ardupilot/libraries/AP_AHRS/AP_AHRS.h

191 lines
5.1 KiB
C
Raw Normal View History

2012-03-19 03:34:12 -03:00
#ifndef AP_AHRS_H
#define AP_AHRS_H
/*
2012-08-21 23:19:51 -03:00
* AHRS (Attitude Heading Reference System) interface for ArduPilot
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
2012-03-19 03:34:12 -03:00
#include <AP_Math.h>
#include <inttypes.h>
#include <AP_Compass.h>
#include <AP_Airspeed.h>
2012-03-19 03:34:12 -03:00
#include <AP_GPS.h>
#include <AP_IMU.h>
#include <AP_Baro.h>
2012-03-19 03:34:12 -03:00
#if defined(ARDUINO) && ARDUINO >= 100
2012-08-21 23:19:51 -03:00
#include "Arduino.h"
2012-03-19 03:34:12 -03:00
#else
2012-08-21 23:19:51 -03:00
#include "WProgram.h"
2012-03-19 03:34:12 -03:00
#endif
class AP_AHRS
{
public:
2012-08-21 23:19:51 -03:00
// Constructor
AP_AHRS(IMU *imu, GPS *&gps) :
_imu(imu),
_gps(gps),
_barometer(NULL)
{
// base the ki values by the sensors maximum drift
// rate. The APM2 has gyros which are much less drift
// prone than the APM1, so we should have a lower ki,
// which will make us less prone to increasing omegaI
// incorrectly due to sensor noise
_gyro_drift_limit = imu->get_gyro_drift_rate();
}
// empty init
virtual void init() {
};
// Accessors
void set_fly_forward(bool b) {
_fly_forward = b;
}
void set_compass(Compass *compass) {
_compass = compass;
}
void set_barometer(AP_Baro *barometer) {
_barometer = barometer;
}
void set_airspeed(AP_Airspeed *airspeed) {
_airspeed = airspeed;
}
IMU* get_imu() {
return _imu;
}
2012-08-21 23:19:51 -03:00
// Methods
virtual void update(void) = 0;
// Euler angles (radians)
float roll;
float pitch;
float yaw;
// integer Euler angles (Degrees * 100)
int32_t roll_sensor;
int32_t pitch_sensor;
int32_t yaw_sensor;
float get_pitch_rate_earth(void) {
Vector3f omega = get_gyro();
return cos(roll) * omega.y - sin(roll) * omega.z;
}
float get_roll_rate_earth(void) {
Vector3f omega = get_gyro();
return omega.x + tan(pitch)*(omega.y*sin(roll) + omega.z*cos(roll));
}
2012-08-21 23:19:51 -03:00
// return a smoothed and corrected gyro vector
virtual Vector3f get_gyro(void) = 0;
// return the current estimate of the gyro drift
virtual Vector3f get_gyro_drift(void) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset(bool recover_eulers=false) = 0;
// how often our attitude representation has gone out of range
uint8_t renorm_range_count;
// how often our attitude representation has blown up completely
uint8_t renorm_blowup_count;
// return the average size of the roll/pitch error estimate
// since last call
virtual float get_error_rp(void) = 0;
// return the average size of the yaw error estimate
// since last call
virtual float get_error_yaw(void) = 0;
// return a DCM rotation matrix representing our current
// attitude
virtual Matrix3f get_dcm_matrix(void) = 0;
// get our current position, either from GPS or via
// dead-reckoning. Return true if a position is available,
// otherwise false. This only updates the lat and lng fields
// of the Location
bool get_position(struct Location *loc) {
if (!_gps || _gps->status() != GPS::GPS_OK) {
return false;
}
loc->lat = _gps->latitude;
loc->lng = _gps->longitude;
return true;
}
// return a wind estimation vector, in m/s
Vector3f wind_estimate(void) {
return Vector3f(0,0,0);
}
// return true if yaw has been initialised
bool yaw_initialised(void) {
return _have_initial_yaw;
}
// set the fast gains flag
void set_fast_gains(bool setting) {
_fast_ground_gains = setting;
}
// settable parameters
AP_Float _kp_yaw;
AP_Float _kp;
AP_Float gps_gain;
AP_Int8 _gps_use;
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
2012-03-19 03:34:12 -03:00
protected:
2012-08-21 23:19:51 -03:00
// whether the yaw value has been intialised with a reference
bool _have_initial_yaw;
2012-08-21 23:19:51 -03:00
// pointer to compass object, if available
Compass * _compass;
2012-03-19 03:34:12 -03:00
2012-08-21 23:19:51 -03:00
// pointer to airspeed object, if available
AP_Airspeed * _airspeed;
2012-08-21 23:19:51 -03:00
// time in microseconds of last compass update
uint32_t _compass_last_update;
2012-03-19 03:34:12 -03:00
2012-08-21 23:19:51 -03:00
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
// IMU under us without our noticing.
IMU *_imu;
GPS *&_gps;
AP_Baro *_barometer;
2012-03-19 03:34:12 -03:00
2012-08-21 23:19:51 -03:00
// should we raise the gain on the accelerometers for faster
// convergence, used when disarmed for ArduCopter
bool _fast_ground_gains;
2012-08-21 23:19:51 -03:00
// true if we can assume the aircraft will be flying forward
// on its X axis
bool _fly_forward;
2012-03-19 03:34:12 -03:00
2012-08-21 23:19:51 -03:00
// the limit of the gyro drift claimed by the sensors, in
// radians/s/s
float _gyro_drift_limit;
2012-08-21 23:19:51 -03:00
// acceleration due to gravity in m/s/s
static const float _gravity = 9.80665;
2012-03-19 03:34:12 -03:00
};
#include <AP_AHRS_DCM.h>
#include <AP_AHRS_MPU6000.h>
2012-03-19 03:34:12 -03:00
#include <AP_AHRS_HIL.h>
#endif // AP_AHRS_H