ardupilot/libraries/AP_Airspeed/AP_Airspeed.h

267 lines
8.1 KiB
C
Raw Normal View History

#pragma once
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Param/AP_Param.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_Math/AP_Math.h>
class AP_Airspeed_Backend;
#ifndef AIRSPEED_MAX_SENSORS
#define AIRSPEED_MAX_SENSORS 2
#endif
#ifndef AP_AIRSPEED_AUTOCAL_ENABLE
#define AP_AIRSPEED_AUTOCAL_ENABLE !defined(HAL_BUILD_AP_PERIPH)
#endif
class Airspeed_Calibration {
public:
friend class AP_Airspeed;
// constructor
Airspeed_Calibration();
// initialise the calibration
void init(float initial_ratio);
// take current airspeed in m/s and ground speed vector and return
// new scaling factor
float update(float airspeed, const Vector3f &vg, int16_t max_airspeed_allowed_during_cal);
private:
// state of kalman filter for airspeed ratio estimation
Matrix3f P; // covarience matrix
const float Q0; // process noise matrix top left and middle element
const float Q1; // process noise matrix bottom right element
Vector3f state; // state vector
const float DT; // time delta
};
class AP_Airspeed
{
public:
friend class AP_Airspeed_Backend;
// constructor
AP_Airspeed();
2012-10-09 21:01:22 -03:00
void init(void);
// read the analog source and update airspeed
2018-11-16 12:16:23 -04:00
void update(bool log);
// calibrate the airspeed. This must be called on startup if the
// altitude/climb_rate/acceleration interfaces are ever used
void calibrate(bool in_startup);
// return the current airspeed in m/s
float get_airspeed(uint8_t i) const {
return state[i].airspeed;
}
float get_airspeed(void) const { return get_airspeed(primary); }
// return the unfiltered airspeed in m/s
float get_raw_airspeed(uint8_t i) const {
return state[i].raw_airspeed;
}
float get_raw_airspeed(void) const { return get_raw_airspeed(primary); }
// return the current airspeed ratio (dimensionless)
float get_airspeed_ratio(uint8_t i) const {
return param[i].ratio;
}
float get_airspeed_ratio(void) const { return get_airspeed_ratio(primary); }
2014-01-27 19:35:35 -04:00
// get temperature if available
bool get_temperature(uint8_t i, float &temperature);
bool get_temperature(float &temperature) { return get_temperature(primary, temperature); }
2014-01-27 19:35:35 -04:00
// set the airspeed ratio (dimensionless)
void set_airspeed_ratio(uint8_t i, float ratio) {
param[i].ratio.set(ratio);
}
void set_airspeed_ratio(float ratio) { set_airspeed_ratio(primary, ratio); }
// return true if airspeed is enabled, and airspeed use is set
bool use(uint8_t i) const;
bool use(void) const { return use(primary); }
// return true if airspeed is enabled
bool enabled(uint8_t i) const {
if (i < AIRSPEED_MAX_SENSORS) {
return param[i].type.get() != TYPE_NONE;
}
return false;
}
bool enabled(void) const { return enabled(primary); }
// used by HIL to set the airspeed
void set_HIL(float airspeed) {
state[primary].airspeed = airspeed;
}
// return the differential pressure in Pascal for the last airspeed reading
float get_differential_pressure(uint8_t i) const {
return state[i].last_pressure;
}
float get_differential_pressure(void) const { return get_differential_pressure(primary); }
// update airspeed ratio calibration
void update_calibration(const Vector3f &vground, int16_t max_airspeed_allowed_during_cal);
2013-10-29 19:03:35 -03:00
// return health status of sensor
bool healthy(uint8_t i) const {
bool ok = state[i].healthy && enabled(i);
#ifndef HAL_BUILD_AP_PERIPH
ok &= (fabsf(param[i].offset) > 0 || state[i].use_zero_offset);
#endif
return ok;
}
bool healthy(void) const { return healthy(primary); }
2013-10-29 19:03:35 -03:00
// return true if all enabled sensors are healthy
bool all_healthy(void) const;
void setHIL(float pressure) { state[0].healthy=state[0].hil_set=true; state[0].hil_pressure=pressure; }
2014-08-10 05:16:53 -03:00
// return time in ms of last update
uint32_t last_update_ms(uint8_t i) const { return state[i].last_update_ms; }
uint32_t last_update_ms(void) const { return last_update_ms(primary); }
void setHIL(float airspeed, float diff_pressure, float temperature);
2012-10-09 21:01:22 -03:00
static const struct AP_Param::GroupInfo var_info[];
enum pitot_tube_order { PITOT_TUBE_ORDER_POSITIVE = 0,
PITOT_TUBE_ORDER_NEGATIVE = 1,
PITOT_TUBE_ORDER_AUTO = 2 };
enum OptionsMask {
ON_FAILURE_AHRS_WIND_MAX_DO_DISABLE = (1<<0), // If set then use airspeed failure check
ON_FAILURE_AHRS_WIND_MAX_RECOVERY_DO_REENABLE = (1<<1), // If set then automatically enable the airspeed sensor use when healthy again.
};
enum airspeed_type {
TYPE_NONE=0,
TYPE_I2C_MS4525=1,
TYPE_ANALOG=2,
TYPE_I2C_MS5525=3,
TYPE_I2C_MS5525_ADDRESS_1=4,
TYPE_I2C_MS5525_ADDRESS_2=5,
TYPE_I2C_SDP3X=6,
TYPE_I2C_DLVR_5IN=7,
2018-09-05 03:45:01 -03:00
TYPE_UAVCAN=8,
TYPE_I2C_DLVR_10IN=9,
TYPE_I2C_DLVR_20IN=10,
TYPE_I2C_DLVR_30IN=11,
TYPE_I2C_DLVR_60IN=12,
};
// get current primary sensor
uint8_t get_primary(void) const { return primary; }
2018-03-04 20:13:48 -04:00
2019-05-03 08:23:58 -03:00
// get number of sensors
uint8_t get_num_sensors(void) const { return num_sensors; }
2018-03-04 20:13:48 -04:00
static AP_Airspeed *get_singleton() { return _singleton; }
// return the current corrected pressure, public for AP_Periph
float get_corrected_pressure(uint8_t i) const {
return state[i].corrected_pressure;
}
float get_corrected_pressure(void) const {
return get_corrected_pressure(primary);
}
private:
2018-03-04 20:13:48 -04:00
static AP_Airspeed *_singleton;
AP_Int8 primary_sensor;
AP_Int32 _options; // bitmask options for airspeed
struct {
AP_Float offset;
AP_Float ratio;
AP_Float psi_range;
AP_Int8 use;
AP_Int8 type;
AP_Int8 pin;
AP_Int8 bus;
AP_Int8 autocal;
AP_Int8 tube_order;
AP_Int8 skip_cal;
} param[AIRSPEED_MAX_SENSORS];
struct airspeed_state {
float raw_airspeed;
float airspeed;
float last_pressure;
float filtered_pressure;
float corrected_pressure;
float hil_pressure;
uint32_t last_update_ms;
bool use_zero_offset;
bool healthy;
bool hil_set;
// state of runtime calibration
struct {
uint32_t start_ms;
float sum;
uint16_t count;
uint16_t read_count;
} cal;
#if AP_AIRSPEED_AUTOCAL_ENABLE
Airspeed_Calibration calibration;
float last_saved_ratio;
uint8_t counter;
#endif // AP_AIRSPEED_AUTOCAL_ENABLE
struct {
uint32_t last_check_ms;
float health_probability;
int8_t param_use_backup;
bool has_warned;
} failures;
} state[AIRSPEED_MAX_SENSORS];
// current primary sensor
uint8_t primary;
2019-05-03 08:23:58 -03:00
uint8_t num_sensors;
void read(uint8_t i);
// return the differential pressure in Pascal for the last airspeed reading for the requested instance
// returns 0 if the sensor is not enabled
float get_pressure(uint8_t i);
// get the failure health probability
float get_health_failure_probability(uint8_t i) const {
return state[i].failures.health_probability;
}
float get_health_failure_probability(void) const {
return get_health_failure_probability(primary);
}
void update_calibration(uint8_t i, float raw_pressure);
void update_calibration(uint8_t i, const Vector3f &vground, int16_t max_airspeed_allowed_during_cal);
void send_airspeed_calibration(const Vector3f &vg);
// return the current calibration offset
float get_offset(uint8_t i) const {
return param[i].offset;
}
float get_offset(void) const { return get_offset(primary); }
void check_sensor_failures();
void check_sensor_ahrs_wind_max_failures(uint8_t i);
AP_Airspeed_Backend *sensor[AIRSPEED_MAX_SENSORS];
void Log_Airspeed();
};
namespace AP {
AP_Airspeed *airspeed();
};