ardupilot/ArduCopter/ArduCopter.pde

2300 lines
78 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#define THISFIRMWARE "ArduCopter V2.9-rc2"
/*
* ArduCopter Version 2.9
2012-08-21 23:19:50 -03:00
* Lead author: Jason Short
* Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
*
* This firmware is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Special Thanks for Contributors:
*
* Hein Hollander :Octo Support
* Dani Saez :V Ocoto Support
* Max Levine :Tri Support, Graphics
* Jose Julio :Stabilization Control laws
* Randy MacKay :Heli Support
* Jani Hiriven :Testing feedback
* Andrew Tridgell :Mavlink Support
* James Goppert :Mavlink Support
* Doug Weibel :Libraries
* Mike Smith :Libraries, Coding support
* HappyKillmore :Mavlink GCS
* Michael Oborne :Mavlink GCS
* Jack Dunkle :Alpha testing
* Christof Schmid :Alpha testing
* Oliver :Piezo support
* Guntars :Arming safety suggestion
* Igor van Airde :Control Law optimization
* Jean-Louis Naudin :Auto Landing
* Sandro Benigno :Camera support
* Olivier Adler :PPM Encoder
* John Arne Birkeland :PPM Encoder
* Adam M Rivera :Auto Compass Declination
* Marco Robustini :Alpha testing
* Angel Fernandez :Alpha testing
* Robert Lefebvre :Heli Support & LEDs
* Amilcar Lucas :mount and camera configuration
* Gregory Fletcher :mount orientation math
2012-11-16 16:43:03 -04:00
* Leonard Hall :Flight Dynamics
2012-08-21 23:19:50 -03:00
*
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
*
* Requires modified "mrelax" version of Arduino, which can be found here:
* http://code.google.com/p/ardupilot-mega/downloads/list
*
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <avr/wdt.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Menu.h>
#include <Arduino_Mega_ISR_Registry.h>
2012-11-10 01:29:56 -04:00
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
#include <I2C.h> // Arduino I2C lib
#include <SPI.h> // Arduino SPI lib
#include <SPI3.h> // SPI3 library
2012-11-10 01:29:56 -04:00
#include <AP_Semaphore.h> // for removing conflict between optical flow and dataflash on SPI3 bus
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_AnalogSource.h>
#include <AP_Baro.h>
2012-11-10 01:29:56 -04:00
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_PeriodicProcess.h> // Parent header of Timer
// (only included for makefile libpath to work)
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
#include <AP_AHRS.h>
2012-08-21 23:19:50 -03:00
#include <APM_PI.h> // PI library
2012-11-10 01:29:56 -04:00
#include <AC_PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
2012-08-21 23:19:50 -03:00
#include <AP_Motors.h> // AP Motors library
#include <AP_MotorsQuad.h> // AP Motors library for Quad
#include <AP_MotorsTri.h> // AP Motors library for Tri
#include <AP_MotorsHexa.h> // AP Motors library for Hexa
#include <AP_MotorsY6.h> // AP Motors library for Y6
#include <AP_MotorsOcta.h> // AP Motors library for Octa
#include <AP_MotorsOctaQuad.h> // AP Motors library for OctaQuad
#include <AP_MotorsHeli.h> // AP Motors library for Heli
#include <AP_MotorsMatrix.h> // AP Motors library for Heli
#include <AP_RangeFinder.h> // Range finder library
2012-11-10 01:29:56 -04:00
#include <AP_OpticalFlow.h> // Optical Flow library
#include <Filter.h> // Filter library
#include <AP_Buffer.h> // APM FIFO Buffer
2012-08-21 23:19:50 -03:00
#include <ModeFilter.h> // Mode Filter from Filter library
#include <AverageFilter.h> // Mode Filter from Filter library
#include <AP_LeadFilter.h> // GPS Lead filter
#include <LowPassFilter.h> // Low Pass Filter library
2012-08-21 23:19:50 -03:00
#include <AP_Relay.h> // APM relay
#include <AP_Camera.h> // Photo or video camera
#include <AP_Mount.h> // Camera/Antenna mount
2012-11-10 01:29:56 -04:00
#include <AP_Airspeed.h> // needed for AHRS build
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library
#include <DigitalWriteFast.h> // faster digital write for LEDs
#include <memcheck.h>
// Configuration
#include "defines.h"
#include "config.h"
#include "config_channels.h"
2012-11-10 01:29:56 -04:00
#include <GCS_MAVLink.h> // MAVLink GCS definitions
// Local modules
#include "Parameters.h"
#include "GCS.h"
2012-11-10 01:29:56 -04:00
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
// Limits library - Puts limits on the vehicle, and takes recovery actions
#include <AP_Limits.h>
2012-11-10 01:29:56 -04:00
#include <AP_Limit_GPSLock.h> // a limits library module
#include <AP_Limit_Geofence.h> // a limits library module
#include <AP_Limit_Altitude.h> // a limits library module
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
FastSerialPort3(Serial3); // Telemetry port
// port to use for command line interface
static FastSerial *cliSerial = &Serial;
// this sets up the parameter table, and sets the default values. This
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader(var_info, WP_START_BYTE);
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
2012-08-21 23:19:50 -03:00
static Parameters g;
////////////////////////////////////////////////////////////////////////////////
// prototypes
static void update_events(void);
////////////////////////////////////////////////////////////////////////////////
// RC Hardware
////////////////////////////////////////////////////////////////////////////////
2011-11-25 19:11:25 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
2012-08-21 23:19:50 -03:00
APM_RC_APM2 APM_RC;
#else
2012-08-21 23:19:50 -03:00
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
AP_Semaphore spi_semaphore;
AP_Semaphore spi3_semaphore;
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
DataFlash_APM2 DataFlash(&spi3_semaphore);
#else
DataFlash_APM1 DataFlash(&spi_semaphore);
#endif
////////////////////////////////////////////////////////////////////////////////
// the rate we run the main loop at
////////////////////////////////////////////////////////////////////////////////
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_200HZ;
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
2012-11-10 01:29:56 -04:00
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
2012-11-10 01:29:56 -04:00
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
2012-08-21 23:19:50 -03:00
#if CONFIG_ADC == ENABLED
AP_ADC_ADS7844 adc;
#endif
#ifdef DESKTOP_BUILD
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
#include <SITL.h>
SITL sitl;
#else
#if CONFIG_BARO == AP_BARO_BMP085
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_Baro_BMP085 barometer(true);
# else
AP_Baro_BMP085 barometer(false);
# endif
#elif CONFIG_BARO == AP_BARO_MS5611
AP_Baro_MS5611 barometer;
#endif
AP_Compass_HMC5843 compass;
#endif
#if OPTFLOW == ENABLED
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#else
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#endif
2012-08-21 23:19:50 -03:00
#else
AP_OpticalFlow optflow;
#endif
// real GPS selection
2012-08-21 23:19:50 -03:00
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
AP_GPS_MTK19 g_gps_driver(&Serial1);
2012-08-21 23:19:50 -03:00
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
2012-08-21 23:19:50 -03:00
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
2012-08-21 23:19:50 -03:00
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins;
2012-08-21 23:19:50 -03:00
#else
AP_InertialSensor_Oilpan ins(&adc);
2012-08-21 23:19:50 -03:00
#endif
2012-08-21 23:19:50 -03:00
#if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_AHRS_MPU6000 ahrs(&ins, g_gps); // only works with APM2
2012-08-21 23:19:50 -03:00
#else
AP_AHRS_DCM ahrs(&ins, g_gps);
2012-08-21 23:19:50 -03:00
#endif
// ahrs2 object is the secondary ahrs to allow running DMP in parallel with DCM
#if SECONDARY_DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_AHRS_MPU6000 ahrs2(&ins, g_gps); // only works with APM2
#endif
#elif HIL_MODE == HIL_MODE_SENSORS
2012-08-21 23:19:50 -03:00
// sensor emulators
2012-11-10 01:29:56 -04:00
AP_ADC_HIL adc;
AP_Baro_BMP085_HIL barometer;
AP_Compass_HIL compass;
2012-08-21 23:19:50 -03:00
AP_GPS_HIL g_gps_driver(NULL);
2012-11-10 01:29:56 -04:00
AP_InertialSensor_Stub ins;
AP_AHRS_DCM ahrs(&ins, g_gps);
2012-08-21 23:19:50 -03:00
static int32_t gps_base_alt;
#elif HIL_MODE == HIL_MODE_ATTITUDE
2012-11-10 01:29:56 -04:00
AP_ADC_HIL adc;
AP_InertialSensor_Stub ins;
AP_AHRS_HIL ahrs(&ins, g_gps);
2012-08-21 23:19:50 -03:00
AP_GPS_HIL g_gps_driver(NULL);
2012-11-10 01:29:56 -04:00
AP_Compass_HIL compass; // never used
AP_Baro_BMP085_HIL barometer;
#if OPTFLOW == ENABLED
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#else
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
#endif // CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
#endif // OPTFLOW == ENABLED
2012-08-21 23:19:50 -03:00
#ifdef DESKTOP_BUILD
#include <SITL.h>
SITL sitl;
#endif // DESKTOP_BUILD
2012-08-21 23:19:50 -03:00
static int32_t gps_base_alt;
#else
2012-08-21 23:19:50 -03:00
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
// we always have a timer scheduler
AP_TimerProcess timer_scheduler;
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
2012-08-21 23:19:50 -03:00
GCS_MAVLINK gcs0;
GCS_MAVLINK gcs3;
////////////////////////////////////////////////////////////////////////////////
// SONAR selection
////////////////////////////////////////////////////////////////////////////////
//
ModeFilterInt16_Size3 sonar_mode_filter(1);
#if CONFIG_SONAR == ENABLED
2012-08-21 23:19:50 -03:00
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
#endif
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
#endif
2011-10-15 19:29:33 -03:00
// agmatthews USERHOOKS
////////////////////////////////////////////////////////////////////////////////
// User variables
////////////////////////////////////////////////////////////////////////////////
#ifdef USERHOOK_VARIABLES
2012-08-21 23:19:50 -03:00
#include USERHOOK_VARIABLES
2011-10-15 19:29:33 -03:00
#endif
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
/* Radio values
2012-08-21 23:19:50 -03:00
* Channel assignments
* 1 Ailerons (rudder if no ailerons)
* 2 Elevator
* 3 Throttle
* 4 Rudder (if we have ailerons)
* 5 Mode - 3 position switch
* 6 User assignable
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
* 8 TBD
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
* See libraries/RC_Channel/RC_Channel_aux.h for more information
*/
//Documentation of GLobals:
static union {
struct {
uint8_t home_is_set : 1; // 1
uint8_t simple_mode : 1; // 2 // This is the state of simple mode
uint8_t manual_attitude : 1; // 3
uint8_t manual_throttle : 1; // 4
uint8_t low_battery : 1; // 5 // Used to track if the battery is low - LED output flashes when the batt is low
uint8_t loiter_override : 1; // 6 // Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s
uint8_t armed : 1; // 7
uint8_t auto_armed : 1; // 8
uint8_t failsafe : 1; // 9 // A status flag for the failsafe state
uint8_t do_flip : 1; // 10 // Used to enable flip code
uint8_t takeoff_complete : 1; // 11
uint8_t land_complete : 1; // 12
uint8_t compass_status : 1; // 13
uint8_t gps_status : 1; // 14
uint8_t fast_corner : 1; // 15 // should we take the waypoint quickly or slow down?
};
uint16_t value;
} ap;
static struct AP_System{
uint8_t GPS_light : 1; // 1 // Solid indicates we have full 3D lock and can navigate, flash = read
uint8_t motor_light : 1; // 2 // Solid indicates Armed state
uint8_t new_radio_frame : 1; // 3 // Set true if we have new PWM data to act on from the Radio
uint8_t nav_ok : 1; // 4 // deprecated
uint8_t CH7_flag : 1; // 5 // manages state of the ch7 toggle switch
uint8_t usb_connected : 1; // 6 // true if APM is powered from USB connection
uint8_t run_50hz_loop : 1; // 7 // toggles the 100hz loop for 50hz
uint8_t alt_sensor_flag : 1; // 8 // used to track when to read sensors vs estimate alt
uint8_t yaw_stopped : 1; // 9 // Used to manage the Yaw hold capabilities
} ap_system;
////////////////////////////////////////////////////////////////////////////////
// velocity in lon and lat directions calculated from GPS position and accelerometer data
// updated after GPS read - 5-10hz
static int16_t lon_speed; // expressed in cm/s. positive numbers mean moving east
static int16_t lat_speed; // expressed in cm/s. positive numbers when moving north
// The difference between the desired rate of travel and the actual rate of travel
// updated after GPS read - 5-10hz
static int16_t x_rate_error;
static int16_t y_rate_error;
////////////////////////////////////////////////////////////////////////////////
// Radio
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
static int8_t control_mode = STABILIZE;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
2012-08-21 23:19:50 -03:00
static byte oldSwitchPosition;
// receiver RSSI
static uint8_t receiver_rssi;
////////////////////////////////////////////////////////////////////////////////
// Motor Output
////////////////////////////////////////////////////////////////////////////////
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == QUAD_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsQuad
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == TRI_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsTri
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HEXA_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsHexa
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == Y6_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsY6
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == OCTA_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsOcta
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == OCTA_QUAD_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsOctaQuad
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HELI_FRAME
2012-08-21 23:19:50 -03:00
#define MOTOR_CLASS AP_MotorsHeli
#endif
2012-11-10 01:29:56 -04:00
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
2012-11-10 01:29:56 -04:00
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
#else
2012-11-10 01:29:56 -04:00
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
#endif
////////////////////////////////////////////////////////////////////////////////
// PIDs
////////////////////////////////////////////////////////////////////////////////
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
// and not the adjusted omega rates, but the name is stuck
static Vector3f omega;
// This is used to hold radio tuning values for in-flight CH6 tuning
float tuning_value;
// used to limit the rate that the pid controller output is logged so that it doesn't negatively affect performance
static uint8_t pid_log_counter;
////////////////////////////////////////////////////////////////////////////////
// LED output
////////////////////////////////////////////////////////////////////////////////
// This is current status for the LED lights state machine
// setting this value changes the output of the LEDs
2012-08-21 23:19:50 -03:00
static byte led_mode = NORMAL_LEDS;
// Blinking indicates GPS status
static byte copter_leds_GPS_blink;
// Blinking indicates battery status
static byte copter_leds_motor_blink;
// Navigation confirmation blinks
static int8_t copter_leds_nav_blink;
////////////////////////////////////////////////////////////////////////////////
// GPS variables
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
2012-11-10 01:29:56 -04:00
static const float t7 = 10000000.0;
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
2012-11-10 01:29:56 -04:00
static float scaleLongUp = 1;
// Sometimes we need to remove the scaling for distance calcs
2012-11-10 01:29:56 -04:00
static float scaleLongDown = 1;
////////////////////////////////////////////////////////////////////////////////
// Mavlink specific
////////////////////////////////////////////////////////////////////////////////
// Used by Mavlink for unknow reasons
2012-11-10 01:29:56 -04:00
static const float radius_of_earth = 6378100; // meters
// Used by Mavlink for unknow reasons
2012-11-10 01:29:56 -04:00
static const float gravity = 9.80665; // meters/ sec^2
// Unions for getting byte values
2012-08-21 23:19:50 -03:00
union float_int {
int32_t int_value;
float float_value;
} float_int;
////////////////////////////////////////////////////////////////////////////////
// Location & Navigation
////////////////////////////////////////////////////////////////////////////////
// This is the angle from the copter to the "next_WP" location in degrees * 100
static int32_t wp_bearing;
// Status of the Waypoint tracking mode. Options include:
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE
2012-08-21 23:19:50 -03:00
static byte wp_control;
// Register containing the index of the current navigation command in the mission script
2012-08-21 23:19:50 -03:00
static int16_t command_nav_index;
// Register containing the index of the previous navigation command in the mission script
// Used to manage the execution of conditional commands
2012-08-21 23:19:50 -03:00
static uint8_t prev_nav_index;
// Register containing the index of the current conditional command in the mission script
2012-08-21 23:19:50 -03:00
static uint8_t command_cond_index;
// Used to track the required WP navigation information
// options include
// NAV_ALTITUDE - have we reached the desired altitude?
// NAV_LOCATION - have we reached the desired location?
2012-08-21 23:19:50 -03:00
// NAV_DELAY - have we waited at the waypoint the desired time?
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints
// used to limit the speed ramp up of WP navigation
// Acceleration is limited to 1m/s/s
static int16_t max_speed_old;
// Used to track how many cm we are from the "next_WP" location
2012-08-21 23:19:50 -03:00
static int32_t long_error, lat_error;
static int16_t control_roll;
static int16_t control_pitch;
static uint8_t rtl_state;
////////////////////////////////////////////////////////////////////////////////
// Orientation
////////////////////////////////////////////////////////////////////////////////
// Convienience accessors for commonly used trig functions. These values are generated
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
// would normally be used.
// The cos values are defaulted to 1 to get a decent initial value for a level state
2012-08-21 23:19:50 -03:00
static float cos_roll_x = 1;
static float cos_pitch_x = 1;
static float cos_yaw_x = 1;
static float sin_yaw_y;
static float sin_roll;
static float sin_pitch;
////////////////////////////////////////////////////////////////////////////////
// SIMPLE Mode
////////////////////////////////////////////////////////////////////////////////
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the copter leaves a 20m radius from home.
static int32_t initial_simple_bearing;
////////////////////////////////////////////////////////////////////////////////
// Rate contoller targets
////////////////////////////////////////////////////////////////////////////////
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame
static int32_t roll_rate_target_ef = 0;
static int32_t pitch_rate_target_ef = 0;
static int32_t yaw_rate_target_ef = 0;
static int32_t roll_rate_target_bf = 0; // body frame roll rate target
static int32_t pitch_rate_target_bf = 0; // body frame pitch rate target
static int32_t yaw_rate_target_bf = 0; // body frame yaw rate target
////////////////////////////////////////////////////////////////////////////////
// Throttle variables
////////////////////////////////////////////////////////////////////////////////
static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target
static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly
static float throttle_avg; // g.throttle_cruise as a float
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
2012-02-19 01:16:19 -04:00
////////////////////////////////////////////////////////////////////////////////
// ACRO Mode
////////////////////////////////////////////////////////////////////////////////
// Used to control Axis lock
int32_t roll_axis;
int32_t pitch_axis;
// Filters
2012-08-21 23:19:50 -03:00
AP_LeadFilter xLeadFilter; // Long GPS lag filter
AP_LeadFilter yLeadFilter; // Lat GPS lag filter
#if FRAME_CONFIG == HELI_FRAME
LowPassFilterFloat rate_roll_filter; // Rate Roll filter
LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter
// LowPassFilterFloat rate_yaw_filter; // Rate Yaw filter
#endif // HELI_FRAME
// Barometer filter
AverageFilterInt32_Size5 baro_filter;
////////////////////////////////////////////////////////////////////////////////
// Circle Mode / Loiter control
////////////////////////////////////////////////////////////////////////////////
// used to determin the desired location in Circle mode
// increments at circle_rate / second
static float circle_angle;
// used to control the speed of Circle mode
// units are in radians, default is 5° per second
2011-11-13 17:40:31 -04:00
static const float circle_rate = 0.0872664625;
// used to track the delat in Circle Mode
static int32_t old_wp_bearing;
// deg : how many times to circle * 360 for Loiter/Circle Mission command
2012-08-21 23:19:50 -03:00
static int16_t loiter_total;
// deg : how far we have turned around a waypoint
2012-08-21 23:19:50 -03:00
static int16_t loiter_sum;
// How long we should stay in Loiter Mode for mission scripting
static uint16_t loiter_time_max;
// How long have we been loitering - The start time in millis
static uint32_t loiter_time;
// The synthetic location created to make the copter do circles around a WP
2012-08-21 23:19:50 -03:00
static struct Location circle_WP;
////////////////////////////////////////////////////////////////////////////////
// CH7 control
////////////////////////////////////////////////////////////////////////////////
// This register tracks the current Mission Command index when writing
// a mission using CH7 in flight
static int8_t CH7_wp_index;
////////////////////////////////////////////////////////////////////////////////
// Battery Sensors
////////////////////////////////////////////////////////////////////////////////
// Battery Voltage of battery, initialized above threshold for filter
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// refers to the instant amp draw based on an Attopilot Current sensor
2012-08-21 23:19:50 -03:00
static float current_amps1;
// refers to the total amps drawn based on an Attopilot Current sensor
2012-08-21 23:19:50 -03:00
static float current_total1;
////////////////////////////////////////////////////////////////////////////////
// Altitude
////////////////////////////////////////////////////////////////////////////////
// The (throttle) controller desired altitude in cm
static float controller_desired_alt;
2012-02-01 00:39:15 -04:00
// The cm we are off in altitude from next_WP.alt Positive value means we are below the WP
2012-08-21 23:19:50 -03:00
static int32_t altitude_error;
// The cm/s we are moving up or down based on sensor data - Positive = UP
2012-08-21 23:19:50 -03:00
static int16_t climb_rate_actual;
// Used to dither our climb_rate over 50hz
2012-08-21 23:19:50 -03:00
static int16_t climb_rate_error;
// The cm/s we are moving up or down based on filtered data - Positive = UP
2012-08-21 23:19:50 -03:00
static int16_t climb_rate;
// The altitude as reported by Sonar in cm Values are 20 to 700 generally.
2012-08-21 23:19:50 -03:00
static int16_t sonar_alt;
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar
// The climb_rate as reported by sonar in cm/s
2012-08-21 23:19:50 -03:00
static int16_t sonar_rate;
// The altitude as reported by Baro in cm Values can be quite high
2012-08-21 23:19:50 -03:00
static int32_t baro_alt;
// The climb_rate as reported by Baro in cm/s
2012-08-21 23:19:50 -03:00
static int16_t baro_rate;
2012-08-21 23:19:50 -03:00
static int16_t saved_toy_throttle;
////////////////////////////////////////////////////////////////////////////////
// flight modes
////////////////////////////////////////////////////////////////////////////////
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
// Each Flight mode is a unique combination of these modes
//
// The current desired control scheme for Yaw
static uint8_t yaw_mode;
// The current desired control scheme for roll and pitch / navigation
static uint8_t roll_pitch_mode;
// The current desired control scheme for altitude hold
static uint8_t throttle_mode;
////////////////////////////////////////////////////////////////////////////////
// flight specific
////////////////////////////////////////////////////////////////////////////////
// An additional throttle added to keep the copter at the same altitude when banking
2012-08-21 23:19:50 -03:00
static int16_t angle_boost;
// counter to verify landings
static uint16_t land_detector;
////////////////////////////////////////////////////////////////////////////////
// Navigation general
////////////////////////////////////////////////////////////////////////////////
// The location of home in relation to the copter, updated every GPS read
static int32_t home_bearing;
2012-01-22 02:04:35 -04:00
// distance between plane and home in cm
2012-08-21 23:19:50 -03:00
static int32_t home_distance;
2012-01-22 02:04:35 -04:00
// distance between plane and next_WP in cm
// is not static because AP_Camera uses it
2012-08-21 23:19:50 -03:00
int32_t wp_distance;
////////////////////////////////////////////////////////////////////////////////
// 3D Location vectors
////////////////////////////////////////////////////////////////////////////////
// home location is stored when we have a good GPS lock and arm the copter
// Can be reset each the copter is re-armed
2012-08-21 23:19:50 -03:00
static struct Location home;
// Current location of the copter
2012-08-21 23:19:50 -03:00
static struct Location current_loc;
// Next WP is the desired location of the copter - the next waypoint or loiter location
2012-08-21 23:19:50 -03:00
static struct Location next_WP;
// Prev WP is used to get the optimum path from one WP to the next
2012-08-21 23:19:50 -03:00
static struct Location prev_WP;
// Holds the current loaded command from the EEPROM for navigation
2012-08-21 23:19:50 -03:00
static struct Location command_nav_queue;
// Holds the current loaded command from the EEPROM for conditional scripts
2012-08-21 23:19:50 -03:00
static struct Location command_cond_queue;
// Holds the current loaded command from the EEPROM for guided mode
static struct Location guided_WP;
////////////////////////////////////////////////////////////////////////////////
// Crosstrack
////////////////////////////////////////////////////////////////////////////////
// deg * 100, The original angle to the next_WP when the next_WP was set
// Also used to check when we pass a WP
static int32_t original_wp_bearing;
// The amount of angle correction applied to wp_bearing to bring the copter back on its optimum path
2012-08-21 23:19:50 -03:00
static int16_t crosstrack_error;
////////////////////////////////////////////////////////////////////////////////
// Navigation Roll/Pitch functions
////////////////////////////////////////////////////////////////////////////////
// all angles are deg * 100 : target yaw angle
// The Commanded ROll from the autopilot.
2012-08-21 23:19:50 -03:00
static int32_t nav_roll;
// The Commanded pitch from the autopilot. negative Pitch means go forward.
2012-08-21 23:19:50 -03:00
static int32_t nav_pitch;
// The desired bank towards North (Positive) or South (Negative)
2012-08-21 23:19:50 -03:00
static int32_t auto_roll;
static int32_t auto_pitch;
2012-02-15 13:09:52 -04:00
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
2012-08-21 23:19:50 -03:00
static int16_t nav_lat;
// The desired bank towards East (Positive) or West (Negative)
2012-08-21 23:19:50 -03:00
static int16_t nav_lon;
// The Commanded ROll from the autopilot based on optical flow sensor.
2012-08-21 23:19:50 -03:00
static int32_t of_roll;
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
2012-08-21 23:19:50 -03:00
static int32_t of_pitch;
////////////////////////////////////////////////////////////////////////////////
// Navigation Throttle control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Throttle from the autopilot.
static int16_t nav_throttle; // 0-1000 for throttle control
// This is a simple counter to track the amount of throttle used during flight
// This could be useful later in determining and debuging current usage and predicting battery life
static uint32_t throttle_integrator;
////////////////////////////////////////////////////////////////////////////////
// Climb rate control
////////////////////////////////////////////////////////////////////////////////
// Time when we intiated command in millis - used for controlling decent rate
// Used to track the altitude offset for climbrate control
2012-08-21 23:19:50 -03:00
static int8_t alt_change_flag;
////////////////////////////////////////////////////////////////////////////////
// Navigation Yaw control
////////////////////////////////////////////////////////////////////////////////
// The Commanded Yaw from the autopilot.
2012-08-21 23:19:50 -03:00
static int32_t nav_yaw;
static uint8_t yaw_timer;
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION
static struct Location yaw_look_at_WP;
// bearing from current location to the yaw_look_at_WP
static int32_t yaw_look_at_WP_bearing;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
static int32_t yaw_look_at_heading;
// Deg/s we should turn
static int16_t yaw_look_at_heading_slew;
////////////////////////////////////////////////////////////////////////////////
// Repeat Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
2012-08-21 23:19:50 -03:00
static byte event_id;
// Used to manage the timimng of repeating events
static uint32_t event_timer;
// How long to delay the next firing of event in millis
static uint16_t event_delay;
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
2012-08-21 23:19:50 -03:00
static int16_t event_repeat;
// per command value, such as PWM for servos
2012-08-21 23:19:50 -03:00
static int16_t event_value;
// the stored value used to undo commands - such as original PWM command
2012-08-21 23:19:50 -03:00
static int16_t event_undo_value;
////////////////////////////////////////////////////////////////////////////////
// Delay Mission Scripting Command
////////////////////////////////////////////////////////////////////////////////
2012-08-21 23:19:50 -03:00
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
2012-01-10 00:23:37 -04:00
static uint32_t condition_start;
////////////////////////////////////////////////////////////////////////////////
// IMU variables
////////////////////////////////////////////////////////////////////////////////
// Integration time for the gyros (DCM algorithm)
// Updated with the fast loop
static float G_Dt = 0.02;
////////////////////////////////////////////////////////////////////////////////
// Inertial Navigation
////////////////////////////////////////////////////////////////////////////////
#if INERTIAL_NAV_XY == ENABLED || INERTIAL_NAV_Z == ENABLED
AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, &g_gps);
#endif
////////////////////////////////////////////////////////////////////////////////
// Performance monitoring
////////////////////////////////////////////////////////////////////////////////
// Used to manage the rate of performance logging messages
2012-08-21 23:19:50 -03:00
static int16_t perf_mon_counter;
// The number of GPS fixes we have had
2012-08-21 23:19:50 -03:00
static int16_t gps_fix_count;
// System Timers
// --------------
// Time in microseconds of main control loop
2012-08-21 23:19:50 -03:00
static uint32_t fast_loopTimer;
// Time in microseconds of 50hz control loop
static uint32_t fiftyhz_loopTimer = 0;
// Counters for branching from 10 hz control loop
2012-08-21 23:19:50 -03:00
static byte medium_loopCounter;
// Counters for branching from 3 1/3hz control loop
2012-08-21 23:19:50 -03:00
static byte slow_loopCounter;
// Counters for branching at 1 hz
2012-08-21 23:19:50 -03:00
static byte counter_one_herz;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
static uint16_t mainLoop_count;
// Delta Time in milliseconds for navigation computations, updated with every good GPS read
2012-08-21 23:19:50 -03:00
static float dTnav;
// Counters for branching from 4 minute control loop used to save Compass offsets
2012-08-21 23:19:50 -03:00
static int16_t superslow_loopCounter;
// Loiter timer - Records how long we have been in loiter
static uint32_t rtl_loiter_start_time;
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight
2012-08-21 23:19:50 -03:00
static uint8_t auto_disarming_counter;
// prevents duplicate GPS messages from entering system
2012-08-21 23:19:50 -03:00
static uint32_t last_gps_time;
// Used to exit the roll and pitch auto trim function
static uint8_t auto_trim_counter;
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7)
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
AP_Relay_APM2 relay;
#else
AP_Relay_APM1 relay;
#endif
//Reference to the camera object (it uses the relay object inside it)
#if CAMERA == ENABLED
AP_Camera camera(&relay);
#endif
2011-10-02 09:52:02 -03:00
// a pin for reading the receiver RSSI voltage. The scaling by 0.25
// is to take the 0 to 1024 range down to an 8 bit range for MAVLink
AP_AnalogSource_Arduino RSSI_pin(-1, 0.25);
#if CLI_ENABLED == ENABLED
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
2012-09-11 01:25:53 -03:00
#endif
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount(&current_loc, g_gps, &ahrs, 0);
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount2(&current_loc, g_gps, &ahrs, 1);
2012-08-08 17:16:48 -03:00
#endif
////////////////////////////////////////////////////////////////////////////////
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters
////////////////////////////////////////////////////////////////////////////////
#if AP_LIMITS == ENABLED
2012-11-10 01:29:56 -04:00
AP_Limits limits;
2012-08-21 23:19:50 -03:00
AP_Limit_GPSLock gpslock_limit(g_gps);
AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, &current_loc);
AP_Limit_Altitude altitude_limit(&current_loc);
#endif
////////////////////////////////////////////////////////////////////////////////
// function definitions to keep compiler from complaining about undeclared functions
////////////////////////////////////////////////////////////////////////////////
void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate);
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
2012-08-21 23:19:50 -03:00
memcheck_init();
init_ardupilot();
}
void loop()
{
uint32_t timer = micros();
uint16_t num_samples;
2012-08-21 23:19:50 -03:00
// We want this to execute fast
// ----------------------------
num_samples = ins.num_samples_available();
if (num_samples >= 2) {
#if DEBUG_FAST_LOOP == ENABLED
Log_Write_Data(DATA_FAST_LOOP, (int32_t)(timer - fast_loopTimer));
2012-08-28 01:12:23 -03:00
#endif
2012-08-21 23:19:50 -03:00
// check loop time
perf_info_check_loop_time(timer - fast_loopTimer);
2012-08-21 23:19:50 -03:00
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
fast_loopTimer = timer;
// for mainloop failure monitoring
mainLoop_count++;
2012-08-21 23:19:50 -03:00
// Execute the fast loop
// ---------------------
fast_loop();
2012-08-21 23:19:50 -03:00
// run the 50hz loop 1/2 the time
ap_system.run_50hz_loop = !ap_system.run_50hz_loop;
2012-08-21 23:19:50 -03:00
if(ap_system.run_50hz_loop) {
2012-08-28 01:12:23 -03:00
#if DEBUG_MED_LOOP == ENABLED
Log_Write_Data(DATA_MED_LOOP, (int32_t)(timer - fiftyhz_loopTimer));
#endif
2012-08-28 01:12:23 -03:00
// store the micros for the 50 hz timer
fiftyhz_loopTimer = timer;
2012-08-21 23:19:50 -03:00
// check for new GPS messages
// --------------------------
update_GPS();
2012-08-21 23:19:50 -03:00
// run navigation routines
update_navigation();
// perform 10hz tasks
// ------------------
medium_loop();
2012-08-21 23:19:50 -03:00
// Stuff to run at full 50hz, but after the med loops
// --------------------------------------------------
fifty_hz_loop();
2012-08-21 23:19:50 -03:00
counter_one_herz++;
2012-08-21 23:19:50 -03:00
// trgger our 1 hz loop
if(counter_one_herz >= 50) {
super_slow_loop();
counter_one_herz = 0;
}
perf_mon_counter++;
if (perf_mon_counter >= 500 ) { // 500 iterations at 50hz = 10 seconds
if (g.log_bitmask & MASK_LOG_PM)
Log_Write_Performance();
perf_info_reset();
gps_fix_count = 0;
perf_mon_counter = 0;
}
}else{
// process communications with the GCS
gcs_check();
}
} else {
#ifdef DESKTOP_BUILD
usleep(1000);
#endif
if (timer - fast_loopTimer < 9000) {
// we have some spare cycles available
// less than 10ms has passed. We have at least one millisecond
// of free time. The most useful thing to do with that time is
// to accumulate some sensor readings, specifically the
// compass, which is often very noisy but is not interrupt
// driven, so it can't accumulate readings by itself
if (g.compass_enabled) {
compass.accumulate();
}
}
}
}
// Main loop - 100hz
static void fast_loop()
{
2012-08-21 23:19:50 -03:00
// IMU DCM Algorithm
// --------------------
read_AHRS();
// reads all of the necessary trig functions for cameras, throttle, etc.
// --------------------------------------------------------------------
update_trig();
// run low level rate controllers that only require IMU data
run_rate_controllers();
// write out the servo PWM values
// ------------------------------
set_servos_4();
2012-08-21 23:19:50 -03:00
// Inertial Nav
// --------------------
read_inertia();
// optical flow
// --------------------
#if OPTFLOW == ENABLED
if(g.optflow_enabled) {
update_optical_flow();
}
#endif // OPTFLOW == ENABLED
// Read radio and 3-position switch on radio
// -----------------------------------------
read_radio();
read_control_switch();
2012-08-21 23:19:50 -03:00
// custom code/exceptions for flight modes
// ---------------------------------------
update_yaw_mode();
update_roll_pitch_mode();
// update targets to rate controllers
update_rate_contoller_targets();
2012-08-21 23:19:50 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_FASTLOOP
USERHOOK_FASTLOOP
#endif
2011-10-15 19:29:33 -03:00
}
static void medium_loop()
{
2012-08-21 23:19:50 -03:00
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS and Compass
//-----------------------------------------
case 0:
medium_loopCounter++;
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
if(g.compass_enabled) {
if (compass.read()) {
compass.null_offsets();
}
}
#endif
// auto_trim - stores roll and pitch radio inputs to ahrs
auto_trim();
2012-08-21 23:19:50 -03:00
// record throttle output
// ------------------------------
throttle_integrator += g.rc_3.servo_out;
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
read_receiver_rssi();
2012-08-21 23:19:50 -03:00
break;
// command processing
//-------------------
case 2:
medium_loopCounter++;
if(control_mode == TOY_A) {
update_toy_throttle();
if(throttle_mode == THROTTLE_AUTO) {
update_toy_altitude();
}
}
ap_system.alt_sensor_flag = true;
2012-08-21 23:19:50 -03:00
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
// perform next command
// --------------------
if(control_mode == AUTO) {
if(ap.home_is_set && g.command_total > 1) {
2012-08-21 23:19:50 -03:00
update_commands();
}
}
if(motors.armed()) {
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
2012-08-21 23:19:50 -03:00
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
2012-08-21 23:19:50 -03:00
if (g.log_bitmask & MASK_LOG_MOTORS)
Log_Write_Motors();
}
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
if (g.battery_monitoring != 0) {
read_battery();
}
// Accel trims = hold > 2 seconds
// Throttle cruise = switch less than 1 second
// --------------------------------------------
read_trim_switch();
// Check for engine arming
// -----------------------
arm_motors();
// agmatthews - USERHOOKS
#ifdef USERHOOK_MEDIUMLOOP
USERHOOK_MEDIUMLOOP
#endif
#if COPTER_LEDS == ENABLED
update_copter_leds();
#endif
slow_loop();
break;
default:
// this is just a catch all
// ------------------------
medium_loopCounter = 0;
break;
}
}
// stuff that happens at 50 hz
// ---------------------------
static void fifty_hz_loop()
{
2012-08-21 23:19:50 -03:00
// read altitude sensors or estimate altitude
// ------------------------------------------
update_altitude_est();
// Update the throttle ouput
// -------------------------
update_throttle_mode();
#if TOY_EDF == ENABLED
edf_toy();
#endif
2012-08-21 23:19:50 -03:00
#ifdef USERHOOK_50HZLOOP
USERHOOK_50HZLOOP
#endif
2012-08-21 23:19:50 -03:00
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
// HIL for a copter needs very fast update of the servo values
gcs_send_message(MSG_RADIO_OUT);
#endif
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
// update camera mount's position
camera_mount.update_mount_position();
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
// update camera mount's position
camera_mount2.update_mount_position();
2012-08-08 17:16:48 -03:00
#endif
#if CAMERA == ENABLED
camera.trigger_pic_cleanup();
#endif
2012-08-21 23:19:50 -03:00
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) {
2012-08-21 23:19:50 -03:00
Log_Write_Attitude();
#if SECONDARY_DMP_ENABLED == ENABLED
Log_Write_DMP();
#endif
}
2012-08-21 23:19:50 -03:00
if (g.log_bitmask & MASK_LOG_RAW && motors.armed())
Log_Write_Raw();
#endif
}
static void slow_loop()
{
#if AP_LIMITS == ENABLED
2012-08-21 23:19:50 -03:00
// Run the AP_Limits main loop
limits_loop();
#endif // AP_LIMITS_ENABLED
2012-08-21 23:19:50 -03:00
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter) {
case 0:
slow_loopCounter++;
superslow_loopCounter++;
// record if the compass is healthy
set_compass_healthy(compass.healthy);
2012-08-21 23:19:50 -03:00
if(superslow_loopCounter > 1200) {
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) {
compass.save_offsets();
superslow_loopCounter = 0;
}
2012-08-21 23:19:50 -03:00
#endif
}
if(motors.armed()) {
if (g.log_bitmask & MASK_LOG_ITERM)
Log_Write_Iterm();
}else{
// check the user hasn't updated the frame orientation
2012-08-21 23:19:50 -03:00
motors.set_frame_orientation(g.frame_orientation);
}
2012-08-21 23:19:50 -03:00
break;
2012-08-21 23:19:50 -03:00
case 1:
slow_loopCounter++;
2012-08-21 23:19:50 -03:00
#if MOUNT == ENABLED
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
2012-08-21 23:19:50 -03:00
#endif
enable_aux_servos();
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
camera_mount.update_mount_type();
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
camera_mount2.update_mount_type();
2012-08-08 17:16:48 -03:00
#endif
2012-08-21 23:19:50 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_SLOWLOOP
USERHOOK_SLOWLOOP
#endif
2012-08-21 23:19:50 -03:00
break;
2012-08-21 23:19:50 -03:00
case 2:
slow_loopCounter = 0;
update_events();
2012-08-21 23:19:50 -03:00
// blink if we are armed
update_lights();
2012-08-21 23:19:50 -03:00
if(g.radio_tuning > 0)
tuning();
2012-08-21 23:19:50 -03:00
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
break;
2012-08-21 23:19:50 -03:00
default:
slow_loopCounter = 0;
break;
}
}
#define AUTO_DISARMING_DELAY 25
// 1Hz loop
static void super_slow_loop()
{
2012-11-11 21:59:53 -04:00
Log_Write_Data(DATA_AP_STATE, ap.value);
2012-08-21 23:19:50 -03:00
if (g.log_bitmask & MASK_LOG_CUR && motors.armed())
Log_Write_Current();
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds
// but only of the control mode is manual
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) {
auto_disarming_counter++;
if(auto_disarming_counter == AUTO_DISARMING_DELAY) {
init_disarm_motors();
}else if (auto_disarming_counter > AUTO_DISARMING_DELAY) {
auto_disarming_counter = AUTO_DISARMING_DELAY + 1;
}
}else{
auto_disarming_counter = 0;
}
2012-08-21 23:19:50 -03:00
// agmatthews - USERHOOKS
#ifdef USERHOOK_SUPERSLOWLOOP
USERHOOK_SUPERSLOWLOOP
2012-11-30 18:05:12 -04:00
#endif
}
// called at 100hz but data from sensor only arrives at 20 Hz
#if OPTFLOW == ENABLED
static void update_optical_flow(void)
{
static uint32_t last_of_update = 0;
static uint8_t of_log_counter = 0;
// if new data has arrived, process it
if( optflow.last_update != last_of_update ) {
last_of_update = optflow.last_update;
optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
// write to log at 5hz
of_log_counter++;
if( of_log_counter >= 4 ) {
of_log_counter = 0;
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
Log_Write_Optflow();
}
2012-08-21 23:19:50 -03:00
}
}
}
#endif // OPTFLOW == ENABLED
2012-05-21 13:58:14 -03:00
// called at 50hz
static void update_GPS(void)
{
2012-08-21 23:19:50 -03:00
// A counter that is used to grab at least 10 reads before commiting the Home location
static byte ground_start_count = 10;
g_gps->update();
update_GPS_light();
set_gps_healthy(g_gps->status() == g_gps->GPS_OK);
if (g_gps->new_data && g_gps->fix) {
2012-08-21 23:19:50 -03:00
// clear new data flag
g_gps->new_data = false;
// check for duiplicate GPS messages
if(last_gps_time != g_gps->time) {
// for performance monitoring
// --------------------------
gps_fix_count++;
if(ground_start_count > 1) {
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
}else{
if (g.compass_enabled) {
// Set compass declination automatically
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
}
// save home to eeprom (we must have a good fix to have reached this point)
init_home();
ground_start_count = 0;
}
}
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) {
Log_Write_GPS();
}
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
ap_system.alt_sensor_flag = true;
2012-08-21 23:19:50 -03:00
#endif
}
// save GPS time so we don't get duplicate reads
last_gps_time = g_gps->time;
}
}
// set_yaw_mode - update yaw mode and initialise any variables required
bool set_yaw_mode(uint8_t new_yaw_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool yaw_initialised = false;
// return immediately if no change
if( new_yaw_mode == yaw_mode ) {
return true;
}
switch( new_yaw_mode ) {
case YAW_HOLD:
case YAW_ACRO:
yaw_initialised = true;
break;
case YAW_LOOK_AT_NEXT_WP:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_LOCATION:
if( ap.home_is_set ) {
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called
yaw_look_at_WP_bearing = get_bearing_cd(&current_loc, &yaw_look_at_WP);
yaw_initialised = true;
}
break;
case YAW_LOOK_AT_HEADING:
yaw_initialised = true;
break;
case YAW_LOOK_AT_HOME:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
case YAW_TOY:
yaw_initialised = true;
break;
case YAW_LOOK_AHEAD:
if( ap.home_is_set ) {
yaw_initialised = true;
}
break;
}
// if initialisation has been successful update the yaw mode
if( yaw_initialised ) {
yaw_mode = new_yaw_mode;
}
// return success or failure
return yaw_initialised;
}
// update_yaw_mode - run high level yaw controllers
// 100hz update rate
void update_yaw_mode(void)
{
2012-08-21 23:19:50 -03:00
switch(yaw_mode) {
case YAW_HOLD:
// heading hold at heading held in nav_yaw but allow input from pilot
get_yaw_rate_stabilized_ef(g.rc_4.control_in);
break;
2012-08-21 23:19:50 -03:00
case YAW_ACRO:
// pilot controlled yaw using rate controller
if(g.axis_enabled) {
get_yaw_rate_stabilized_ef(g.rc_4.control_in);
}else{
get_acro_yaw(g.rc_4.control_in);
}
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_NEXT_WP:
// point towards next waypoint (no pilot input accepted)
// we don't use wp_bearing because we don't want the copter to turn too much during flight
nav_yaw = get_yaw_slew(nav_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE);
get_stabilize_yaw(nav_yaw);
2012-08-21 23:19:50 -03:00
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
break;
case YAW_LOOK_AT_LOCATION:
// point towards a location held in yaw_look_at_WP (no pilot input accepted)
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_WP_bearing, AUTO_YAW_SLEW_RATE);
get_stabilize_yaw(nav_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_HOME:
// keep heading always pointing at home with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
get_stabilize_yaw(nav_yaw);
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
if( g.rc_4.control_in != 0 ) {
set_yaw_mode(YAW_HOLD);
}
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_heading, yaw_look_at_heading_slew);
get_stabilize_yaw(nav_yaw);
2012-08-21 23:19:50 -03:00
break;
case YAW_LOOK_AHEAD:
2012-12-04 14:26:41 -04:00
// Commanded Yaw to automatically look ahead.
get_look_ahead_yaw(g.rc_4.control_in);
break;
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER
case YAW_TOY:
// update to allow external roll/yaw mixing
// keep heading always pointing at home with no pilot input allowed
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
get_stabilize_yaw(nav_yaw);
break;
#endif
}
}
// set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required
bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode)
{
// boolean to ensure proper initialisation of throttle modes
bool roll_pitch_initialised = false;
// return immediately if no change
if( new_roll_pitch_mode == roll_pitch_mode ) {
return true;
}
switch( new_roll_pitch_mode ) {
case ROLL_PITCH_STABLE:
case ROLL_PITCH_ACRO:
case ROLL_PITCH_AUTO:
case ROLL_PITCH_STABLE_OF:
case ROLL_PITCH_TOY:
case ROLL_PITCH_LOITER_PR:
roll_pitch_initialised = true;
break;
}
// if initialisation has been successful update the yaw mode
if( roll_pitch_initialised ) {
roll_pitch_mode = new_roll_pitch_mode;
2012-08-21 23:19:50 -03:00
}
// return success or failure
return roll_pitch_initialised;
}
// update_roll_pitch_mode - run high level roll and pitch controllers
// 100hz update rate
void update_roll_pitch_mode(void)
{
if (ap.do_flip) {
2012-08-21 23:19:50 -03:00
if(abs(g.rc_1.control_in) < 4000) {
roll_flip();
return;
}else{
// force an exit from the loop if we are not hands off sticks.
ap.do_flip = false;
Log_Write_Event(DATA_EXIT_FLIP);
2012-08-21 23:19:50 -03:00
}
}
switch(roll_pitch_mode) {
case ROLL_PITCH_ACRO:
#if FRAME_CONFIG == HELI_FRAME
if(g.axis_enabled) {
get_roll_rate_stabilized_ef(g.rc_1.control_in);
get_pitch_rate_stabilized_ef(g.rc_2.control_in);
2012-08-21 23:19:50 -03:00
}else{
// ACRO does not get SIMPLE mode ability
if (motors.flybar_mode == 1) {
g.rc_1.servo_out = g.rc_1.control_in;
g.rc_2.servo_out = g.rc_2.control_in;
} else {
get_acro_roll(g.rc_1.control_in);
get_acro_pitch(g.rc_2.control_in);
2012-08-21 23:19:50 -03:00
}
}
#else // !HELI_FRAME
if(g.axis_enabled) {
get_roll_rate_stabilized_ef(g.rc_1.control_in);
get_pitch_rate_stabilized_ef(g.rc_2.control_in);
}else{
// ACRO does not get SIMPLE mode ability
get_acro_roll(g.rc_1.control_in);
get_acro_pitch(g.rc_2.control_in);
}
#endif // HELI_FRAME
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_STABLE:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
update_simple_mode();
}
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_AUTO:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
update_simple_mode();
}
// mix in user control with Nav control
2012-08-28 19:28:18 -03:00
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
2012-08-21 23:19:50 -03:00
control_roll = g.rc_1.control_mix(nav_roll);
control_pitch = g.rc_2.control_mix(nav_pitch);
get_stabilize_roll(control_roll);
get_stabilize_pitch(control_pitch);
2012-08-21 23:19:50 -03:00
break;
case ROLL_PITCH_STABLE_OF:
// apply SIMPLE mode transform
if(ap.simple_mode && ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
update_simple_mode();
}
control_roll = g.rc_1.control_in;
control_pitch = g.rc_2.control_in;
// mix in user control with optical flow
get_stabilize_roll(get_of_roll(control_roll));
get_stabilize_pitch(get_of_pitch(control_pitch));
2012-08-21 23:19:50 -03:00
break;
// THOR
// a call out to the main toy logic
case ROLL_PITCH_TOY:
roll_pitch_toy();
break;
case ROLL_PITCH_LOITER_PR:
// LOITER does not get SIMPLE mode ability
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
get_stabilize_roll(nav_roll);
get_stabilize_pitch(nav_pitch);
break;
2012-08-21 23:19:50 -03:00
}
#if FRAME_CONFIG != HELI_FRAME
2012-08-21 23:19:50 -03:00
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
reset_rate_I();
reset_stability_I();
}
#endif //HELI_FRAME
2012-08-21 23:19:50 -03:00
if(ap_system.new_radio_frame) {
2012-08-21 23:19:50 -03:00
// clear new radio frame info
ap_system.new_radio_frame = false;
2012-08-21 23:19:50 -03:00
}
}
// new radio frame is used to make sure we only call this at 50hz
void update_simple_mode(void)
{
2012-08-21 23:19:50 -03:00
static byte simple_counter = 0; // State machine counter for Simple Mode
static float simple_sin_y=0, simple_cos_x=0;
2012-08-21 23:19:50 -03:00
// used to manage state machine
// which improves speed of function
simple_counter++;
2012-08-21 23:19:50 -03:00
int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100;
2012-08-21 23:19:50 -03:00
if (simple_counter == 1) {
// roll
simple_cos_x = sin(radians(90 - delta));
2012-08-21 23:19:50 -03:00
}else if (simple_counter > 2) {
// pitch
simple_sin_y = cos(radians(90 - delta));
simple_counter = 0;
}
2012-08-21 23:19:50 -03:00
// Rotate input by the initial bearing
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
2012-08-21 23:19:50 -03:00
g.rc_1.control_in = _roll;
g.rc_2.control_in = _pitch;
}
// set_throttle_mode - sets the throttle mode and initialises any variables as required
bool set_throttle_mode( uint8_t new_throttle_mode )
{
// boolean to ensure proper initialisation of throttle modes
bool throttle_initialised = false;
// return immediately if no change
if( new_throttle_mode == throttle_mode ) {
return true;
}
// initialise any variables required for the new throttle mode
switch(new_throttle_mode) {
case THROTTLE_MANUAL:
case THROTTLE_MANUAL_TILT_COMPENSATED:
throttle_accel_deactivate(); // this controller does not use accel based throttle controller
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
break;
case THROTTLE_ACCELERATION: // pilot inputs the desired acceleration
if( g.throttle_accel_enabled ) { // this throttle mode requires use of the accel based throttle controller
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
}
break;
case THROTTLE_RATE:
altitude_error = 0; // clear altitude error reported to GCS
throttle_initialised = true;
break;
case THROTTLE_STABILIZED_RATE:
case THROTTLE_DIRECT_ALT:
controller_desired_alt = current_loc.alt; // reset controller desired altitude to current altitude
throttle_initialised = true;
break;
case THROTTLE_HOLD:
case THROTTLE_AUTO:
controller_desired_alt = current_loc.alt; // reset controller desired altitude to current altitude
set_new_altitude(current_loc.alt); // by default hold the current altitude
if ( throttle_mode < THROTTLE_HOLD ) { // reset the alt hold I terms if previous throttle mode was manual
reset_throttle_I();
}
throttle_initialised = true;
break;
case THROTTLE_LAND:
set_land_complete(false); // mark landing as incomplete
land_detector = 0; // A counter that goes up if our climb rate stalls out.
controller_desired_alt = current_loc.alt; // reset controller desired altitude to current altitude
// Set target altitude to LAND_START_ALT if we are high, below this altitude the get_throttle_rate_stabilized will take care of setting the next_WP.alt
if (current_loc.alt >= LAND_START_ALT) {
set_new_altitude(LAND_START_ALT);
}
throttle_initialised = true;
break;
default:
// To-Do: log an error message to the dataflash or tlogs instead of printing to the serial port
cliSerial->printf_P(PSTR("Unsupported throttle mode: %d!!"),new_throttle_mode);
break;
}
// update the throttle mode
if( throttle_initialised ) {
throttle_mode = new_throttle_mode;
// reset some variables used for logging
desired_climb_rate = 0;
nav_throttle = 0;
}
// return success or failure
return throttle_initialised;
}
// update_throttle_mode - run high level throttle controllers
// 50 hz update rate
void update_throttle_mode(void)
{
int16_t pilot_climb_rate;
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes.
2012-08-21 23:19:50 -03:00
return;
// do not run throttle controllers if motors disarmed
if( !motors.armed() ) {
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
return;
2012-08-21 23:19:50 -03:00
}
#if FRAME_CONFIG == HELI_FRAME
if (control_mode == STABILIZE){
motors.stab_throttle = true;
} else {
motors.stab_throttle = false;
}
#endif // HELI_FRAME
2012-08-21 23:19:50 -03:00
switch(throttle_mode) {
2012-08-21 23:19:50 -03:00
case THROTTLE_MANUAL:
// completely manual throttle
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
}else{
// send pilot's output directly to motors
set_throttle_out(g.rc_3.control_in, false);
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.coll_out);
#else
update_throttle_cruise(g.rc_3.control_in);
#endif //HELI_FRAME
// check if we've taken off yet
if (!ap.takeoff_complete && motors.armed()) {
if (g.rc_3.control_in > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
}
}
}
break;
case THROTTLE_MANUAL_TILT_COMPENSATED:
// manual throttle but with angle boost
if (g.rc_3.control_in <= 0) {
set_throttle_out(0, false); // no need for angle boost with zero throttle
}else{
set_throttle_out(g.rc_3.control_in, true);
2012-08-21 23:19:50 -03:00
// update estimate of throttle cruise
#if FRAME_CONFIG == HELI_FRAME
update_throttle_cruise(motors.coll_out);
#else
update_throttle_cruise(g.rc_3.control_in);
#endif //HELI_FRAME
2012-08-21 23:19:50 -03:00
if (!ap.takeoff_complete && motors.armed()) {
2012-08-21 23:19:50 -03:00
if (g.rc_3.control_in > g.throttle_cruise) {
// we must be in the air by now
set_takeoff_complete(true);
2012-08-21 23:19:50 -03:00
}
}
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_ACCELERATION:
// pilot inputs the desired acceleration
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
2012-08-21 23:19:50 -03:00
}else{
int16_t desired_acceleration = get_pilot_desired_acceleration(g.rc_3.control_in);
set_throttle_accel_target(desired_acceleration);
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_RATE:
// pilot inputs the desired climb rate. Note this is the unstabilized rate controller
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
}else{
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
get_throttle_rate(pilot_climb_rate);
2012-08-21 23:19:50 -03:00
}
break;
case THROTTLE_STABILIZED_RATE:
// pilot inputs the desired climb rate. Note this is the stabilized rate controller
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
altitude_error = 0; // clear altitude error reported to GCS - normally underlying alt hold controller updates altitude error reported to GCS
}else{
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
get_throttle_rate_stabilized(pilot_climb_rate);
2012-08-28 19:28:18 -03:00
}
break;
2012-08-28 19:28:18 -03:00
case THROTTLE_DIRECT_ALT:
// pilot inputs a desired altitude from 0 ~ 10 meters
if(g.rc_3.control_in <= 0){
set_throttle_out(0, false);
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
altitude_error = 0; // clear altitude error reported to GCS - normally underlying alt hold controller updates altitude error reported to GCS
}else{
int32_t desired_alt = get_pilot_desired_direct_alt(g.rc_3.control_in);
get_throttle_althold_with_slew(desired_alt, g.auto_velocity_z_min, g.auto_velocity_z_max);
2012-08-21 23:19:50 -03:00
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_HOLD:
// alt hold plus pilot input of climb rate
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
if( sonar_alt_health >= SONAR_ALT_HEALTH_MAX ) {
// if sonar is ok, use surface tracking
get_throttle_surface_tracking(pilot_climb_rate);
}else{
// if no sonar fall back stabilize rate controller
get_throttle_rate_stabilized(pilot_climb_rate);
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_AUTO:
// auto pilot altitude controller with target altitude held in next_WP.alt
if(motors.auto_armed() == true) {
get_throttle_althold_with_slew(next_WP.alt, g.auto_velocity_z_min, g.auto_velocity_z_max);
2012-08-21 23:19:50 -03:00
}
break;
2012-08-21 23:19:50 -03:00
case THROTTLE_LAND:
// landing throttle controller
get_throttle_land();
2012-08-21 23:19:50 -03:00
break;
}
}
static void read_AHRS(void)
{
2012-08-21 23:19:50 -03:00
// Perform IMU calculations and get attitude info
//-----------------------------------------------
#if HIL_MODE != HIL_MODE_DISABLED
// update hil before ahrs update
gcs_update();
#endif
ahrs.update();
omega = ins.get_gyro();
#if SECONDARY_DMP_ENABLED == ENABLED
ahrs2.update();
#endif
}
static void update_trig(void){
2012-08-21 23:19:50 -03:00
Vector2f yawvector;
Matrix3f temp = ahrs.get_dcm_matrix();
2012-08-21 23:19:50 -03:00
yawvector.x = temp.a.x; // sin
yawvector.y = temp.b.x; // cos
yawvector.normalize();
2012-08-21 23:19:50 -03:00
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0);
// this relies on constrain() of infinity doing the right thing,
// which it does do in avr-libc
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0);
2012-08-21 23:19:50 -03:00
sin_yaw_y = yawvector.x; // 1y = north
cos_yaw_x = yawvector.y; // 0x = north
// added to convert earth frame to body frame for rate controllers
sin_pitch = -temp.c.x;
sin_roll = temp.c.y / cos_pitch_x;
2012-08-21 23:19:50 -03:00
//flat:
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
}
// updated at 10hz
static void update_altitude()
{
int32_t old_baro_alt = baro_alt;
int16_t old_sonar_alt = sonar_alt;
2012-08-21 23:19:50 -03:00
#if HIL_MODE == HIL_MODE_ATTITUDE
// we are in the SIM, fake out the baro and Sonar
int16_t fake_relative_alt = g_gps->altitude - gps_base_alt;
baro_alt = fake_relative_alt;
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
if(g.sonar_enabled) {
sonar_alt = fake_relative_alt;
sonar_rate = baro_rate;
}
current_loc.alt = baro_alt;
climb_rate_actual = baro_rate;
2012-08-21 23:19:50 -03:00
#else
// read in actual baro altitude
baro_alt = read_barometer();
2012-08-21 23:19:50 -03:00
// calc baro based vertical velocity
int16_t temp = (baro_alt - old_baro_alt) * 10;
baro_rate = (temp + baro_rate) >> 1;
baro_rate = constrain(baro_rate, -500, 500);
2012-08-21 23:19:50 -03:00
// read in sonar altitude and calculate sonar rate
2012-08-21 23:19:50 -03:00
if(g.sonar_enabled) {
sonar_alt = read_sonar();
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
sonar_rate = constrain(sonar_rate, -150, 150);
}
2012-08-21 23:19:50 -03:00
// Note: with inertial nav, alt and rate are pulled from the inav lib at 50hz in update_altitude_est function
// so none of the below is required
# if INERTIAL_NAV_Z != ENABLED
// if no sonar set current alt to baro alt
if(!g.sonar_enabled) {
// NO Sonar case
current_loc.alt = baro_alt;
climb_rate_actual = baro_rate;
}else{
// Blend barometer and sonar data together
float scale;
2012-08-21 23:19:50 -03:00
if(baro_alt < 800) {
scale = (float)(sonar_alt - 400) / 200.0;
scale = constrain(scale, 0.0, 1.0);
// solve for a blended altitude
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale);
// solve for a blended climb_rate
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
}else{
// we must be higher than sonar (>800), don't get tricked by bad sonar reads
current_loc.alt = baro_alt;
// dont blend, go straight baro
climb_rate_actual = baro_rate;
}
}
// climb_rate_error is used to spread the change in climb rate across the next 5 samples
climb_rate_error = (climb_rate_actual - climb_rate) / 5;
# endif // INERTIAL_NAV_Z != ENABLED
#endif // HIL_MODE == HIL_MODE_ATTITUDE
2012-08-21 23:19:50 -03:00
// update the target altitude
verify_altitude();
}
static void update_altitude_est()
{
#if INERTIAL_NAV_Z == ENABLED
// with inertial nav we can update the altitude and climb rate at 50hz
current_loc.alt = inertial_nav.get_altitude();
climb_rate = inertial_nav.get_velocity_z();
// update baro and sonar alt and climb rate just for logging purposes
// To-Do: remove alt_sensor_flag and move update_altitude to be called from 10hz loop
if(ap_system.alt_sensor_flag) {
ap_system.alt_sensor_flag = false;
update_altitude();
if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) {
Log_Write_Control_Tuning();
}
}
#else
if(ap_system.alt_sensor_flag) {
2012-08-21 23:19:50 -03:00
update_altitude();
ap_system.alt_sensor_flag = false;
2012-08-21 23:19:50 -03:00
if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) {
Log_Write_Control_Tuning();
}
}else{
// simple dithering of climb rate
climb_rate += climb_rate_error;
current_loc.alt += (climb_rate / 50);
}
#endif
}
static void tuning(){
2012-08-21 23:19:50 -03:00
tuning_value = (float)g.rc_6.control_in / 1000.0;
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
switch(g.radio_tuning) {
case CH6_RATE_KD:
g.pid_rate_roll.kD(tuning_value);
g.pid_rate_pitch.kD(tuning_value);
break;
case CH6_STABILIZE_KP:
g.pi_stabilize_roll.kP(tuning_value);
g.pi_stabilize_pitch.kP(tuning_value);
break;
case CH6_STABILIZE_KI:
g.pi_stabilize_roll.kI(tuning_value);
g.pi_stabilize_pitch.kI(tuning_value);
break;
case CH6_ACRO_KP:
g.acro_p = tuning_value;
break;
case CH6_RATE_KP:
g.pid_rate_roll.kP(tuning_value);
g.pid_rate_pitch.kP(tuning_value);
break;
case CH6_RATE_KI:
g.pid_rate_roll.kI(tuning_value);
g.pid_rate_pitch.kI(tuning_value);
break;
case CH6_YAW_KP:
g.pi_stabilize_yaw.kP(tuning_value);
break;
case CH6_YAW_KI:
g.pi_stabilize_yaw.kI(tuning_value);
break;
case CH6_YAW_RATE_KP:
g.pid_rate_yaw.kP(tuning_value);
break;
case CH6_YAW_RATE_KD:
g.pid_rate_yaw.kD(tuning_value);
break;
case CH6_THROTTLE_KP:
g.pid_throttle.kP(tuning_value);
break;
case CH6_THROTTLE_KI:
g.pid_throttle.kI(tuning_value);
break;
case CH6_THROTTLE_KD:
g.pid_throttle.kD(tuning_value);
break;
2012-08-21 23:19:50 -03:00
case CH6_TOP_BOTTOM_RATIO:
motors.top_bottom_ratio = tuning_value;
break;
case CH6_RELAY:
if (g.rc_6.control_in > 525) relay.on();
if (g.rc_6.control_in < 475) relay.off();
break;
case CH6_TRAVERSE_SPEED:
g.waypoint_speed_max = g.rc_6.control_in;
break;
case CH6_LOITER_KP:
g.pi_loiter_lat.kP(tuning_value);
g.pi_loiter_lon.kP(tuning_value);
break;
case CH6_LOITER_KI:
g.pi_loiter_lat.kI(tuning_value);
g.pi_loiter_lon.kI(tuning_value);
break;
case CH6_NAV_KP:
g.pid_nav_lat.kP(tuning_value);
g.pid_nav_lon.kP(tuning_value);
break;
case CH6_LOITER_RATE_KP:
g.pid_loiter_rate_lon.kP(tuning_value);
g.pid_loiter_rate_lat.kP(tuning_value);
break;
case CH6_LOITER_RATE_KI:
g.pid_loiter_rate_lon.kI(tuning_value);
g.pid_loiter_rate_lat.kI(tuning_value);
break;
case CH6_LOITER_RATE_KD:
g.pid_loiter_rate_lon.kD(tuning_value);
g.pid_loiter_rate_lat.kD(tuning_value);
break;
case CH6_NAV_KI:
2012-08-21 23:19:50 -03:00
g.pid_nav_lat.kI(tuning_value);
g.pid_nav_lon.kI(tuning_value);
break;
#if FRAME_CONFIG == HELI_FRAME
case CH6_HELI_EXTERNAL_GYRO:
motors.ext_gyro_gain = tuning_value;
break;
#endif
2012-08-21 23:19:50 -03:00
case CH6_THR_HOLD_KP:
g.pi_alt_hold.kP(tuning_value);
break;
case CH6_OPTFLOW_KP:
g.pid_optflow_roll.kP(tuning_value);
g.pid_optflow_pitch.kP(tuning_value);
break;
case CH6_OPTFLOW_KI:
g.pid_optflow_roll.kI(tuning_value);
g.pid_optflow_pitch.kI(tuning_value);
break;
case CH6_OPTFLOW_KD:
g.pid_optflow_roll.kD(tuning_value);
g.pid_optflow_pitch.kD(tuning_value);
break;
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
case CH6_AHRS_YAW_KP:
ahrs._kp_yaw.set(tuning_value);
break;
case CH6_AHRS_KP:
ahrs._kp.set(tuning_value);
break;
#endif
case CH6_INAV_TC:
#if INERTIAL_NAV_XY == ENABLED
inertial_nav.set_time_constant_xy(tuning_value);
#endif
#if INERTIAL_NAV_Z == ENABLED
inertial_nav.set_time_constant_z(tuning_value);
#endif
break;
case CH6_THR_ACCEL_KP:
g.pid_throttle_accel.kP(tuning_value);
break;
case CH6_THR_ACCEL_KI:
g.pid_throttle_accel.kI(tuning_value);
break;
case CH6_THR_ACCEL_KD:
g.pid_throttle_accel.kD(tuning_value);
break;
2012-08-21 23:19:50 -03:00
}
}