ardupilot/ArduCopter/test.pde

625 lines
19 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
2012-08-21 23:19:50 -03:00
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv);
static int8_t test_radio(uint8_t argc, const Menu::arg *argv);
//static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv);
static int8_t test_gps(uint8_t argc, const Menu::arg *argv);
//static int8_t test_tri(uint8_t argc, const Menu::arg *argv);
//static int8_t test_adc(uint8_t argc, const Menu::arg *argv);
static int8_t test_ins(uint8_t argc, const Menu::arg *argv);
//static int8_t test_imu(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm_eulers(uint8_t argc, const Menu::arg *argv);
//static int8_t test_dcm(uint8_t argc, const Menu::arg *argv);
//static int8_t test_omega(uint8_t argc, const Menu::arg *argv);
//static int8_t test_stab_d(uint8_t argc, const Menu::arg *argv);
static int8_t test_battery(uint8_t argc, const Menu::arg *argv);
//static int8_t test_toy(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv);
//static int8_t test_reverse(uint8_t argc, const Menu::arg *argv);
static int8_t test_tuning(uint8_t argc, const Menu::arg *argv);
static int8_t test_relay(uint8_t argc, const Menu::arg *argv);
static int8_t test_wp(uint8_t argc, const Menu::arg *argv);
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS
2012-08-21 23:19:50 -03:00
static int8_t test_baro(uint8_t argc, const Menu::arg *argv);
static int8_t test_sonar(uint8_t argc, const Menu::arg *argv);
2011-12-26 04:12:05 -04:00
#endif
2012-08-21 23:19:50 -03:00
static int8_t test_mag(uint8_t argc, const Menu::arg *argv);
static int8_t test_optflow(uint8_t argc, const Menu::arg *argv);
static int8_t test_logging(uint8_t argc, const Menu::arg *argv);
//static int8_t test_xbee(uint8_t argc, const Menu::arg *argv);
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv);
2013-04-05 10:25:58 -03:00
//static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv);
2012-08-21 23:19:50 -03:00
//static int8_t test_mission(uint8_t argc, const Menu::arg *argv);
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
static int8_t test_shell(uint8_t argc, const Menu::arg *argv);
#endif
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of printf that reads from flash memory
2012-08-21 23:19:50 -03:00
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv)
* {
* cliSerial->printf_P(PSTR("\n"
2012-08-21 23:19:50 -03:00
* "Commands:\n"
* " radio\n"
* " servos\n"
* " g_gps\n"
* " imu\n"
* " battery\n"
* "\n"));
* }*/
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command test_menu_commands[] PROGMEM = {
2012-08-21 23:19:50 -03:00
{"pwm", test_radio_pwm},
{"radio", test_radio},
{"gps", test_gps},
{"ins", test_ins},
{"battery", test_battery},
{"tune", test_tuning},
{"relay", test_relay},
{"wp", test_wp},
// {"toy", test_toy},
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS
2012-08-21 23:19:50 -03:00
{"altitude", test_baro},
{"sonar", test_sonar},
2011-12-26 04:12:05 -04:00
#endif
2012-08-21 23:19:50 -03:00
{"compass", test_mag},
{"optflow", test_optflow},
//{"xbee", test_xbee},
{"eedump", test_eedump},
{"logging", test_logging},
{"nav", test_wp_nav},
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
{"shell", test_shell},
#endif
};
// A Macro to create the Menu
MENU(test_menu, "test", test_menu_commands);
static int8_t
test_mode(uint8_t argc, const Menu::arg *argv)
{
//cliSerial->printf_P(PSTR("Test Mode\n\n"));
2012-08-21 23:19:50 -03:00
test_menu.run();
return 0;
}
static int8_t
test_eedump(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
// hexdump the EEPROM
2012-12-13 15:48:01 -04:00
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i += 16) {
cliSerial->printf_P(PSTR("%04x:"), i);
2012-12-13 15:48:01 -04:00
for (uint16_t j = 0; j < 16; j++) {
int b = hal.storage->read_byte(i+j);
cliSerial->printf_P(PSTR(" %02x"), b);
}
cliSerial->println();
2012-08-21 23:19:50 -03:00
}
return(0);
}
2012-02-10 02:21:30 -04:00
static int8_t
test_radio_pwm(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
delay(1000);
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
// servo Yaw
//APM_RC.OutputCh(CH_7, g.rc_4.radio_out);
cliSerial->printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"),
2012-08-21 23:19:50 -03:00
g.rc_1.radio_in,
g.rc_2.radio_in,
g.rc_3.radio_in,
g.rc_4.radio_in,
g.rc_5.radio_in,
g.rc_6.radio_in,
g.rc_7.radio_in,
g.rc_8.radio_in);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
2012-02-10 02:21:30 -04:00
}
/*
//static int8_t
//test_toy(uint8_t argc, const Menu::arg *argv)
{
2012-11-10 01:55:51 -04:00
for(altitude_error = 2000; altitude_error > -100; altitude_error--){
int16_t temp = get_desired_climb_rate();
cliSerial->printf("%ld, %d\n", altitude_error, temp);
2012-11-10 01:55:51 -04:00
}
return 0;
}
{ wp_distance = 0;
int16_t max_speed = 0;
for(int16_t i = 0; i < 200; i++){
int32_t temp = 2 * 100 * (wp_distance - wp_nav.get_waypoint_radius());
max_speed = sqrtf((float)temp);
max_speed = min(max_speed, wp_nav.get_horizontal_speed());
cliSerial->printf("Zspeed: %ld, %d, %ld\n", temp, max_speed, wp_distance);
wp_distance += 100;
}
return 0;
2012-11-10 01:55:51 -04:00
}
//*/
/*static int8_t
2012-08-21 23:19:50 -03:00
* //test_toy(uint8_t argc, const Menu::arg *argv)
* {
* int16_t yaw_rate;
* int16_t roll_rate;
* g.rc_1.control_in = -2500;
* g.rc_2.control_in = 2500;
*
* g.toy_yaw_rate = 3;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
2012-08-21 23:19:50 -03:00
*
* g.toy_yaw_rate = 2;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
2012-08-21 23:19:50 -03:00
*
* g.toy_yaw_rate = 1;
* yaw_rate = g.rc_1.control_in / g.toy_yaw_rate;
* roll_rate = ((int32_t)g.rc_2.control_in * (yaw_rate/100)) /40;
* cliSerial->printf("yaw_rate, %d, roll_rate, %d\n", yaw_rate, roll_rate);
2012-08-21 23:19:50 -03:00
* }*/
2011-09-24 20:48:04 -03:00
static int8_t
test_radio(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
delay(1000);
while(1) {
delay(20);
read_radio();
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"),
2012-08-21 23:19:50 -03:00
g.rc_1.control_in,
g.rc_2.control_in,
g.rc_3.control_in,
g.rc_4.control_in,
g.rc_5.control_in,
g.rc_6.control_in,
g.rc_7.control_in);
//cliSerial->printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100));
2012-08-21 23:19:50 -03:00
/*cliSerial->printf_P(PSTR( "min: %d"
2012-08-21 23:19:50 -03:00
* "\t in: %d"
* "\t pwm_in: %d"
* "\t sout: %d"
* "\t pwm_out %d\n"),
* g.rc_3.radio_min,
* g.rc_3.control_in,
* g.rc_3.radio_in,
* g.rc_3.servo_out,
* g.rc_3.pwm_out
* );
*/
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
}
static int8_t
test_ins(uint8_t argc, const Menu::arg *argv)
{
Vector3f gyro, accel;
2012-08-21 23:19:50 -03:00
print_hit_enter();
cliSerial->printf_P(PSTR("INS\n"));
2012-08-21 23:19:50 -03:00
delay(1000);
2013-01-13 01:04:04 -04:00
ahrs.init();
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
2012-12-13 15:48:01 -04:00
flash_leds);
2012-08-21 23:19:50 -03:00
delay(50);
2012-08-21 23:19:50 -03:00
while(1) {
ins.update();
gyro = ins.get_gyro();
accel = ins.get_accel();
2013-01-01 22:52:53 -04:00
float test = accel.length() / GRAVITY_MSS;
cliSerial->printf_P(PSTR("a %7.4f %7.4f %7.4f g %7.4f %7.4f %7.4f t %74f | %7.4f\n"),
accel.x, accel.y, accel.z,
gyro.x, gyro.y, gyro.z,
test);
2012-08-21 23:19:50 -03:00
delay(40);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
}
static int8_t
test_gps(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
delay(1000);
while(1) {
delay(100);
2012-08-21 23:19:50 -03:00
// Blink GPS LED if we don't have a fix
// ------------------------------------
update_GPS_light();
g_gps->update();
if (g_gps->new_data) {
cliSerial->printf_P(PSTR("Lat: "));
2012-12-13 15:48:01 -04:00
print_latlon(cliSerial, g_gps->latitude);
cliSerial->printf_P(PSTR(", Lon "));
2012-12-13 15:48:01 -04:00
print_latlon(cliSerial, g_gps->longitude);
cliSerial->printf_P(PSTR(", Alt: %ldm, #sats: %d\n"),
2012-08-21 23:19:50 -03:00
g_gps->altitude/100,
g_gps->num_sats);
g_gps->new_data = false;
}else{
cliSerial->print_P(PSTR("."));
2012-08-21 23:19:50 -03:00
}
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
return 0;
}
static int8_t
test_tuning(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
while(1) {
delay(200);
read_radio();
tuning();
cliSerial->printf_P(PSTR("tune: %1.3f\n"), tuning_value);
2012-08-21 23:19:50 -03:00
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
}
static int8_t
test_battery(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("\nCareful! Motors will spin! Press Enter to start.\n"));
2012-12-13 15:48:01 -04:00
while (cliSerial->read() != -1); /* flush */
while(!cliSerial->available()) { /* wait for input */
2012-08-21 23:19:50 -03:00
delay(100);
}
2012-12-13 15:48:01 -04:00
while (cliSerial->read() != -1); /* flush */
2012-08-21 23:19:50 -03:00
print_hit_enter();
// allow motors to spin
motors.enable();
motors.armed(true);
while(1) {
delay(100);
read_radio();
read_battery();
if (g.battery_monitoring == BATT_MONITOR_VOLTAGE_ONLY) {
cliSerial->printf_P(PSTR("V: %4.4f\n"),
2012-08-21 23:19:50 -03:00
battery_voltage1,
current_amps1,
current_total1);
} else {
cliSerial->printf_P(PSTR("V: %4.4f, A: %4.4f, Ah: %4.4f\n"),
2012-08-21 23:19:50 -03:00
battery_voltage1,
current_amps1,
current_total1);
}
motors.throttle_pass_through();
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
motors.armed(false);
return (0);
}
}
motors.armed(false);
return (0);
}
2012-01-13 12:55:02 -04:00
static int8_t test_relay(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
delay(1000);
while(1) {
cliSerial->printf_P(PSTR("Relay on\n"));
2012-08-21 23:19:50 -03:00
relay.on();
delay(3000);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
cliSerial->printf_P(PSTR("Relay off\n"));
2012-08-21 23:19:50 -03:00
relay.off();
delay(3000);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
}
2012-01-13 12:55:02 -04:00
2012-01-29 02:16:24 -04:00
static int8_t
test_wp(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
delay(1000);
// save the alitude above home option
cliSerial->printf_P(PSTR("Hold alt "));
if(g.rtl_altitude < 0) {
cliSerial->printf_P(PSTR("\n"));
2012-08-21 23:19:50 -03:00
}else{
cliSerial->printf_P(PSTR("of %dm\n"), (int)g.rtl_altitude / 100);
2012-08-21 23:19:50 -03:00
}
cliSerial->printf_P(PSTR("%d wp\n"), (int)g.command_total);
cliSerial->printf_P(PSTR("Hit rad: %dm\n"), (int)wp_nav.get_waypoint_radius());
2012-08-21 23:19:50 -03:00
report_wp();
2012-08-21 23:19:50 -03:00
return (0);
}
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS
static int8_t
test_baro(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
print_hit_enter();
init_barometer();
while(1) {
delay(100);
int32_t alt = read_barometer(); // calls barometer.read()
2013-01-20 07:10:58 -04:00
float pres = barometer.get_pressure();
2012-08-21 23:19:50 -03:00
int16_t temp = barometer.get_temperature();
int32_t raw_pres = barometer.get_raw_pressure();
int32_t raw_temp = barometer.get_raw_temp();
2013-01-20 07:10:58 -04:00
cliSerial->printf_P(PSTR("alt: %ldcm, pres: %fmbar, temp: %d/100degC,"
2012-08-21 23:19:50 -03:00
" raw pres: %ld, raw temp: %ld\n"),
2013-01-20 07:10:58 -04:00
(long)alt, pres, (int)temp, (long)raw_pres, (long)raw_temp);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
return 0;
}
2011-12-26 04:12:05 -04:00
#endif
2011-12-03 19:39:02 -04:00
static int8_t
2011-12-03 19:39:02 -04:00
test_mag(uint8_t argc, const Menu::arg *argv)
{
uint8_t delta_ms_fast_loop;
2012-08-21 23:19:50 -03:00
if (!g.compass_enabled) {
cliSerial->printf_P(PSTR("Compass: "));
2012-08-21 23:19:50 -03:00
print_enabled(false);
return (0);
}
if (!compass.init()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
return 0;
}
ahrs.init();
ahrs.set_fly_forward(true);
ahrs.set_compass(&compass);
report_compass();
// we need the AHRS initialised for this test
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
ahrs.reset();
int16_t counter = 0;
float heading = 0;
print_hit_enter();
while(1) {
delay(20);
if (millis() - fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator
fast_loopTimer = millis();
// INS
// ---
ahrs.update();
medium_loopCounter++;
if(medium_loopCounter == 5) {
if (compass.read()) {
// Calculate heading
2013-05-05 02:02:51 -03:00
const Matrix3f &m = ahrs.get_dcm_matrix();
heading = compass.calculate_heading(m);
compass.null_offsets();
}
medium_loopCounter = 0;
}
counter++;
if (counter>20) {
if (compass.healthy) {
Vector3f maggy = compass.get_offsets();
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d,\tXYZoff: %6.2f, %6.2f, %6.2f\n"),
(wrap_360_cd(ToDeg(heading) * 100)) /100,
(int)compass.mag_x,
(int)compass.mag_y,
(int)compass.mag_z,
maggy.x,
maggy.y,
maggy.z);
} else {
cliSerial->println_P(PSTR("compass not healthy"));
}
counter=0;
}
}
if (cliSerial->available() > 0) {
break;
}
}
// save offsets. This allows you to get sane offset values using
// the CLI before you go flying.
cliSerial->println_P(PSTR("saving offsets"));
compass.save_offsets();
2012-08-21 23:19:50 -03:00
return (0);
}
2011-12-03 19:39:02 -04:00
#if HIL_MODE != HIL_MODE_ATTITUDE && HIL_MODE != HIL_MODE_SENSORS
/*
2012-08-21 23:19:50 -03:00
* test the sonar
*/
static int8_t
test_sonar(uint8_t argc, const Menu::arg *argv)
{
#if CONFIG_SONAR == ENABLED
2012-08-21 23:19:50 -03:00
if(g.sonar_enabled == false) {
cliSerial->printf_P(PSTR("Sonar disabled\n"));
2012-08-21 23:19:50 -03:00
return (0);
}
2011-12-23 18:14:19 -04:00
2012-08-21 23:19:50 -03:00
// make sure sonar is initialised
init_sonar();
2012-08-21 23:19:50 -03:00
print_hit_enter();
while(1) {
delay(100);
2012-12-13 15:48:01 -04:00
cliSerial->printf_P(PSTR("Sonar: %d cm\n"), sonar->read());
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
#endif
2012-08-21 23:19:50 -03:00
return (0);
}
2011-12-26 04:12:05 -04:00
#endif
2011-12-23 18:14:19 -04:00
static int8_t
test_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
2012-08-21 23:19:50 -03:00
if(g.optflow_enabled) {
cliSerial->printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID));
2012-08-21 23:19:50 -03:00
print_hit_enter();
while(1) {
delay(200);
optflow.update(millis());
2012-08-21 23:19:50 -03:00
Log_Write_Optflow();
cliSerial->printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"),
2012-08-21 23:19:50 -03:00
optflow.x,
optflow.dx,
optflow.y,
optflow.dy,
optflow.surface_quality);
if(cliSerial->available() > 0) {
2012-08-21 23:19:50 -03:00
return (0);
}
}
} else {
cliSerial->printf_P(PSTR("OptFlow: "));
2012-08-21 23:19:50 -03:00
print_enabled(false);
}
return (0);
#else
return (0);
#endif // OPTFLOW == ENABLED
}
2011-12-23 18:14:19 -04:00
2012-08-16 01:03:32 -03:00
static int8_t
test_wp_nav(uint8_t argc, const Menu::arg *argv)
{
2012-08-21 23:19:50 -03:00
current_loc.lat = 389539260;
current_loc.lng = -1199540200;
2012-08-16 01:03:32 -03:00
wp_nav.set_destination(pv_latlon_to_vector(389538528,-1199541248,0));
2012-08-16 01:03:32 -03:00
2012-08-21 23:19:50 -03:00
// got 23506;, should be 22800
update_navigation();
cliSerial->printf_P(PSTR("bear: %ld\n"), wp_bearing);
2012-08-21 23:19:50 -03:00
return 0;
2012-08-16 01:03:32 -03:00
}
2011-12-28 00:53:05 -04:00
/*
2012-08-21 23:19:50 -03:00
* test the dataflash is working
2011-12-28 00:53:05 -04:00
*/
2012-01-29 02:16:24 -04:00
2011-12-28 00:53:05 -04:00
static int8_t
test_logging(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Testing dataflash logging"));
2013-02-22 19:15:01 -04:00
DataFlash.ShowDeviceInfo(cliSerial);
2012-08-21 23:19:50 -03:00
return 0;
2011-12-28 00:53:05 -04:00
}
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
/*
* run a debug shell
*/
static int8_t
test_shell(uint8_t argc, const Menu::arg *argv)
{
hal.util->run_debug_shell(cliSerial);
return 0;
}
#endif
static void print_hit_enter()
{
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n"));
}
#endif // CLI_ENABLED