uncrustify libraries/AP_AHRS/AP_AHRS.h

This commit is contained in:
uncrustify 2012-08-21 19:19:51 -07:00 committed by Pat Hickey
parent b4571ca40b
commit b6db467e3c

View File

@ -1,13 +1,13 @@
#ifndef AP_AHRS_H
#define AP_AHRS_H
/*
AHRS (Attitude Heading Reference System) interface for ArduPilot
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
* AHRS (Attitude Heading Reference System) interface for ArduPilot
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include <AP_Math.h>
#include <inttypes.h>
@ -18,147 +18,156 @@
#include <AP_Baro.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#include "Arduino.h"
#else
#include "WProgram.h"
#include "WProgram.h"
#endif
class AP_AHRS
{
public:
// Constructor
AP_AHRS(IMU *imu, GPS *&gps):
_imu(imu),
_gps(gps),
_barometer(NULL)
{
// base the ki values by the sensors maximum drift
// rate. The APM2 has gyros which are much less drift
// prone than the APM1, so we should have a lower ki,
// which will make us less prone to increasing omegaI
// incorrectly due to sensor noise
_gyro_drift_limit = imu->get_gyro_drift_rate();
}
// Constructor
AP_AHRS(IMU *imu, GPS *&gps) :
_imu(imu),
_gps(gps),
_barometer(NULL)
{
// base the ki values by the sensors maximum drift
// rate. The APM2 has gyros which are much less drift
// prone than the APM1, so we should have a lower ki,
// which will make us less prone to increasing omegaI
// incorrectly due to sensor noise
_gyro_drift_limit = imu->get_gyro_drift_rate();
}
// empty init
virtual void init() {};
// empty init
virtual void init() {
};
// Accessors
void set_fly_forward(bool b) { _fly_forward = b; }
void set_compass(Compass *compass) { _compass = compass; }
void set_barometer(AP_Baro *barometer) { _barometer = barometer; }
void set_airspeed(AP_Airspeed *airspeed) { _airspeed = airspeed; }
// Accessors
void set_fly_forward(bool b) {
_fly_forward = b;
}
void set_compass(Compass *compass) {
_compass = compass;
}
void set_barometer(AP_Baro *barometer) {
_barometer = barometer;
}
void set_airspeed(AP_Airspeed *airspeed) {
_airspeed = airspeed;
}
// Methods
virtual void update(void) = 0;
// Methods
virtual void update(void) = 0;
// Euler angles (radians)
float roll;
float pitch;
float yaw;
// Euler angles (radians)
float roll;
float pitch;
float yaw;
// integer Euler angles (Degrees * 100)
int32_t roll_sensor;
int32_t pitch_sensor;
int32_t yaw_sensor;
// integer Euler angles (Degrees * 100)
int32_t roll_sensor;
int32_t pitch_sensor;
int32_t yaw_sensor;
// return a smoothed and corrected gyro vector
virtual Vector3f get_gyro(void) = 0;
// return a smoothed and corrected gyro vector
virtual Vector3f get_gyro(void) = 0;
// return the current estimate of the gyro drift
virtual Vector3f get_gyro_drift(void) = 0;
// return the current estimate of the gyro drift
virtual Vector3f get_gyro_drift(void) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset(bool recover_eulers=false) = 0;
// reset the current attitude, used on new IMU calibration
virtual void reset(bool recover_eulers=false) = 0;
// how often our attitude representation has gone out of range
uint8_t renorm_range_count;
// how often our attitude representation has gone out of range
uint8_t renorm_range_count;
// how often our attitude representation has blown up completely
uint8_t renorm_blowup_count;
// how often our attitude representation has blown up completely
uint8_t renorm_blowup_count;
// return the average size of the roll/pitch error estimate
// since last call
virtual float get_error_rp(void) = 0;
// return the average size of the roll/pitch error estimate
// since last call
virtual float get_error_rp(void) = 0;
// return the average size of the yaw error estimate
// since last call
virtual float get_error_yaw(void) = 0;
// return the average size of the yaw error estimate
// since last call
virtual float get_error_yaw(void) = 0;
// return a DCM rotation matrix representing our current
// attitude
virtual Matrix3f get_dcm_matrix(void) = 0;
// return a DCM rotation matrix representing our current
// attitude
virtual Matrix3f get_dcm_matrix(void) = 0;
// get our current position, either from GPS or via
// dead-reckoning. Return true if a position is available,
// otherwise false. This only updates the lat and lng fields
// of the Location
bool get_position(struct Location *loc) {
if (!_gps || _gps->status() != GPS::GPS_OK) {
return false;
}
loc->lat = _gps->latitude;
loc->lng = _gps->longitude;
return true;
}
// get our current position, either from GPS or via
// dead-reckoning. Return true if a position is available,
// otherwise false. This only updates the lat and lng fields
// of the Location
bool get_position(struct Location *loc) {
if (!_gps || _gps->status() != GPS::GPS_OK) {
return false;
}
loc->lat = _gps->latitude;
loc->lng = _gps->longitude;
return true;
}
// return a wind estimation vector, in m/s
Vector3f wind_estimate(void) {
return Vector3f(0,0,0);
}
// return a wind estimation vector, in m/s
Vector3f wind_estimate(void) {
return Vector3f(0,0,0);
}
// return true if yaw has been initialised
bool yaw_initialised(void) {
return _have_initial_yaw;
}
// return true if yaw has been initialised
bool yaw_initialised(void) {
return _have_initial_yaw;
}
// set the fast gains flag
void set_fast_gains(bool setting) {
_fast_ground_gains = setting;
}
// set the fast gains flag
void set_fast_gains(bool setting) {
_fast_ground_gains = setting;
}
// settable parameters
AP_Float _kp_yaw;
AP_Float _kp;
AP_Float gps_gain;
AP_Int8 _gps_use;
// settable parameters
AP_Float _kp_yaw;
AP_Float _kp;
AP_Float gps_gain;
AP_Int8 _gps_use;
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
// for holding parameters
static const struct AP_Param::GroupInfo var_info[];
protected:
// whether the yaw value has been intialised with a reference
bool _have_initial_yaw;
// whether the yaw value has been intialised with a reference
bool _have_initial_yaw;
// pointer to compass object, if available
Compass * _compass;
// pointer to compass object, if available
Compass * _compass;
// pointer to airspeed object, if available
AP_Airspeed * _airspeed;
// pointer to airspeed object, if available
AP_Airspeed * _airspeed;
// time in microseconds of last compass update
uint32_t _compass_last_update;
// time in microseconds of last compass update
uint32_t _compass_last_update;
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
// IMU under us without our noticing.
IMU *_imu;
GPS *&_gps;
AP_Baro *_barometer;
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
// IMU under us without our noticing.
IMU *_imu;
GPS *&_gps;
AP_Baro *_barometer;
// should we raise the gain on the accelerometers for faster
// convergence, used when disarmed for ArduCopter
bool _fast_ground_gains;
// should we raise the gain on the accelerometers for faster
// convergence, used when disarmed for ArduCopter
bool _fast_ground_gains;
// true if we can assume the aircraft will be flying forward
// on its X axis
bool _fly_forward;
// true if we can assume the aircraft will be flying forward
// on its X axis
bool _fly_forward;
// the limit of the gyro drift claimed by the sensors, in
// radians/s/s
float _gyro_drift_limit;
// the limit of the gyro drift claimed by the sensors, in
// radians/s/s
float _gyro_drift_limit;
// acceleration due to gravity in m/s/s
static const float _gravity = 9.80665;
// acceleration due to gravity in m/s/s
static const float _gravity = 9.80665;
};
#include <AP_AHRS_DCM.h>