AP_InertialSensor: update PX4 driver to use read() method

This commit is contained in:
Andrew Tridgell 2013-01-20 21:13:52 +11:00
parent aff5b1559d
commit 16d72ca160
2 changed files with 54 additions and 87 deletions

View File

@ -13,55 +13,46 @@ const extern AP_HAL::HAL& hal;
#include <drivers/drv_accel.h>
#include <drivers/drv_gyro.h>
#include <uORB/uORB.h>
#include <uORB/topics/sensor_combined.h>
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) {
uint16_t rate_hz;
int fd;
uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate )
{
switch (sample_rate) {
case RATE_50HZ:
rate_hz = 50;
_sample_divider = 4;
break;
case RATE_100HZ:
rate_hz = 100;
_sample_divider = 2;
break;
case RATE_200HZ:
default:
rate_hz = 200;
_sample_divider = 1;
break;
}
// init accelerometers
fd = open(ACCEL_DEVICE_PATH, 0);
if (fd < 0) {
_accel_fd = open(ACCEL_DEVICE_PATH, O_RDONLY);
if (_accel_fd < 0) {
hal.scheduler->panic("Unable to open accel device " ACCEL_DEVICE_PATH);
}
/* set the accel internal sampling rate */
ioctl(fd, ACCELIOCSSAMPLERATE, rate_hz);
/* set the driver poll rate */
ioctl(fd, SENSORIOCSPOLLRATE, rate_hz);
close(fd);
_accel_sub = orb_subscribe(ORB_ID(sensor_accel));
// init gyros
fd = open(GYRO_DEVICE_PATH, 0);
if (fd < 0) {
_gyro_fd = open(GYRO_DEVICE_PATH, O_RDONLY);
if (_gyro_fd < 0) {
hal.scheduler->panic("Unable to open gyro device " GYRO_DEVICE_PATH);
}
/* set the gyro internal sampling rate */
ioctl(fd, GYROIOCSSAMPLERATE, rate_hz);
/*
* set the accel and gyro sampling rate. We always set these to
* 200 then average in this driver
*/
ioctl(_accel_fd, ACCELIOCSSAMPLERATE, 200);
ioctl(_accel_fd, SENSORIOCSPOLLRATE, 200);
ioctl(_gyro_fd, GYROIOCSSAMPLERATE, 200);
ioctl(_gyro_fd, SENSORIOCSPOLLRATE, 200);
/* set the driver poll rate */
ioctl(fd, SENSORIOCSPOLLRATE, rate_hz);
close(fd);
_gyro_sub = orb_subscribe(ORB_ID(sensor_gyro));
// ask for a 10 sample buffer. The mpu6000 PX4 driver doesn't
// support this yet, but when it does we want to use it
ioctl(_accel_fd, SENSORIOCSQUEUEDEPTH, 10);
ioctl(_gyro_fd, SENSORIOCSQUEUEDEPTH, 10);
return AP_PRODUCT_ID_PX4;
}
@ -71,32 +62,34 @@ uint16_t AP_InertialSensor_PX4::_init_sensor( Sample_rate sample_rate ) {
bool AP_InertialSensor_PX4::update(void)
{
while (num_samples_available() == 0) {
hal.scheduler->delay_microseconds(1);
hal.scheduler->delay(1);
}
uint32_t now = hal.scheduler->micros();
_delta_time_usec = now - _last_update_usec;
// the current mpu6000 PX4 driver does not buffer samples, so
// using the sample count times 5ms would produce a bad delta time
// if we missed one. For now we need to use the clock to get the
// delta time
_delta_time = (now - _last_update_usec) * 1.0e-6f;
_last_update_usec = now;
Vector3f accel_scale = _accel_scale.get();
_accel = Vector3f(_raw_sensors.accelerometer_m_s2[0],
_raw_sensors.accelerometer_m_s2[1],
_raw_sensors.accelerometer_m_s2[2]);
_accel = _accel_sum / _accel_sum_count;
_accel.rotate(_board_orientation);
_accel.x *= accel_scale.x;
_accel.y *= accel_scale.y;
_accel.z *= accel_scale.z;
_accel /= _raw_sensors.accelerometer_counter;
_accel -= _accel_offset;
_gyro = Vector3f(_raw_sensors.gyro_rad_s[0],
_raw_sensors.gyro_rad_s[1],
_raw_sensors.gyro_rad_s[2]);
_gyro = _gyro_sum / _gyro_sum_count;
_gyro.rotate(_board_orientation);
_gyro /= _raw_sensors.gyro_counter;
_gyro -= _gyro_offset;
memset(&_raw_sensors, 0, sizeof(_raw_sensors));
_accel_sum.zero();
_accel_sum_count = 0;
_gyro_sum.zero();
_gyro_sum_count = 0;
return true;
}
@ -114,7 +107,7 @@ float AP_InertialSensor_PX4::temperature(void)
float AP_InertialSensor_PX4::get_delta_time(void)
{
return _delta_time_usec * 1.0e-6;
return _delta_time;
}
uint32_t AP_InertialSensor_PX4::get_last_sample_time_micros(void)
@ -130,45 +123,20 @@ float AP_InertialSensor_PX4::get_gyro_drift_rate(void)
uint16_t AP_InertialSensor_PX4::num_samples_available(void)
{
bool accel_updated=false;
bool gyro_updated =false;
orb_check(_accel_sub, &accel_updated);
if (accel_updated) {
struct accel_report accel_report;
orb_copy(ORB_ID(sensor_accel), _accel_sub, &accel_report);
_raw_sensors.accelerometer_m_s2[0] += accel_report.x;
_raw_sensors.accelerometer_m_s2[1] += accel_report.y;
_raw_sensors.accelerometer_m_s2[2] += accel_report.z;
_raw_sensors.accelerometer_raw[0] = accel_report.x_raw;
_raw_sensors.accelerometer_raw[1] = accel_report.y_raw;
_raw_sensors.accelerometer_raw[2] = accel_report.z_raw;
_raw_sensors.accelerometer_counter++;
struct accel_report accel_report;
struct gyro_report gyro_report;
if (::read(_accel_fd, &accel_report, sizeof(accel_report)) == sizeof(accel_report)) {
_accel_sum += Vector3f(accel_report.x, accel_report.y, accel_report.z);
_accel_sum_count++;
}
orb_check(_gyro_sub, &gyro_updated);
if (gyro_updated) {
struct gyro_report gyro_report;
orb_copy(ORB_ID(sensor_gyro), _gyro_sub, &gyro_report);
_raw_sensors.gyro_rad_s[0] += gyro_report.x;
_raw_sensors.gyro_rad_s[1] += gyro_report.y;
_raw_sensors.gyro_rad_s[2] += gyro_report.z;
_raw_sensors.gyro_raw[0] = gyro_report.x_raw;
_raw_sensors.gyro_raw[1] = gyro_report.y_raw;
_raw_sensors.gyro_raw[2] = gyro_report.z_raw;
_raw_sensors.gyro_counter++;
if (::read(_gyro_fd, &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report)) {
_gyro_sum += Vector3f(gyro_report.x, gyro_report.y, gyro_report.z);
_gyro_sum_count++;
}
return min(_raw_sensors.accelerometer_counter, _raw_sensors.gyro_counter);
return min(_accel_sum_count, _gyro_sum_count) / _sample_divider;
}
#endif // CONFIG_HAL_BOARD

View File

@ -31,17 +31,16 @@ public:
private:
uint16_t _init_sensor( Sample_rate sample_rate );
uint32_t _last_update_usec;
uint32_t _delta_time_usec;
float _delta_time;
Vector3f _accel_sum;
uint32_t _accel_sum_count;
Vector3f _gyro_sum;
uint32_t _gyro_sum_count;
uint8_t _sample_divider;
// accelerometer ORB subscription handle
int _accel_sub;
// gyro ORB subscription handle
int _gyro_sub;
// raw sensor values, combined structure
struct sensor_combined_s _raw_sensors;
// accelerometer and gyro driver handles
int _accel_fd;
int _gyro_fd;
};
#endif
#endif // __AP_INERTIAL_SENSOR_PX4_H__