ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_PX4.cpp

275 lines
7.6 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_InertialSensor_PX4.h"
const extern AP_HAL::HAL& hal;
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <drivers/drv_hrt.h>
#include <AP_Notify.h>
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
{
// assumes max 2 instances
_accel_fd[0] = open(ACCEL_DEVICE_PATH, O_RDONLY);
_accel_fd[1] = open(ACCEL_DEVICE_PATH "1", O_RDONLY);
_accel_fd[2] = open(ACCEL_DEVICE_PATH "2", O_RDONLY);
_gyro_fd[0] = open(GYRO_DEVICE_PATH, O_RDONLY);
_gyro_fd[1] = open(GYRO_DEVICE_PATH "1", O_RDONLY);
_gyro_fd[2] = open(GYRO_DEVICE_PATH "2", O_RDONLY);
_num_accel_instances = 0;
_num_gyro_instances = 0;
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
if (_accel_fd[i] >= 0) {
_num_accel_instances = i+1;
}
if (_gyro_fd[i] >= 0) {
_num_gyro_instances = i+1;
}
}
if (_num_accel_instances == 0) {
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
}
if (_num_gyro_instances == 0) {
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
}
switch (sample_rate) {
case RATE_50HZ:
_default_filter_hz = 15;
_sample_time_usec = 20000;
break;
case RATE_100HZ:
_default_filter_hz = 30;
_sample_time_usec = 10000;
break;
case RATE_200HZ:
_default_filter_hz = 30;
_sample_time_usec = 5000;
break;
2013-12-16 23:24:44 -04:00
case RATE_400HZ:
default:
_default_filter_hz = 30;
_sample_time_usec = 2500;
break;
}
_set_filter_frequency(_mpu6000_filter);
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
return AP_PRODUCT_ID_PX4_V2;
#else
return AP_PRODUCT_ID_PX4;
#endif
}
/*
set the filter frequency
*/
void AP_InertialSensor_PX4::_set_filter_frequency(uint8_t filter_hz)
{
if (filter_hz == 0) {
filter_hz = _default_filter_hz;
}
for (uint8_t i=0; i<_num_gyro_instances; i++) {
ioctl(_gyro_fd[i], GYROIOCSLOWPASS, filter_hz);
}
for (uint8_t i=0; i<_num_accel_instances; i++) {
ioctl(_accel_fd[i], ACCELIOCSLOWPASS, filter_hz);
}
}
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
// multi-device interface
bool AP_InertialSensor_PX4::get_gyro_health(uint8_t instance) const
{
if (_sample_time_usec == 0 || _last_get_sample_timestamp == 0) {
// not initialised yet, show as healthy to prevent scary GCS
// warnings
return true;
}
if (instance >= _num_gyro_instances) {
return false;
}
if ((_last_get_sample_timestamp - _last_gyro_timestamp[instance]) > 2*_sample_time_usec) {
// gyros have not updated
return false;
}
return true;
}
uint8_t AP_InertialSensor_PX4::get_gyro_count(void) const
{
return _num_gyro_instances;
}
bool AP_InertialSensor_PX4::get_accel_health(uint8_t k) const
{
if (_sample_time_usec == 0 || _last_get_sample_timestamp == 0) {
// not initialised yet, show as healthy to prevent scary GCS
// warnings
return true;
}
if (k >= _num_accel_instances) {
return false;
}
if ((_last_get_sample_timestamp - _last_accel_timestamp[k]) > 2*_sample_time_usec) {
// accels have not updated
return false;
}
if (fabsf(_accel[k].x) > 30 && fabsf(_accel[k].y) > 30 && fabsf(_accel[k].z) > 30 &&
(_previous_accel[k] - _accel[k]).length() < 0.01f) {
// unchanging accel, large in all 3 axes. This is a likely
// accelerometer failure of the LSM303d
return false;
}
return true;
}
uint8_t AP_InertialSensor_PX4::get_accel_count(void) const
{
return _num_accel_instances;
}
bool AP_InertialSensor_PX4::update(void)
{
if (!wait_for_sample(100)) {
return false;
}
// get the latest sample from the sensor drivers
_get_sample();
for (uint8_t k=0; k<_num_accel_instances; k++) {
_previous_accel[k] = _accel[k];
_accel[k] = _accel_in[k];
_accel[k].rotate(_board_orientation);
_accel[k].x *= _accel_scale[k].get().x;
_accel[k].y *= _accel_scale[k].get().y;
_accel[k].z *= _accel_scale[k].get().z;
_accel[k] -= _accel_offset[k];
}
for (uint8_t k=0; k<_num_gyro_instances; k++) {
_gyro[k] = _gyro_in[k];
_gyro[k].rotate(_board_orientation);
_gyro[k] -= _gyro_offset[k];
}
if (_last_filter_hz != _mpu6000_filter) {
_set_filter_frequency(_mpu6000_filter);
_last_filter_hz = _mpu6000_filter;
}
_have_sample_available = false;
return true;
}
float AP_InertialSensor_PX4::get_delta_time(void) const
{
return _sample_time_usec * 1.0e-6f;
}
float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
{
// assume 0.5 degrees/second/minute
return ToRad(0.5/60);
}
void AP_InertialSensor_PX4::_get_sample(void)
{
for (uint8_t i=0; i<_num_accel_instances; i++) {
struct accel_report accel_report;
while (_accel_fd[i] != -1 &&
::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) &&
accel_report.timestamp != _last_accel_timestamp[i]) {
_accel_in[i] = Vector3f(accel_report.x, accel_report.y, accel_report.z);
_last_accel_timestamp[i] = accel_report.timestamp;
}
}
for (uint8_t i=0; i<_num_gyro_instances; i++) {
struct gyro_report gyro_report;
while (_gyro_fd[i] != -1 &&
::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) &&
gyro_report.timestamp != _last_gyro_timestamp[i]) {
_gyro_in[i] = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
_last_gyro_timestamp[i] = gyro_report.timestamp;
}
}
_last_get_sample_timestamp = hal.scheduler->micros64();
}
bool AP_InertialSensor_PX4::_sample_available(void)
{
uint64_t tnow = hal.scheduler->micros64();
while (tnow - _last_sample_timestamp > _sample_time_usec) {
_have_sample_available = true;
_last_sample_timestamp += _sample_time_usec;
}
return _have_sample_available;
}
bool AP_InertialSensor_PX4::wait_for_sample(uint16_t timeout_ms)
{
if (_sample_available()) {
return true;
}
uint64_t start = hal.scheduler->millis64();
while ((hal.scheduler->millis64() - start) < timeout_ms) {
uint64_t tnow = hal.scheduler->micros64();
// we spin for the last timing_lag microseconds. Before that
// we yield the CPU to allow IO to happen
const uint16_t timing_lag = 400;
if (_last_sample_timestamp + _sample_time_usec > tnow+timing_lag) {
hal.scheduler->delay_microseconds(_last_sample_timestamp + _sample_time_usec - (tnow+timing_lag));
}
if (_sample_available()) {
return true;
}
}
return false;
}
/**
try to detect bad accel/gyro sensors
*/
bool AP_InertialSensor_PX4::healthy(void) const
{
return get_gyro_health(0) && get_accel_health(0);
}
uint8_t AP_InertialSensor_PX4::_get_primary_gyro(void) const
{
for (uint8_t i=0; i<_num_gyro_instances; i++) {
if (get_gyro_health(i)) return i;
}
return 0;
}
uint8_t AP_InertialSensor_PX4::get_primary_accel(void) const
{
for (uint8_t i=0; i<_num_accel_instances; i++) {
if (get_accel_health(i)) return i;
}
return 0;
}
#endif // CONFIG_HAL_BOARD