#ifndef AP_AHRS_H #define AP_AHRS_H /* * AHRS (Attitude Heading Reference System) interface for ArduPilot * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif class AP_AHRS { public: // Constructor AP_AHRS(IMU *imu, GPS *&gps) : _imu(imu), _gps(gps), _barometer(NULL) { // base the ki values by the sensors maximum drift // rate. The APM2 has gyros which are much less drift // prone than the APM1, so we should have a lower ki, // which will make us less prone to increasing omegaI // incorrectly due to sensor noise _gyro_drift_limit = imu->get_gyro_drift_rate(); } // empty init virtual void init() { }; // Accessors void set_fly_forward(bool b) { _fly_forward = b; } void set_compass(Compass *compass) { _compass = compass; } void set_barometer(AP_Baro *barometer) { _barometer = barometer; } void set_airspeed(AP_Airspeed *airspeed) { _airspeed = airspeed; } IMU* get_imu() { return _imu; } // Methods virtual void update(void) = 0; // Euler angles (radians) float roll; float pitch; float yaw; // integer Euler angles (Degrees * 100) int32_t roll_sensor; int32_t pitch_sensor; int32_t yaw_sensor; float get_pitch_rate_earth(void) { Vector3f omega = get_gyro(); return cos(roll) * omega.y - sin(roll) * omega.z; } float get_roll_rate_earth(void) { Vector3f omega = get_gyro(); return omega.x + tan(pitch)*(omega.y*sin(roll) + omega.z*cos(roll)); } // return a smoothed and corrected gyro vector virtual Vector3f get_gyro(void) = 0; // return the current estimate of the gyro drift virtual Vector3f get_gyro_drift(void) = 0; // reset the current attitude, used on new IMU calibration virtual void reset(bool recover_eulers=false) = 0; // how often our attitude representation has gone out of range uint8_t renorm_range_count; // how often our attitude representation has blown up completely uint8_t renorm_blowup_count; // return the average size of the roll/pitch error estimate // since last call virtual float get_error_rp(void) = 0; // return the average size of the yaw error estimate // since last call virtual float get_error_yaw(void) = 0; // return a DCM rotation matrix representing our current // attitude virtual Matrix3f get_dcm_matrix(void) = 0; // get our current position, either from GPS or via // dead-reckoning. Return true if a position is available, // otherwise false. This only updates the lat and lng fields // of the Location bool get_position(struct Location *loc) { if (!_gps || _gps->status() != GPS::GPS_OK) { return false; } loc->lat = _gps->latitude; loc->lng = _gps->longitude; return true; } // return a wind estimation vector, in m/s Vector3f wind_estimate(void) { return Vector3f(0,0,0); } // return true if yaw has been initialised bool yaw_initialised(void) { return _have_initial_yaw; } // set the fast gains flag void set_fast_gains(bool setting) { _fast_ground_gains = setting; } // settable parameters AP_Float _kp_yaw; AP_Float _kp; AP_Float gps_gain; AP_Int8 _gps_use; // for holding parameters static const struct AP_Param::GroupInfo var_info[]; protected: // whether the yaw value has been intialised with a reference bool _have_initial_yaw; // pointer to compass object, if available Compass * _compass; // pointer to airspeed object, if available AP_Airspeed * _airspeed; // time in microseconds of last compass update uint32_t _compass_last_update; // note: we use ref-to-pointer here so that our caller can change the GPS without our noticing // IMU under us without our noticing. IMU *_imu; GPS *&_gps; AP_Baro *_barometer; // should we raise the gain on the accelerometers for faster // convergence, used when disarmed for ArduCopter bool _fast_ground_gains; // true if we can assume the aircraft will be flying forward // on its X axis bool _fly_forward; // the limit of the gyro drift claimed by the sensors, in // radians/s/s float _gyro_drift_limit; // acceleration due to gravity in m/s/s static const float _gravity = 9.80665; }; #include #include #include #endif // AP_AHRS_H