYawGPS();
// Forced alignment of the wind velocity states so that they are set to the reciprocal of
// the ground speed and scaled to 6 m/s. This is used when launching a fly-forward vehicle without an airspeed sensor
// on the assumption that launch will be into wind and 6 is representative global average at height
// http://maps.google.com/gallery/details?id=zJuaSgXp_WLc.kTBytKPmNODY&hl=en
void setWindVelStates();
// initialise the earth magnetic field states using declination and current attitude and magnetometer meaasurements
// and return attitude quaternion
Quaternion calcQuatAndFieldStates(float roll, float pitch);
// zero stored variables
void ZeroVariables();
// reset the horizontal position states uing the last GPS measurement
void ResetPosition(void);
// reset velocity states using the last GPS measurement
void ResetVelocity(void);
// reset the vertical position state using the last height measurement
void ResetHeight(void);
// return true if we should use the airspeed sensor
bool useAirspeed(void) const;
// return true if the vehicle code has requested use of static mode
// in static mode, position and height are constrained to zero, allowing an attitude
// reference to be initialised and maintained when on the ground and without GPS lock
bool static_mode_demanded(void) const;
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s
// this allows large GPS position jumps to be accomodated gradually
void decayGpsOffset(void);
// Check for filter divergence
void checkDivergence(void);
// Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2
void calcIMU_Weighting(float K1, float K2);
// return true if optical flow data is available
bool optFlowDataPresent(void) const;
// return true if we should use the range finder sensor
bool useRngFinder(void) const;
// determine when to perform fusion of optical flow measurements
void SelectFlowFusion();
// recall omega (angular rate vector) average from time specified by msec to current time
// this is useful for motion compensation of optical flow measurements
void RecallOmega(Vector3f &omegaAvg, uint32_t msecStart, uint32_t msecEnd);
// Estimate optical flow focal length scale factor and terrain offset using a 2-state EKF
void RunAuxiliaryEKF();
// fuse optical flow measurements into the main filter
void FuseOptFlow();
// EKF Mavlink Tuneable Parameters
AP_Float _gpsHorizVelNoise; // GPS horizontal velocity measurement noise : m/s
AP_Float _gpsVertVelNoise; // GPS vertical velocity measurement noise : m/s
AP_Float _gpsHorizPosNoise; // GPS horizontal position measurement noise m
AP_Float _baroAltNoise; // Baro height measurement noise : m^2
AP_Float _magNoise; // magnetometer measurement noise : gauss
AP_Float _easNoise; // equivalent airspeed measurement noise : m/s
AP_Float _windVelProcessNoise; // wind velocity state process noise : m/s^2
AP_Float _wndVarHgtRateScale; // scale factor applied to wind process noise due to height rate
AP_Float _magEarthProcessNoise; // earth magnetic field process noise : gauss/sec
AP_Float _magBodyProcessNoise; // earth magnetic field process noise : gauss/sec
AP_Float _gyrNoise; // gyro process noise : rad/s
AP_Float _accNoise; // accelerometer process noise : m/s^2
AP_Float _gyroBiasProcessNoise; // gyro bias state process noise : rad/s
AP_Float _accelBiasProcessNoise;// accel bias state process noise : m/s^2
AP_Int16 _msecVelDelay; // effective average delay of GPS velocity measurements rel to IMU (msec)
AP_Int16 _msecPosDelay; // effective average delay of GPS position measurements rel to (msec)
AP_Int8 _fusionModeGPS; // 0 = use 3D velocity, 1 = use 2D velocity, 2 = use no velocity
AP_Int8 _gpsVelInnovGate; // Number of standard deviations applied to GPS velocity innovation consistency check
AP_Int8 _gpsPosInnovGate; // Number of standard deviations applied to GPS position innovation consistency check
AP_Int8 _hgtInnovGate; // Number of standard deviations applied to height innovation consistency check
AP_Int8 _magInnovGate; // Number of standard deviations applied to magnetometer innovation consistency check
AP_Int8 _tasInnovGate; // Number of standard deviations applied to true airspeed innovation consistency check
AP_Int8 _magCal; // Sets activation condition for in-flight magnetometer calibration
AP_Int16 _gpsGlitchAccelMax; // Maximum allowed discrepancy between inertial and GPS Horizontal acceleration before GPS data is ignored : cm/s^2
AP_Int8 _gpsGlitchRadiusMax; // Maximum allowed discrepancy between inertial and GPS Horizontal position before GPS glitch is declared : m
AP_Int8 _gndGradientSigma; // RMS terrain gradient percentage assumed by the terrain height estimation.
AP_Float _flowNoise; // optical flow rate measurement noise
AP_Int8 _flowInnovGate; // Number of standard deviations applied to optical flow innovation consistency check
AP_Int8 _msecFLowDelay; // effective average delay of optical flow measurements rel to IMU (msec)
AP_Int8 _rngInnovGate; // Number of standard deviations applied to range finder innovation consistency check
AP_Float _maxFlowRate; // Maximum flow rate magnitude that will be accepted by the filter
AP_Int8 _fallback; // EKF-to-DCM fallback strictness. 0 = trust EKF more, 1 = fallback more conservatively.
// Tuning parameters
AP_Float _gpsNEVelVarAccScale; // scale factor applied to NE velocity measurement variance due to Vdot
AP_Float _gpsDVelVarAccScale; // scale factor applied to D velocity measurement variance due to Vdot
AP_Float _gpsPosVarAccScale; // scale factor applied to position measurement variance due to Vdot
AP_Int16 _msecHgtDelay; // effective average delay of height measurements rel to (msec)
AP_Int16 _msecMagDelay; // effective average delay of magnetometer measurements rel to IMU (msec)
AP_Int16 _msecTasDelay; // effective average delay of airspeed measurements rel to IMU (msec)
AP_Int16 _gpsRetryTimeUseTAS; // GPS retry time following innovation consistency fail if TAS measurements are used (msec)
AP_Int16 _gpsRetryTimeNoTAS; // GPS retry time following innovation consistency fail if no TAS measurements are used (msec)
AP_Int16 _hgtRetryTimeMode0; // height measurement retry time following innovation consistency fail if GPS fusion mode is = 0 (msec)
AP_Int16 _hgtRetryTimeMode12; // height measurement retry time following innovation consistency fail if GPS fusion mode is > 0 (msec)
AP_Int16 _tasRetryTime; // true airspeed measurement retry time following innovation consistency fail (msec)
uint32_t _magFailTimeLimit_ms; // number of msec before a magnetometer failing innovation consistency checks is declared failed (msec)
float _gyroBiasNoiseScaler; // scale factor applied to gyro bias state process variance when on ground
float _magVarRateScale; // scale factor applied to magnetometer variance due to angular rate
uint16_t _msecGpsAvg; // average number of msec between GPS measurements
uint16_t _msecHgtAvg; // average number of msec between height measurements
uint16_t _msecMagAvg; // average number of msec between magnetometer measurements
uint16_t _msecBetaAvg; // Average number of msec between synthetic sideslip measurements
uint16_t _msecBetaMax; // maximum number of msec between synthetic sideslip measurements
float dtVelPos; // average of msec between position and velocity corrections
// Variables
bool statesInitialised; // boolean true when filter states have been initialised
bool velHealth; // boolean true if velocity measurements have passed innovation consistency check
bool posHealth; // boolean true if position measurements have passed innovation consistency check
bool hgtHealth; // boolean true if height measurements have passed innovation consistency check
bool magHealth; // boolean true if magnetometer has passed innovation consistency check
bool tasHealth; // boolean true if true airspeed has passed innovation consistency check
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out
bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out
bool tasTimeout; // boolean true if true airspeed measurements have failed for too long and have timed out
bool badMag; // boolean true if the magnetometer is declared to be producing bad data
bool badIMUdata; // boolean true if the bad IMU data is detected
float gpsNoiseScaler; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts
Vector31 Kfusion; // Kalman gain vector
Matrix22 KH; // intermediate result used for covariance updates
Matrix22 KHP; // intermediate result used for covariance updates
Matrix22 P; // covariance matrix
VectorN<state_elements,50> storedStates; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel12; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s)
Vector3f correctedDelVel1; // delta velocities along the XYZ body axes for IMU1 corrected for errors (m/s)
Vector3f correctedDelVel2; // delta velocities along the XYZ body axes for IMU2 corrected for errors (m/s)
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
Vector3f lastGyroBias; // previous gyro bias vector used by filter divergence check
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f dVelIMU1; // delta velocity vector in XYZ body axes measured by IMU1 (m/s)
Vector3f dVelIMU2; // delta velocity vector in XYZ body axes measured by IMU2 (m/s)
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
ftype dtIMU; // time lapsed since the last IMU measurement (sec)
ftype dt; // time lapsed since the last covariance prediction (sec)
ftype hgtRate; // state for rate of change of height filter
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
bool prevOnGround; // value of onGround from previous update
bool manoeuvring; // boolean true when the flight vehicle is performing horizontal changes in velocity
uint32_t airborneDetectTime_ms; // last time flight movement was detected
Vector6 innovVelPos; // innovation output for a group of measurements
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
bool fuseVelData; // this boolean causes the velNED measurements to be fused
bool fusePosData; // this boolean causes the posNE measurements to be fused
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
Vector3f velNED; // North, East, Down velocity measurements (m/s)
Vector2f gpsPosNE; // North, East position measurements (m)
ftype hgtMea; // height measurement relative to reference point (m)
state_elements statesAtVelTime; // States at the effective time of velNED measurements
state_elements statesAtPosTime; // States at the effective time of posNE measurements
state_elements statesAtHgtTime; // States at the effective time of hgtMea measurement
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
bool fuseMagData; // boolean true when magnetometer data is to be fused
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
state_elements statesAtMagMeasTime; // filter states at the effective time of compass measurements
ftype innovVtas; // innovation output from fusion of airspeed measurements
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements
bool fuseVtasData; // boolean true when airspeed data is to be fused
float VtasMeas; // true airspeed measurement (m/s)
state_elements statesAtVtasMeasTime; // filter states at the effective measurement time
const ftype covTimeStepMax; // maximum time allowed between covariance predictions
const ftype covDelAngMax; // maximum delta angle between covariance predictions
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
uint32_t BETAmsecPrev; // time stamp of last synthetic sideslip fusion step
const uint32_t TASmsecMax; // maximum allowed interval between TAS fusion steps
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
bool inhibitLoadLeveling; // boolean that turns off delay of fusion to level processor loading
bool staticMode; // boolean to force position and velocity measurements to zero for pre-arm or bench testing
bool prevStaticMode; // value of static mode from last update
uint32_t lastMagUpdate; // last time compass was updated
Vector3f velDotNED; // rate of change of velocity in NED frame
Vector3f velDotNEDfilt; // low pass filtered velDotNED
uint32_t lastAirspeedUpdate; // last time airspeed was updated
uint32_t imuSampleTime_ms; // time that the last IMU value was taken
bool newDataGps; // true when new GPS data has arrived
bool newDataMag; // true when new magnetometer data has arrived
bool newDataTas; // true when new airspeed data has arrived
bool tasDataWaiting; // true when new airspeed data is waiting to be fused
bool newDataHgt; // true when new height data has arrived
uint32_t lastHgtMeasTime; // time of last height measurement used to determine if new data has arrived
uint32_t lastHgtTime_ms; // time of last height update (msec) used to calculate timeout
uint16_t hgtRetryTime; // time allowed without use of height measurements before a height timeout is declared
uint32_t velFailTime; // time stamp when GPS velocity measurement last failed covaraiance consistency check (msec)
uint32_t posFailTime; // time stamp when GPS position measurement last failed covaraiance consistency check (msec)
uint32_t hgtFailTime; // time stamp when height measurement last failed covaraiance consistency check (msec)
uint32_t tasFailTime; // time stamp when airspeed measurement last failed covaraiance consistency check (msec)
uint8_t storeIndex; // State vector storage index
uint32_t lastStateStoreTime_ms; // time of last state vector storage
uint32_t lastFixTime_ms; // time of last GPS fix used to determine if new data has arrived
uint32_t timeAtLastAuxEKF_ms; // last time the auxilliary filter was run to fuse range or optical flow measurements
uint32_t secondLastFixTime_ms; // time of second last GPS fix used to determine how long since last update
uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy
Vector3f lastAngRate; // angular rate from previous IMU sample used for trapezoidal integrator
Vector3f lastAccel1; // acceleration from previous IMU1 sample used for trapezoidal integrator
Vector3f lastAccel2; // acceleration from previous IMU2 sample used for trapezoidal integrator
Matrix22 nextP; // Predicted covariance matrix before addition of process noise to diagonals
Vector22 processNoise; // process noise added to diagonals of predicted covariance matrix
Vector15 SF; // intermediate variables used to calculate predicted covariance matrix
Vector8 SG; // intermediate variables used to calculate predicted covariance matrix
Vector11 SQ; // intermediate variables used to calculate predicted covariance matrix
Vector8 SPP; // intermediate variables used to calculate predicted covariance matrix
float IMU1_weighting; // Weighting applied to use of IMU1. Varies between 0 and 1.
bool yawAligned; // true when the yaw angle has been aligned
Vector2f gpsPosGlitchOffsetNE; // offset applied to GPS data in the NE direction to compensate for rapid changes in GPS solution
uint32_t lastDecayTime_ms; // time of last decay of GPS position offset
float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold
float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold
float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold
Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold
float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold
bool inhibitWindStates; // true when wind states and covariances are to remain constant
bool inhibitMagStates; // true when magnetic field states and covariances are to remain constant
float firstArmPosD; // vertical position at the first arming (transition from sttatic mode) after start up
bool firstArmComplete; // true when first transition out of static mode has been performed after start up
bool finalMagYawInit; // true when the final post takeoff initialisation of earth field and yaw angle has been performed
bool flowTimeout; // true when optical flow measurements have time out
Vector2f gpsVelGlitchOffset; // Offset applied to the GPS velocity when the gltch radius is being decayed back to zero
// Used by smoothing of state corrections
float gpsIncrStateDelta[10]; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next GPS measurement
float hgtIncrStateDelta[10]; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next height measurement
float magIncrStateDelta[10]; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next magnetometer measurement
uint8_t gpsUpdateCount; // count of the number of minor state corrections using GPS data
uint8_t gpsUpdateCountMax; // limit on the number of minor state corrections using GPS data
float gpsUpdateCountMaxInv; // floating point inverse of gpsFilterCountMax
uint8_t hgtUpdateCount; // count of the number of minor state corrections using Baro data
uint8_t hgtUpdateCountMax; // limit on the number of minor state corrections using Baro data
float hgtUpdateCountMaxInv; // floating point inverse of hgtFilterCountMax
uint8_t magUpdateCount; // count of the number of minor state corrections using Magnetometer data
uint8_t magUpdateCountMax; // limit on the number of minor state corrections using Magnetometer data
float magUpdateCountMaxInv; // floating point inverse of magFilterCountMax
// variables added for optical flow fusion
float dtIMUinv; // inverse of IMU time step
bool newDataFlow; // true when new optical flow data has arrived
2014-12-20 06:30:06 -04:00
bool flowFusePerformed; // true when optical flow fusion has been performed in that time step
bool flowDataValid; // true while optical flow data is still fresh
state_elements statesAtFlowTime;// States at the middle of the optical flow sample period
bool fuseOptFlowData; // this boolean causes the last optical flow measurement to be fused
float auxFlowObsInnov[2]; // optical flow observation innovations from 2-state focal length scale factor and terrain offset estimator
float auxFlowObsInnovVar[2]; // innovation variance for optical flow observations from 2-state focal length scale factor and terrain offset estimator
float flowRadXYcomp[2]; // motion compensated optical flow angular rates(rad/sec)
float flowRadXY[2]; // raw (non motion compensated) optical flow angular rates (rad/sec)
uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec)
uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec)
uint8_t flowQuality; // unsigned integer representing quality of optical flow data. 255 is maximum quality.
uint32_t rngMeaTime_ms; // time stamp from latest range measurement (msec)
float DCM33FlowMin; // If Tbn(3,3) is less than this number, optical flow measurements will not be fused as tilt is too high.
float fScaleFactorPnoise; // Process noise added to focal length scale factor state variance at each time step
Vector3f omegaAcrossFlowTime; // body angular rates averaged across the optical flow sample period
Matrix3f Tnb_flow; // transformation matrix from nav to body axes at the middle of the optical flow sample period
Matrix3f Tbn_flow; // transformation matrix from body to nav axes at the middle of the optical flow sample period
float varInnovOptFlow[2]; // optical flow innovations variances (rad/sec)^2
float innovOptFlow[2]; // optical flow LOS innovations (rad/sec)
uint8_t flowTimeDeltaAvg_ms; // average interval between optical flow measurements (msec)
float Popt[2][2]; // state covariance matrix
float flowStates[2]; // flow states [scale factor, terrain position]
float prevPosN; // north position at last measurement
float prevPosE; // east position at last measurement
state_elements statesAtRngTime; // States at the range finder measurement time
bool fuseRngData; // true when fusion of range data is demanded
float varInnovRng; // range finder observation innovation variance (m^2)
float innovRng; // range finder observation innovation (m)
float rngMea; // range finder measurement (m)
bool inhibitGndState; // true when the terrain position state is to remain constant
uint32_t prevFlowFusionTime_ms; // time the last flow measurement was fused
uint32_t flowIntervalMax_ms; // maximum allowable time between flow fusion events
bool fScaleInhibit; // true when the focal length scale factor is to remain constant
float flowTestRatio[2]; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail
float auxFlowTestRatio[2]; // sum of squares of optical flow innovations divided by fail threshold used by aux filter
float R_LOS; // variance of optical flow rate measurements (rad/sec)^2
float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail
Vector2f flowGyroBias; // bias error of optical flow sensor gyro output
uint8_t flowUpdateCount; // count of the number of minor state corrections using optical flow data
uint8_t flowUpdateCountMax; // limit on the number of minor state corrections using optical flow data
float flowUpdateCountMaxInv; // floating point inverse of flowUpdateCountMax
float flowIncrStateDelta[10]; // vector of corrections to attitude, velocity and position to be applied over the period between the current and next magnetometer measurement
bool newDataRng; // true when new valid range finder data has arrived.
bool velHoldMode; // true when holding velocity in optical flow mode when no flow measurements are available
bool lastHoldVelocity; // last value of holdVelocity
Vector2f heldVelNE; // velocity held when no aiding is available
uint16_t _msecFlowAvg; // average number of msec between synthetic sideslip measurements
uint8_t gpsInhibitMode; // 1 when GPS useage is being inhibited and only attitude and height data is available
// 2 when GPS useage is being inhibited and attitude, height, velocity and relative position is available
// 0 when GPS is being used
// states held by optical flow fusion across time steps
// optical flow X,Y motion compensated rate measurements are fused across two time steps
// to level computational load as this can be an expensive operation
struct {
uint8_t obsIndex;
ftype SH_LOS[5];
ftype SK_LOS[9];
ftype q0;
ftype q1;
ftype q2;
ftype q3;
ftype vn;
ftype ve;
ftype vd;
ftype pd;
ftype losPred[2];
} flow_state;
struct {
bool bad_xmag:1;
bool bad_ymag:1;
bool bad_zmag:1;
bool bad_airspeed:1;
bool bad_sideslip:1;
} faultStatus;
// states held by magnetomter fusion across time steps
// magnetometer X,Y,Z measurements are fused across three time steps
// to level computational load as this is an expensive operation
struct {
ftype q0;
ftype q1;
ftype q2;
ftype q3;
ftype magN;
ftype magE;
ftype magD;
ftype magXbias;
ftype magYbias;
ftype magZbias;
uint8_t obsIndex;
Matrix3f DCM;
Vector3f MagPred;
ftype R_MAG;
ftype SH_MAG[9];
} mag_state;
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
2013-12-30 06:41:28 -04:00
// performance counters
perf_counter_t _perf_UpdateFilter;
perf_counter_t _perf_CovariancePrediction;
perf_counter_t _perf_FuseVelPosNED;
perf_counter_t _perf_FuseMagnetometer;
perf_counter_t _perf_FuseAirspeed;
perf_counter_t _perf_FuseSideslip;
perf_counter_t _perf_OpticalFlowEKF;
perf_counter_t _perf_FuseOptFlow;
2013-12-30 06:41:28 -04:00
#endif
// should we assume zero sideslip?
bool assume_zero_sideslip(void) const;
};
2013-12-30 06:41:28 -04:00
2014-06-06 19:12:08 -03:00
#if CONFIG_HAL_BOARD != HAL_BOARD_PX4 && CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
2013-12-30 06:41:28 -04:00
#define perf_begin(x)
#define perf_end(x)
#endif
#endif // AP_NavEKF