2012-08-21 02:58:09 -03:00
/*
APM_AHRS . cpp
This library is free software ; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation ; either version 2.1
of the License , or ( at your option ) any later version .
*/
# include <AP_AHRS.h>
2012-11-14 12:10:15 -04:00
# include <AP_HAL.h>
extern const AP_HAL : : HAL & hal ;
2012-08-21 02:58:09 -03:00
// table of user settable parameters
const AP_Param : : GroupInfo AP_AHRS : : var_info [ ] PROGMEM = {
2013-03-29 06:42:26 -03:00
// index 0 and 1 are for old parameters that are no longer not used
2012-08-21 02:58:09 -03:00
// @Param: GPS_GAIN
// @DisplayName: AHRS GPS gain
2012-11-27 00:56:53 -04:00
// @Description: This controls how how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0.
2012-08-21 02:58:09 -03:00
// @Range: 0.0 1.0
// @Increment: .01
2013-01-10 14:42:24 -04:00
AP_GROUPINFO ( " GPS_GAIN " , 2 , AP_AHRS , gps_gain , 1.0f ) ,
2012-08-21 02:58:09 -03:00
// @Param: GPS_USE
2012-11-27 00:41:52 -04:00
// @DisplayName: AHRS use GPS for navigation
// @Description: This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won't be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight.
2013-05-21 03:39:03 -03:00
// @Values: 0:Disabled,1:Enabled
2012-08-21 02:58:09 -03:00
// @User: Advanced
AP_GROUPINFO ( " GPS_USE " , 3 , AP_AHRS , _gps_use , 1 ) ,
// @Param: YAW_P
// @DisplayName: Yaw P
2012-11-19 07:49:36 -04:00
// @Description: This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly.
// @Range: 0.1 0.4
2012-08-21 02:58:09 -03:00
// @Increment: .01
2013-04-14 02:39:14 -03:00
AP_GROUPINFO ( " YAW_P " , 4 , AP_AHRS , _kp_yaw , 0.3f ) ,
2012-08-21 02:58:09 -03:00
// @Param: RP_P
// @DisplayName: AHRS RP_P
// @Description: This controls how fast the accelerometers correct the attitude
2012-11-19 07:49:36 -04:00
// @Range: 0.1 0.4
2012-08-21 02:58:09 -03:00
// @Increment: .01
2013-04-14 02:39:14 -03:00
AP_GROUPINFO ( " RP_P " , 5 , AP_AHRS , _kp , 0.3f ) ,
2012-08-21 02:58:09 -03:00
2012-09-07 22:27:12 -03:00
// @Param: WIND_MAX
// @DisplayName: Maximum wind
// @Description: This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is.
// @Range: 0 127
2013-01-02 03:06:53 -04:00
// @Units: m/s
2012-09-07 22:27:12 -03:00
// @Increment: 1
2013-01-10 14:42:24 -04:00
AP_GROUPINFO ( " WIND_MAX " , 6 , AP_AHRS , _wind_max , 0.0f ) ,
2012-09-07 22:27:12 -03:00
2013-04-14 02:40:26 -03:00
// NOTE: 7 was BARO_USE
2012-09-12 01:42:04 -03:00
2013-01-02 02:47:59 -04:00
// @Param: TRIM_X
2013-01-02 02:43:50 -04:00
// @DisplayName: AHRS Trim Roll
// @Description: Compensates for the roll angle difference between the control board and the frame
// @Units: Radians
2013-05-21 03:39:03 -03:00
// @Range: -10 10
2013-01-02 02:43:50 -04:00
// @User: Advanced
2013-01-02 02:47:59 -04:00
// @Param: TRIM_Y
2013-01-02 02:43:50 -04:00
// @DisplayName: AHRS Trim Pitch
// @Description: Compensates for the pitch angle difference between the control board and the frame
// @Units: Radians
2013-05-21 03:39:03 -03:00
// @Range: -10 10
2013-01-02 02:43:50 -04:00
// @User: Advanced
2013-01-02 02:47:59 -04:00
// @Param: TRIM_Z
2013-01-02 02:43:50 -04:00
// @DisplayName: AHRS Trim Yaw
// @Description: Not Used
2012-12-10 09:28:39 -04:00
// @Units: Radians
2013-05-21 03:39:03 -03:00
// @Range: -10 10
2012-11-05 00:29:00 -04:00
// @User: Advanced
AP_GROUPINFO ( " TRIM " , 8 , AP_AHRS , _trim , 0 ) ,
2013-01-13 01:03:35 -04:00
// @Param: ORIENTATION
// @DisplayName: Board Orientation
2013-01-13 02:29:41 -04:00
// @Description: Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. This option takes affect on next boot. After changing you will need to re-level your vehicle.
// @Values: 0:None,1:Yaw45,2:Yaw90,3:Yaw135,4:Yaw180,5:Yaw225,6:Yaw270,7:Yaw315,8:Roll180,9:Roll180Yaw45,10:Roll180Yaw90,11:Roll180Yaw135,12:Pitch180,13:Roll180Yaw225,14:Roll180Yaw270,15:Roll180Yaw315,16:Roll90,17:Roll90Yaw45,18:Roll90Yaw135,19:Roll270,20:Roll270Yaw45,21:Roll270Yaw90,22:Roll270Yaw136,23:Pitch90,24:Pitch270
2013-01-13 01:03:35 -04:00
// @User: Advanced
AP_GROUPINFO ( " ORIENTATION " , 9 , AP_AHRS , _board_orientation , 0 ) ,
2013-03-29 06:42:26 -03:00
// @Param: COMP_BETA
// @DisplayName: AHRS Velocity Complmentary Filter Beta Coefficient
// @Description: This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less.
// @Range: 0.001 0.5
// @Increment: .01
2013-05-21 03:39:03 -03:00
// @User: Advanced
2013-03-29 06:42:26 -03:00
AP_GROUPINFO ( " COMP_BETA " , 10 , AP_AHRS , beta , 0.1f ) ,
2013-05-04 23:47:49 -03:00
// @Param: GPS_MINSATS
// @DisplayName: AHRS GPS Minimum satellites
// @Description: Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers.
// @Range: 0 10
2013-05-21 03:39:03 -03:00
// @Increment: 1
2013-05-04 23:47:49 -03:00
// @User: Advanced
AP_GROUPINFO ( " GPS_MINSATS " , 11 , AP_AHRS , _gps_minsats , 6 ) ,
2012-08-21 02:58:09 -03:00
AP_GROUPEND
} ;
2012-08-24 08:22:58 -03:00
// get pitch rate in earth frame, in radians/s
2013-04-21 09:27:04 -03:00
float AP_AHRS : : get_pitch_rate_earth ( void ) const
2012-08-24 08:22:58 -03:00
{
Vector3f omega = get_gyro ( ) ;
2013-01-10 14:42:24 -04:00
return cosf ( roll ) * omega . y - sinf ( roll ) * omega . z ;
2012-08-24 08:22:58 -03:00
}
// get roll rate in earth frame, in radians/s
2013-04-21 09:27:04 -03:00
float AP_AHRS : : get_roll_rate_earth ( void ) const {
2012-08-24 08:22:58 -03:00
Vector3f omega = get_gyro ( ) ;
2013-01-10 14:42:24 -04:00
return omega . x + tanf ( pitch ) * ( omega . y * sinf ( roll ) + omega . z * cosf ( roll ) ) ;
2012-08-24 08:22:58 -03:00
}
// return airspeed estimate if available
bool AP_AHRS : : airspeed_estimate ( float * airspeed_ret )
{
if ( _airspeed & & _airspeed - > use ( ) ) {
* airspeed_ret = _airspeed - > get_airspeed ( ) ;
2013-03-25 04:24:59 -03:00
if ( _wind_max > 0 & & _gps & & _gps - > status ( ) > = GPS : : GPS_OK_FIX_2D ) {
2012-09-07 22:27:12 -03:00
// constrain the airspeed by the ground speed
// and AHRS_WIND_MAX
2013-05-01 21:25:40 -03:00
* airspeed_ret = constrain_float ( * airspeed_ret ,
2013-01-10 14:42:24 -04:00
_gps - > ground_speed * 0.01f - _wind_max ,
_gps - > ground_speed * 0.01f + _wind_max ) ;
2012-09-07 22:27:12 -03:00
}
2012-08-24 08:22:58 -03:00
return true ;
}
return false ;
}
2012-11-05 00:29:00 -04:00
2013-02-19 05:50:57 -04:00
// set_trim
void AP_AHRS : : set_trim ( Vector3f new_trim )
{
Vector3f trim ;
2013-05-01 21:25:40 -03:00
trim . x = constrain_float ( new_trim . x , ToRad ( - AP_AHRS_TRIM_LIMIT ) , ToRad ( AP_AHRS_TRIM_LIMIT ) ) ;
trim . y = constrain_float ( new_trim . y , ToRad ( - AP_AHRS_TRIM_LIMIT ) , ToRad ( AP_AHRS_TRIM_LIMIT ) ) ;
2013-02-19 05:50:57 -04:00
_trim . set_and_save ( trim ) ;
}
2012-11-05 00:29:00 -04:00
// add_trim - adjust the roll and pitch trim up to a total of 10 degrees
2012-12-19 11:06:20 -04:00
void AP_AHRS : : add_trim ( float roll_in_radians , float pitch_in_radians , bool save_to_eeprom )
2012-11-05 00:29:00 -04:00
{
Vector3f trim = _trim . get ( ) ;
// add new trim
2013-05-01 21:25:40 -03:00
trim . x = constrain_float ( trim . x + roll_in_radians , ToRad ( - AP_AHRS_TRIM_LIMIT ) , ToRad ( AP_AHRS_TRIM_LIMIT ) ) ;
trim . y = constrain_float ( trim . y + pitch_in_radians , ToRad ( - AP_AHRS_TRIM_LIMIT ) , ToRad ( AP_AHRS_TRIM_LIMIT ) ) ;
2012-11-05 00:29:00 -04:00
2012-12-19 11:06:20 -04:00
// set new trim values
_trim . set ( trim ) ;
// save to eeprom
if ( save_to_eeprom ) {
_trim . save ( ) ;
}
2012-11-19 07:49:36 -04:00
}
2013-03-29 03:23:22 -03:00
// correct a bearing in centi-degrees for wind
void AP_AHRS : : wind_correct_bearing ( int32_t & nav_bearing_cd )
{
2013-05-23 22:21:23 -03:00
if ( ! use_compass ( ) | | ! _flags . wind_estimation ) {
2013-03-29 03:23:22 -03:00
// we are not using the compass - no wind correction,
// as GPS gives course over ground already
return ;
}
// if we are using a compass for navigation, then adjust the
// heading to account for wind
Vector3f wind = wind_estimate ( ) ;
Vector2f wind2d = Vector2f ( wind . x , wind . y ) ;
float speed ;
if ( airspeed_estimate ( & speed ) ) {
Vector2f nav_vector = Vector2f ( cos ( radians ( nav_bearing_cd * 0.01 ) ) , sin ( radians ( nav_bearing_cd * 0.01 ) ) ) * speed ;
Vector2f nav_adjusted = nav_vector - wind2d ;
nav_bearing_cd = degrees ( atan2 ( nav_adjusted . y , nav_adjusted . x ) ) * 100 ;
}
}
2013-03-29 04:22:03 -03:00
// return a ground speed estimate in m/s
2013-03-29 03:23:22 -03:00
Vector2f AP_AHRS : : groundspeed_vector ( void )
{
2013-03-29 06:42:26 -03:00
// Generate estimate of ground speed vector using air data system
Vector2f gndVelADS ;
Vector2f gndVelGPS ;
float airspeed ;
bool gotAirspeed = airspeed_estimate ( & airspeed ) ;
bool gotGPS = ( _gps & & _gps - > status ( ) > = GPS : : GPS_OK_FIX_2D ) ;
if ( gotAirspeed ) {
Vector3f wind = wind_estimate ( ) ;
Vector2f wind2d = Vector2f ( wind . x , wind . y ) ;
2013-05-12 22:24:48 -03:00
Vector2f airspeed_vector = Vector2f ( cosf ( yaw ) , sinf ( yaw ) ) * airspeed ;
2013-03-29 06:42:26 -03:00
gndVelADS = airspeed_vector - wind2d ;
}
// Generate estimate of ground speed vector using GPS
if ( gotGPS ) {
float cog = radians ( _gps - > ground_course * 0.01f ) ;
2013-05-12 22:24:48 -03:00
gndVelGPS = Vector2f ( cosf ( cog ) , sinf ( cog ) ) * _gps - > ground_speed * 0.01f ;
2013-03-29 06:42:26 -03:00
}
// If both ADS and GPS data is available, apply a complementary filter
if ( gotAirspeed & & gotGPS ) {
// The LPF is applied to the GPS and the HPF is applied to the air data estimate
// before the two are summed
//Define filter coefficients
// alpha and beta must sum to one
// beta = dt/Tau, where
// dt = filter time step (0.1 sec if called by nav loop)
// Tau = cross-over time constant (nominal 2 seconds)
// More lag on GPS requires Tau to be bigger, less lag allows it to be smaller
// To-Do - set Tau as a function of GPS lag.
const float alpha = 1.0f - beta ;
// Run LP filters
2013-05-12 22:24:48 -03:00
_lp = gndVelGPS * beta + _lp * alpha ;
2013-03-29 06:42:26 -03:00
// Run HP filters
2013-05-12 22:24:48 -03:00
_hp = ( gndVelADS - _lastGndVelADS ) + _hp * alpha ;
2013-03-29 06:42:26 -03:00
// Save the current ADS ground vector for the next time step
_lastGndVelADS = gndVelADS ;
// Sum the HP and LP filter outputs
2013-05-12 22:24:48 -03:00
return _hp + _lp ;
2013-03-29 06:42:26 -03:00
}
// Only ADS data is available return ADS estimate
if ( gotAirspeed & & ! gotGPS ) {
return gndVelADS ;
}
// Only GPS data is available so return GPS estimate
if ( ! gotAirspeed & & gotGPS ) {
return gndVelGPS ;
}
return Vector2f ( 0.0f , 0.0f ) ;
2013-03-29 03:23:22 -03:00
}
2013-05-16 19:32:21 -03:00
/*
get position projected by groundspeed and heading
*/
bool AP_AHRS : : get_projected_position ( struct Location * loc )
{
if ( ! get_position ( loc ) ) {
return false ;
}
location_update ( loc , degrees ( yaw ) , _gps - > ground_speed * 0.01 * _gps - > get_lag ( ) ) ;
return true ;
}