mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-02-26 17:53:59 -04:00
AP_Airspeed: added auto-calibration support
This uses a Kalman filter to calculate the right ARSPD_RATIO at runtime Pair-Programmed-With: Paul Riseborough <p_riseborough@live.com.au>
This commit is contained in:
parent
53b1b9b575
commit
893d2da6f6
@ -70,6 +70,12 @@ const AP_Param::GroupInfo AP_Airspeed::var_info[] PROGMEM = {
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("PIN", 4, AP_Airspeed, _pin, ARSPD_DEFAULT_PIN),
|
||||
|
||||
// @Param: AUTOCAL
|
||||
// @DisplayName: Automatic airspeed ratio calibration
|
||||
// @Description: If this is enabled then the APM will automatically adjust the ARSPD_RATIO during flight, based upon an estimation filter using ground speed and true airspeed. The automatic calibration will save the new ratio to EEPROM every 2 minutes if it changes by more than 5%
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("AUTOCAL", 5, AP_Airspeed, _autocal, 0),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
@ -105,6 +111,10 @@ void AP_Airspeed::init()
|
||||
}
|
||||
#endif
|
||||
_source = hal.analogin->channel(_pin);
|
||||
|
||||
_calibration.init(_ratio);
|
||||
_last_saved_ratio = _ratio;
|
||||
_counter = 0;
|
||||
}
|
||||
|
||||
// read the airspeed sensor
|
||||
|
@ -7,11 +7,35 @@
|
||||
#include <AP_HAL.h>
|
||||
#include <AP_Param.h>
|
||||
|
||||
class Airspeed_Calibration {
|
||||
public:
|
||||
// constructor
|
||||
Airspeed_Calibration(void);
|
||||
|
||||
// initialise the calibration
|
||||
void init(float initial_ratio);
|
||||
|
||||
// take current airspeed in m/s and ground speed vector and return
|
||||
// new scaling factor
|
||||
float update(float airspeed, const Vector3f &vg);
|
||||
|
||||
private:
|
||||
// state of kalman filter for airspeed ratio estimation
|
||||
Matrix3f P; // covarience matrix
|
||||
const float Q0; // process noise matrix top left and middle element
|
||||
const float Q1; // process noise matrix bottom right element
|
||||
Vector3f state; // state vector
|
||||
const float DT; // time delta
|
||||
|
||||
};
|
||||
|
||||
class AP_Airspeed
|
||||
{
|
||||
public:
|
||||
// constructor
|
||||
AP_Airspeed() : _ets_fd(-1) {
|
||||
AP_Airspeed() :
|
||||
_ets_fd(-1)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
};
|
||||
|
||||
@ -69,6 +93,15 @@ public:
|
||||
_airspeed = airspeed;
|
||||
}
|
||||
|
||||
// return the differential pressure in Pascal for the last
|
||||
// airspeed reading. Used by the calibration code
|
||||
float get_differential_pressure(void) const {
|
||||
return max(_last_pressure - _offset, 0);
|
||||
}
|
||||
|
||||
// update airspeed ratio calibration
|
||||
void update_calibration(Vector3f vground, float EAS2TAS);
|
||||
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
private:
|
||||
@ -78,14 +111,19 @@ private:
|
||||
AP_Int8 _use;
|
||||
AP_Int8 _enable;
|
||||
AP_Int8 _pin;
|
||||
AP_Int8 _autocal;
|
||||
float _raw_airspeed;
|
||||
float _airspeed;
|
||||
int _ets_fd;
|
||||
float _last_pressure;
|
||||
|
||||
Airspeed_Calibration _calibration;
|
||||
float _last_saved_ratio;
|
||||
uint8_t _counter;
|
||||
|
||||
// return raw differential pressure in Pascal
|
||||
float get_pressure(void);
|
||||
};
|
||||
|
||||
|
||||
#endif // __AP_AIRSPEED_H__
|
||||
|
||||
|
130
libraries/AP_Airspeed/Airspeed_Calibration.cpp
Normal file
130
libraries/AP_Airspeed/Airspeed_Calibration.cpp
Normal file
@ -0,0 +1,130 @@
|
||||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
* auto_calibration.cpp - airspeed auto calibration
|
||||
|
||||
* Algorithm by Paul Riseborough
|
||||
*
|
||||
*/
|
||||
|
||||
#include <AP_HAL.h>
|
||||
#include <AP_Math.h>
|
||||
#include <AP_Common.h>
|
||||
#include <AP_Airspeed.h>
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
// constructor - fill in all the initial values
|
||||
Airspeed_Calibration::Airspeed_Calibration() :
|
||||
P(100, 0, 0,
|
||||
0, 100, 0,
|
||||
0, 0, 0.000001f),
|
||||
Q0(0.01f),
|
||||
Q1(0.000001f),
|
||||
state(0, 0, 0),
|
||||
DT(1)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
initialise the ratio
|
||||
*/
|
||||
void Airspeed_Calibration::init(float initial_ratio)
|
||||
{
|
||||
state.z = 1.0 / sqrtf(initial_ratio);
|
||||
}
|
||||
|
||||
/*
|
||||
update the state of the airspeed calibration - needs to be called
|
||||
once a second
|
||||
|
||||
On an AVR2560 this costs 1.9 milliseconds per call
|
||||
*/
|
||||
float Airspeed_Calibration::update(float airspeed, const Vector3f &vg)
|
||||
{
|
||||
// Perform the covariance prediction
|
||||
// Q is a diagonal matrix so only need to add three terms in
|
||||
// C code implementation
|
||||
// P = P + Q;
|
||||
P.a.x += Q0;
|
||||
P.b.y += Q0;
|
||||
P.c.z += Q1;
|
||||
|
||||
// Perform the predicted measurement using the current state estimates
|
||||
// No state prediction required because states are assumed to be time
|
||||
// invariant plus process noise
|
||||
// Ignore vertical wind component
|
||||
float TAS_pred = state.z * sqrtf(sq(vg.x - state.x) + sq(vg.y - state.y) + sq(vg.z));
|
||||
float TAS_mea = airspeed;
|
||||
|
||||
// Calculate the observation Jacobian H_TAS
|
||||
float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x);
|
||||
if (SH1 < 0.000001f) {
|
||||
// avoid division by a small number
|
||||
return state.z;
|
||||
}
|
||||
float SH2 = 1/sqrt(SH1);
|
||||
|
||||
// observation Jacobian
|
||||
Vector3f H_TAS(
|
||||
-(state.z*SH2*(2*vg.x - 2*state.x))/2,
|
||||
-(state.z*SH2*(2*vg.y - 2*state.y))/2,
|
||||
1/SH2);
|
||||
|
||||
// Calculate the fusion innovaton covariance assuming a TAS measurement
|
||||
// noise of 1.0 m/s
|
||||
// S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
|
||||
Vector3f PH = P * H_TAS;
|
||||
float S = H_TAS * PH + 1.0f;
|
||||
|
||||
// Calculate the Kalman gain
|
||||
// [3 x 3] * [3 x 1] / [1 x 1]
|
||||
Vector3f KG = PH / S;
|
||||
|
||||
// Update the states
|
||||
state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1]
|
||||
|
||||
// Update the covariance matrix
|
||||
Vector3f HP2 = H_TAS * P;
|
||||
P -= KG.mul_rowcol(HP2);
|
||||
|
||||
// force symmetry on the covariance matrix - necessary due to rounding
|
||||
// errors
|
||||
// Implementation will also need a further check to prevent diagonal
|
||||
// terms becoming negative due to rounding errors
|
||||
// This step can be made more efficient by excluding diagonal terms
|
||||
// (would reduce processing by 1/3)
|
||||
P = (P + P.transpose()) * 0.5f; // [1 x 1] * ( [3 x 3] + [3 x 3])
|
||||
|
||||
return state.z;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
called once a second to do calibration update
|
||||
*/
|
||||
void AP_Airspeed::update_calibration(Vector3f vground, float EAS2TAS)
|
||||
{
|
||||
if (!_autocal) {
|
||||
// auto-calibration not enabled
|
||||
return;
|
||||
}
|
||||
// calculate true airspeed, assuming a ratio of 1.0
|
||||
float airspeed = sqrtf(get_differential_pressure()) * EAS2TAS;
|
||||
float ratio = _calibration.update(airspeed, vground);
|
||||
if (isnan(ratio) || isinf(ratio)) {
|
||||
return;
|
||||
}
|
||||
// this constrains the resulting ratio to between 1.5 and 3
|
||||
ratio = constrain_float(ratio, 0.577f, 0.816f);
|
||||
_ratio.set(1/sq(ratio));
|
||||
if (_counter > 60) {
|
||||
if (_last_saved_ratio < 1.05f*_ratio ||
|
||||
_last_saved_ratio < 0.95f*_ratio) {
|
||||
_ratio.save();
|
||||
_last_saved_ratio = _ratio;
|
||||
_counter = 0;
|
||||
}
|
||||
} else {
|
||||
_counter++;
|
||||
}
|
||||
}
|
122
libraries/AP_Airspeed/models/ADS_cal_EKF.m
Normal file
122
libraries/AP_Airspeed/models/ADS_cal_EKF.m
Normal file
@ -0,0 +1,122 @@
|
||||
% Implementation of a simple 3-state EKF that can identify the scale
|
||||
% factor that needs to be applied to a true airspeed measurement
|
||||
% Paul Riseborough 27 June 2013
|
||||
|
||||
% Inputs:
|
||||
% Measured true airsped (m/s)
|
||||
|
||||
clear all;
|
||||
|
||||
% Define wind speed used for truth model
|
||||
vwn_truth = 4.0;
|
||||
vwe_truth = 3.0;
|
||||
vwd_truth = -0.5; % convection can produce values of up to 1.5 m/s, however
|
||||
% average will zero over longer periods at lower altitudes
|
||||
% Slope lift will be persistent
|
||||
|
||||
% Define airspeed scale factor used for truth model
|
||||
K_truth = 1.2;
|
||||
|
||||
% Use a 1 second time step
|
||||
DT = 1.0;
|
||||
|
||||
% Define the initial state error covariance matrix
|
||||
% Assume initial wind uncertainty of 10 m/s and scale factor uncertainty of
|
||||
% 0.2
|
||||
P = diag([10^2 10^2 0.001^2]);
|
||||
|
||||
% Define state error growth matrix assuming wind changes at a rate of 0.1
|
||||
% m/s/s and scale factor drifts at a rate of 0.001 per second
|
||||
Q = diag([0.1^2 0.1^2 0.001^2])*DT^2;
|
||||
|
||||
% Define the initial state matrix assuming zero wind and a scale factor of
|
||||
% 1.0
|
||||
x = [0;0;1.0];
|
||||
|
||||
for i = 1:1000
|
||||
|
||||
%% Calculate truth values
|
||||
% calculate ground velocity by simulating a wind relative
|
||||
% circular path of of 60m radius and 16 m/s airspeed
|
||||
time = i*DT;
|
||||
radius = 60;
|
||||
TAS_truth = 16;
|
||||
vwnrel_truth = TAS_truth*cos(TAS_truth*time/radius);
|
||||
vwerel_truth = TAS_truth*sin(TAS_truth*time/radius);
|
||||
vwdrel_truth = 0.0;
|
||||
vgn_truth = vwnrel_truth + vwn_truth;
|
||||
vge_truth = vwerel_truth + vwe_truth;
|
||||
vgd_truth = vwdrel_truth + vwd_truth;
|
||||
|
||||
% calculate measured ground velocity and airspeed, adding some noise and
|
||||
% adding a scale factor to the airspeed measurement.
|
||||
vgn_mea = vgn_truth + 0.1*rand;
|
||||
vge_mea = vge_truth + 0.1*rand;
|
||||
vgd_mea = vgd_truth + 0.1*rand;
|
||||
TAS_mea = K_truth * TAS_truth + 0.5*rand;
|
||||
|
||||
%% Perform filter processing
|
||||
% This benefits from a matrix library that can handle up to 3x3
|
||||
% matrices
|
||||
|
||||
% Perform the covariance prediction
|
||||
% Q is a diagonal matrix so only need to add three terms in
|
||||
% C code implementation
|
||||
P = P + Q;
|
||||
|
||||
% Perform the predicted measurement using the current state estimates
|
||||
% No state prediction required because states are assumed to be time
|
||||
% invariant plus process noise
|
||||
% Ignore vertical wind component
|
||||
TAS_pred = x(3) * sqrt((vgn_mea - x(1))^2 + (vge_mea - x(2))^2 + vgd_mea^2);
|
||||
|
||||
% Calculate the observation Jacobian H_TAS
|
||||
SH1 = (vge_mea - x(2))^2 + (vgn_mea - x(1))^2;
|
||||
SH2 = 1/sqrt(SH1);
|
||||
H_TAS = zeros(1,3);
|
||||
H_TAS(1,1) = -(x(3)*SH2*(2*vgn_mea - 2*x(1)))/2;
|
||||
H_TAS(1,2) = -(x(3)*SH2*(2*vge_mea - 2*x(2)))/2;
|
||||
H_TAS(1,3) = 1/SH2;
|
||||
|
||||
% Calculate the fusion innovaton covariance assuming a TAS measurement
|
||||
% noise of 1.0 m/s
|
||||
S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
|
||||
|
||||
% Calculate the Kalman gain
|
||||
KG = P*H_TAS'/S; % [3 x 3] * [3 x 1] / [1 x 1]
|
||||
|
||||
% Update the states
|
||||
x = x + KG*(TAS_mea - TAS_pred); % [3 x 1] + [3 x 1] * [1 x 1]
|
||||
|
||||
% Update the covariance matrix
|
||||
P = P - KG*H_TAS*P; % [3 x 3] *
|
||||
|
||||
% force symmetry on the covariance matrix - necessary due to rounding
|
||||
% errors
|
||||
% Implementation will also need a further check to prevent diagonal
|
||||
% terms becoming negative due to rounding errors
|
||||
% This step can be made more efficient by excluding diagonal terms
|
||||
% (would reduce processing by 1/3)
|
||||
P = 0.5*(P + P'); % [1 x 1] * ( [3 x 3] + [3 x 3])
|
||||
|
||||
%% Store results
|
||||
output(i,:) = [time,x(1),x(2),x(3),vwn_truth,vwe_truth,K_truth];
|
||||
|
||||
end
|
||||
|
||||
%% Plot output
|
||||
figure;
|
||||
subplot(3,1,1);plot(output(:,1),[output(:,2),output(:,5)]);
|
||||
ylabel('Wind Vel North (m/s)');
|
||||
xlabel('time (sec)');
|
||||
grid on;
|
||||
subplot(3,1,2);plot(output(:,1),[output(:,3),output(:,6)]);
|
||||
ylabel('Wind Vel East (m/s)');
|
||||
xlabel('time (sec)');
|
||||
grid on;
|
||||
subplot(3,1,3);plot(output(:,1),[output(:,4),output(:,7)]);
|
||||
ylim([0 1.5]);
|
||||
ylabel('Airspeed scale factor correction');
|
||||
xlabel('time (sec)');
|
||||
grid on;
|
||||
|
Loading…
Reference in New Issue
Block a user