ardupilot/Rover/sensors.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

96 lines
3.7 KiB
C++
Raw Normal View History

2015-05-13 00:16:45 -03:00
#include "Rover.h"
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
// check for new compass data - 10Hz
void Rover::update_compass(void)
{
compass.read();
}
// Save compass offsets
void Rover::compass_save() {
if (AP::compass().available() &&
compass.get_learn_type() >= Compass::LEARN_INTERNAL &&
!arming.is_armed()) {
compass.save_offsets();
}
}
2017-07-11 23:02:51 -03:00
// update wheel encoders
void Rover::update_wheel_encoder()
{
2017-07-20 03:12:09 -03:00
// exit immediately if not enabled
if (g2.wheel_encoder.num_sensors() == 0) {
return;
}
// update encoders
2017-07-11 23:02:51 -03:00
g2.wheel_encoder.update();
2017-07-20 03:12:09 -03:00
// save cumulative distances at current time (in meters) for reporting to GCS
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i);
}
// send wheel encoder delta angle and delta time to EKF
// this should not be done at more than 50hz
2017-07-20 03:12:09 -03:00
// initialise on first iteration
if (!wheel_encoder_initialised) {
wheel_encoder_initialised = true;
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) {
2017-07-20 03:12:09 -03:00
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i);
wheel_encoder_last_reading_ms[i] = g2.wheel_encoder.get_last_reading_ms(i);
2017-07-20 03:12:09 -03:00
}
return;
}
// on each iteration send data from alternative wheel encoders
wheel_encoder_last_index_sent++;
if (wheel_encoder_last_index_sent >= g2.wheel_encoder.num_sensors()) {
wheel_encoder_last_index_sent = 0;
}
// get current time, total delta angle (since startup) and update time from sensor
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(wheel_encoder_last_index_sent);
const uint32_t sensor_reading_ms = g2.wheel_encoder.get_last_reading_ms(wheel_encoder_last_index_sent);
const uint32_t now_ms = AP_HAL::millis();
2017-07-20 03:12:09 -03:00
// calculate angular change (in radians)
#if HAL_NAVEKF3_AVAILABLE
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[wheel_encoder_last_index_sent];
#endif
wheel_encoder_last_angle_rad[wheel_encoder_last_index_sent] = curr_angle_rad;
2017-07-20 03:12:09 -03:00
// calculate delta time using time between sensor readings or time since last send to ekf (whichever is shorter)
uint32_t sensor_diff_ms = sensor_reading_ms - wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent];
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) {
// if no sensor update or time difference between sensor readings is too long use time since last send to ekf
sensor_diff_ms = now_ms - wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent];
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent] = now_ms;
} else {
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent] = sensor_reading_ms;
2017-07-20 03:12:09 -03:00
}
#if HAL_NAVEKF3_AVAILABLE
const float delta_time = sensor_diff_ms * 0.001f;
2017-07-20 03:12:09 -03:00
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
* delTime is the time interval for the measurement of delAng (sec)
* timeStamp_ms is the time when the rotation was last measured (msec)
* posOffset is the XYZ body frame position of the wheel hub (m)
*/
ahrs.EKF3.writeWheelOdom(delta_angle,
delta_time,
wheel_encoder_last_reading_ms[wheel_encoder_last_index_sent],
g2.wheel_encoder.get_pos_offset(wheel_encoder_last_index_sent),
g2.wheel_encoder.get_wheel_radius(wheel_encoder_last_index_sent));
#endif
2017-07-11 23:02:51 -03:00
}
2017-07-13 08:36:44 -03:00
// read the rangefinders
void Rover::read_rangefinders(void)
2013-03-21 18:49:51 -03:00
{
2017-07-13 08:36:44 -03:00
rangefinder.update();
2018-06-11 08:10:53 -03:00
Log_Write_Depth();
2013-03-21 18:49:51 -03:00
}