2011-09-08 22:29:39 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-06-15 21:11:26 -03:00
#define THISFIRMWARE "ArduPlane V2.40"
2011-09-08 22:29:39 -03:00
/*
2011-12-26 13:13:37 -04:00
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler
2012-06-10 17:10:07 -03:00
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
2011-09-08 22:29:39 -03:00
Please contribute your ideas!
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
// AVR runtime
#include <avr/io.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <math.h>
// Libraries
#include <FastSerial.h>
#include <AP_Common.h>
2011-11-13 00:09:18 -04:00
#include <Arduino_Mega_ISR_Registry.h>
2011-09-08 22:29:39 -03:00
#include <APM_RC.h> // ArduPilot Mega RC Library
#include <AP_GPS.h> // ArduPilot GPS library
2011-12-28 05:32:55 -04:00
#include <I2C.h> // Wayne Truchsess I2C lib
2011-09-09 11:18:38 -03:00
#include <SPI.h> // Arduino SPI lib
2011-09-08 22:29:39 -03:00
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
2011-11-13 00:09:18 -04:00
#include <AP_AnalogSource.h>// ArduPilot Mega polymorphic analog getter
2011-12-16 15:48:39 -04:00
#include <AP_PeriodicProcess.h> // ArduPilot Mega TimerProcess
2011-11-27 01:51:47 -04:00
#include <AP_Baro.h> // ArduPilot barometer library
2011-09-08 22:29:39 -03:00
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
2012-06-13 15:44:35 -03:00
#include <AP_InertialSensor.h> // Inertial Sensor (uncalibrated IMU) Library
2011-09-08 22:29:39 -03:00
#include <AP_IMU.h> // ArduPilot Mega IMU Library
2012-03-11 05:13:31 -03:00
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
2011-09-08 22:29:39 -03:00
#include <PID.h> // PID library
#include <RC_Channel.h> // RC Channel Library
2011-09-09 11:18:38 -03:00
#include <AP_RangeFinder.h> // Range finder library
2012-02-26 04:05:56 -04:00
#include <Filter.h> // Filter library
#include <ModeFilter.h> // Mode Filter from Filter library
2011-10-01 19:55:41 -03:00
#include <AP_Relay.h> // APM relay
2012-06-13 16:00:20 -03:00
#include <AP_Camera.h> // Photo or video camera
2011-09-09 11:18:38 -03:00
#include <memcheck.h>
2011-09-08 22:29:39 -03:00
// Configuration
#include "config.h"
2012-04-24 09:18:30 -03:00
#include <GCS_MAVLink.h> // MAVLink GCS definitions
2012-06-04 00:13:01 -03:00
2012-06-04 06:30:33 -03:00
#include <AP_Mount.h> // Camera/Antenna mount
2012-04-24 09:18:30 -03:00
2011-09-08 22:29:39 -03:00
// Local modules
#include "defines.h"
#include "Parameters.h"
#include "GCS.h"
2012-03-11 07:46:41 -03:00
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// Serial ports
////////////////////////////////////////////////////////////////////////////////
//
// Note that FastSerial port buffers are allocated at ::begin time,
// so there is not much of a penalty to defining ports that we don't
// use.
//
FastSerialPort0(Serial); // FTDI/console
FastSerialPort1(Serial1); // GPS port
2012-05-03 21:39:44 -03:00
#if TELEMETRY_UART2 == ENABLED
// solder bridge set to enable UART2 instead of USB MUX
FastSerialPort2(Serial3);
#else
FastSerialPort3(Serial3); // Telemetry port for APM1
#endif
2011-09-08 22:29:39 -03:00
2011-11-13 00:09:18 -04:00
////////////////////////////////////////////////////////////////////////////////
// ISR Registry
////////////////////////////////////////////////////////////////////////////////
Arduino_Mega_ISR_Registry isr_registry;
////////////////////////////////////////////////////////////////////////////////
// APM_RC_Class Instance
////////////////////////////////////////////////////////////////////////////////
2011-11-25 19:11:36 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
APM_RC_APM2 APM_RC;
2011-11-13 00:09:18 -04:00
#else
APM_RC_APM1 APM_RC;
#endif
////////////////////////////////////////////////////////////////////////////////
// Dataflash
////////////////////////////////////////////////////////////////////////////////
2011-11-25 19:11:36 -04:00
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
DataFlash_APM2 DataFlash;
2011-11-13 00:09:18 -04:00
#else
DataFlash_APM1 DataFlash;
#endif
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// Parameters
////////////////////////////////////////////////////////////////////////////////
//
// Global parameters are all contained within the 'g' class.
//
2011-09-09 11:18:38 -03:00
static Parameters g;
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// prototypes
2011-09-09 11:18:38 -03:00
static void update_events(void);
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// Sensors
////////////////////////////////////////////////////////////////////////////////
//
// There are three basic options related to flight sensor selection.
//
// - Normal flight mode. Real sensors are used.
// - HIL Attitude mode. Most sensors are disabled, as the HIL
// protocol supplies attitude information directly.
// - HIL Sensors mode. Synthetic sensors are configured that
// supply data from the simulation.
//
// All GPS access should be through this pointer.
2011-09-09 11:18:38 -03:00
static GPS *g_gps;
// flight modes convenience array
static AP_Int8 *flight_modes = &g.flight_mode1;
2011-09-08 22:29:39 -03:00
#if HIL_MODE == HIL_MODE_DISABLED
// real sensors
2011-12-16 16:19:03 -04:00
#if CONFIG_ADC == ENABLED
2011-09-09 11:18:38 -03:00
static AP_ADC_ADS7844 adc;
2011-12-16 16:19:03 -04:00
#endif
2011-11-16 21:49:56 -04:00
#ifdef DESKTOP_BUILD
2011-11-27 01:51:47 -04:00
AP_Baro_BMP085_HIL barometer;
2011-11-16 21:49:56 -04:00
AP_Compass_HIL compass;
#else
2011-12-09 02:48:22 -04:00
#if CONFIG_BARO == AP_BARO_BMP085
2011-12-13 02:05:48 -04:00
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
2011-12-09 02:48:22 -04:00
static AP_Baro_BMP085 barometer(true);
# else
static AP_Baro_BMP085 barometer(false);
# endif
#elif CONFIG_BARO == AP_BARO_MS5611
static AP_Baro_MS5611 barometer;
#endif
2012-02-12 04:20:56 -04:00
static AP_Compass_HMC5843 compass;
2011-11-16 21:49:56 -04:00
#endif
2011-09-08 22:29:39 -03:00
// real GPS selection
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
AP_GPS_NMEA g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
AP_GPS_SIRF g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
AP_GPS_UBLOX g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
AP_GPS_MTK g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
AP_GPS_MTK16 g_gps_driver(&Serial1);
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
AP_GPS_None g_gps_driver(NULL);
#else
#error Unrecognised GPS_PROTOCOL setting.
#endif // GPS PROTOCOL
2011-11-13 02:15:45 -04:00
# if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
# else
AP_InertialSensor_Oilpan ins( &adc );
#endif // CONFIG_IMU_TYPE
2012-02-12 04:20:56 -04:00
AP_IMU_INS imu( &ins );
2012-03-03 03:33:40 -04:00
#if QUATERNION_ENABLE == ENABLED
2012-03-11 05:13:31 -03:00
AP_AHRS_Quaternion ahrs(&imu, g_gps);
2012-03-03 03:33:40 -04:00
#else
2012-03-11 05:13:31 -03:00
AP_AHRS_DCM ahrs(&imu, g_gps);
2012-03-03 03:33:40 -04:00
#endif
2011-11-13 02:15:45 -04:00
2011-09-08 22:29:39 -03:00
#elif HIL_MODE == HIL_MODE_SENSORS
// sensor emulators
AP_ADC_HIL adc;
2011-11-27 01:51:47 -04:00
AP_Baro_BMP085_HIL barometer;
2011-09-08 22:29:39 -03:00
AP_Compass_HIL compass;
AP_GPS_HIL g_gps_driver(NULL);
2011-11-13 02:15:45 -04:00
AP_InertialSensor_Oilpan ins( &adc );
AP_IMU_Shim imu;
2012-03-11 05:13:31 -03:00
AP_AHRS_DCM ahrs(&imu, g_gps);
2011-09-08 22:29:39 -03:00
#elif HIL_MODE == HIL_MODE_ATTITUDE
2011-09-09 11:18:38 -03:00
AP_ADC_HIL adc;
2012-03-11 05:13:31 -03:00
AP_IMU_Shim imu; // never used
AP_AHRS_HIL ahrs(&imu, g_gps);
2011-09-08 22:29:39 -03:00
AP_GPS_HIL g_gps_driver(NULL);
AP_Compass_HIL compass; // never used
2012-01-20 04:04:49 -04:00
AP_Baro_BMP085_HIL barometer;
2011-09-08 22:29:39 -03:00
#else
#error Unrecognised HIL_MODE setting.
#endif // HIL MODE
2011-12-21 08:23:17 -04:00
// we always have a timer scheduler
AP_TimerProcess timer_scheduler;
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// GCS selection
////////////////////////////////////////////////////////////////////////////////
//
2012-02-12 04:20:56 -04:00
GCS_MAVLINK gcs0;
GCS_MAVLINK gcs3;
2011-09-08 22:29:39 -03:00
2011-09-09 11:18:38 -03:00
////////////////////////////////////////////////////////////////////////////////
2011-11-13 00:09:18 -04:00
// PITOT selection
2011-09-09 11:18:38 -03:00
////////////////////////////////////////////////////////////////////////////////
//
2012-02-28 08:03:04 -04:00
ModeFilterInt16_Size5 sonar_mode_filter(2);
2011-09-09 11:18:38 -03:00
2011-11-13 00:09:18 -04:00
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
AP_AnalogSource_ADC pitot_analog_source( &adc,
2011-12-16 16:19:03 -04:00
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
2011-11-13 00:09:18 -04:00
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
2011-12-16 16:19:03 -04:00
AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0);
2011-11-13 00:09:18 -04:00
#endif
2011-09-09 11:18:38 -03:00
#if SONAR_TYPE == MAX_SONAR_XL
2011-11-13 00:09:18 -04:00
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
2011-09-09 11:18:38 -03:00
#elif SONAR_TYPE == MAX_SONAR_LV
// XXX honestly I think these output the same values
// If someone knows, can they confirm it?
2011-11-13 00:09:18 -04:00
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
2011-09-09 11:18:38 -03:00
#endif
2011-09-08 22:29:39 -03:00
2012-01-16 13:28:03 -04:00
AP_Relay relay;
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////
2012-01-11 15:37:43 -04:00
// APM2 only
2011-11-20 05:31:45 -04:00
#if USB_MUX_PIN > 0
static bool usb_connected;
#endif
2011-09-09 11:18:38 -03:00
static const char *comma = ",";
2011-09-08 22:29:39 -03:00
2011-09-09 11:18:38 -03:00
static const char* flight_mode_strings[] = {
2011-09-08 22:29:39 -03:00
"Manual",
"Circle",
"Stabilize",
"",
"",
"FBW_A",
"FBW_B",
"",
"",
"",
"Auto",
"RTL",
"Loiter",
"Takeoff",
"Land"};
/* Radio values
Channel assignments
1 Ailerons (rudder if no ailerons)
2 Elevator
3 Throttle
4 Rudder (if we have ailerons)
2011-09-27 17:12:45 -03:00
5 Aux5
6 Aux6
7 Aux7
8 Aux8/Mode
Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
See libraries/RC_Channel/RC_Channel_aux.h for more information
2011-09-08 22:29:39 -03:00
*/
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Radio
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, FBW-A, AUTO
byte control_mode = INITIALISING;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
byte oldSwitchPosition;
// This is used to enable the inverted flight feature
bool inverted_flight = false;
// These are trim values used for elevon control
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
2012-06-10 17:10:07 -03:00
static uint16_t elevon1_trim = 1500;
2011-09-09 11:18:38 -03:00
static uint16_t elevon2_trim = 1500;
2012-01-11 15:37:43 -04:00
// These are used in the calculation of elevon1_trim and elevon2_trim
2012-06-10 17:10:07 -03:00
static uint16_t ch1_temp = 1500;
2011-09-09 11:18:38 -03:00
static uint16_t ch2_temp = 1500;
2012-01-11 15:37:43 -04:00
// These are values received from the GCS if the user is using GCS joystick
// control and are substituted for the values coming from the RC radio
2011-09-09 11:18:38 -03:00
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
2012-01-11 15:37:43 -04:00
// A flag if GCS joystick control is in use
2011-09-09 11:18:38 -03:00
static bool rc_override_active = false;
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
// Failsafe
////////////////////////////////////////////////////////////////////////////////
// A tracking variable for type of failsafe active
// Used for failsafe based on loss of RC signal or GCS signal
2012-06-10 17:10:07 -03:00
static int failsafe;
2012-01-11 15:37:43 -04:00
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold
// RC receiver should be set up to output a low throttle value when signal is lost
static bool ch3_failsafe;
2012-06-10 17:10:07 -03:00
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude
2012-01-11 15:37:43 -04:00
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period
static byte crash_timer;
// A timer used to track how long since we have received the last GCS heartbeat or rc override message
2011-09-09 11:18:38 -03:00
static uint32_t rc_override_fs_timer = 0;
2012-01-11 15:37:43 -04:00
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal
2011-09-09 11:18:38 -03:00
static uint32_t ch3_failsafe_timer = 0;
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// LED output
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
// state of the GPS light (on/off)
2012-06-10 17:10:07 -03:00
static bool GPS_light;
2011-09-08 22:29:39 -03:00
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// GPS variables
2012-01-11 15:37:43 -04:00
////////////////////////////////////////////////////////////////////////////////
// This is used to scale GPS values for EEPROM storage
// 10^7 times Decimal GPS means 1 == 1cm
// This approximation makes calculations integer and it's easy to read
2012-06-10 17:10:07 -03:00
static const float t7 = 10000000.0;
2012-01-11 15:37:43 -04:00
// We use atan2 and other trig techniques to calaculate angles
// We need to scale the longitude up to make these calcs work
// to account for decreasing distance between lines of longitude away from the equator
2012-06-10 17:10:07 -03:00
static float scaleLongUp = 1;
2012-01-11 15:37:43 -04:00
// Sometimes we need to remove the scaling for distance calcs
2012-06-10 17:10:07 -03:00
static float scaleLongDown = 1;
2012-01-11 15:37:43 -04:00
// A counter used to count down valid gps fixes to allow the gps estimate to settle
// before recording our home position (and executing a ground start if we booted with an air start)
static byte ground_start_count = 5;
2012-06-10 17:10:07 -03:00
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
2012-01-11 15:37:43 -04:00
// on the ground or in the air. Used to decide if a ground start is appropriate if we
// booted with an air start.
static int ground_start_avg;
// Tracks if GPS is enabled based on statup routine
2012-06-10 17:10:07 -03:00
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected
static bool GPS_enabled = false;
2011-09-08 22:29:39 -03:00
2012-01-15 19:11:02 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Location & Navigation
2012-01-15 19:11:02 -04:00
////////////////////////////////////////////////////////////////////////////////
// Constants
2011-09-08 22:29:39 -03:00
const float radius_of_earth = 6378100; // meters
const float gravity = 9.81; // meters/ sec^2
2012-06-10 17:10:07 -03:00
// This is the currently calculated direction to fly.
2012-01-15 19:11:02 -04:00
// deg * 100 : 0 to 360
static long nav_bearing;
2012-06-10 17:10:07 -03:00
// This is the direction to the next waypoint or loiter center
2012-01-15 19:11:02 -04:00
// deg * 100 : 0 to 360
2012-06-10 17:10:07 -03:00
static long target_bearing;
//This is the direction from the last waypoint to the next waypoint
2012-01-15 19:11:02 -04:00
// deg * 100 : 0 to 360
static long crosstrack_bearing;
// A gain scaler to account for ground speed/headwind/tailwind
2012-06-10 17:10:07 -03:00
static float nav_gain_scaler = 1;
2012-01-15 19:11:02 -04:00
// Direction held during phases of takeoff and landing
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use
2011-09-09 11:18:38 -03:00
static long hold_course = -1; // deg * 100 dir of plane
2012-06-10 17:10:07 -03:00
// There may be two active commands in Auto mode.
2012-01-16 12:45:42 -04:00
// This indicates the active navigation command by index number
2012-06-10 17:10:07 -03:00
static byte nav_command_index;
2012-01-16 12:45:42 -04:00
// This indicates the active non-navigation command by index number
2012-06-10 17:10:07 -03:00
static byte non_nav_command_index;
2012-01-16 12:45:42 -04:00
// This is the command type (eg navigate to waypoint) of the active navigation command
2012-06-10 17:10:07 -03:00
static byte nav_command_ID = NO_COMMAND;
static byte non_nav_command_ID = NO_COMMAND;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Airspeed
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// The current airspeed estimate/measurement in centimeters per second
static int airspeed;
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
2012-06-10 17:10:07 -03:00
// Also used for flap deployment criteria. Centimeters per second.static long target_airspeed;
2012-01-16 12:45:42 -04:00
static long target_airspeed;
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
2012-06-10 17:10:07 -03:00
static float airspeed_error;
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)).
2012-01-16 12:45:42 -04:00
// Used by the throttle controller
static long energy_error;
// kinetic portion of energy error (m^2/s^2)
static long airspeed_energy_error;
2012-06-10 17:10:07 -03:00
// An amount that the airspeed should be increased in auto modes based on the user positioning the
2012-01-16 12:45:42 -04:00
// throttle stick in the top half of the range. Centimeters per second.
static int airspeed_nudge;
// Similar to airspeed_nudge, but used when no airspeed sensor.
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
2012-06-10 17:10:07 -03:00
static int throttle_nudge = 0;
2011-12-09 19:40:56 -04:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-12-09 19:40:56 -04:00
// Ground speed
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// The amount current ground speed is below min ground speed. Centimeters per second
static long groundspeed_undershoot = 0;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Location Errors
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Difference between current bearing and desired bearing. Hundredths of a degree
static long bearing_error;
// Difference between current altitude and desired altitude. Centimeters
static long altitude_error;
2012-06-10 17:10:07 -03:00
// Distance perpandicular to the course line that we are off trackline. Meters
2012-01-16 12:45:42 -04:00
static float crosstrack_error;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Battery Sensors
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup.
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
// Battery pack 1 instantaneous currrent draw. Amperes
static float current_amps1;
// Totalized current (Amp-hours) from battery 1
2012-06-10 17:10:07 -03:00
static float current_total1;
2012-01-15 19:10:28 -04:00
// To Do - Add support for second battery pack
//static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter
//static float current_amps2; // Current (Amperes) draw from battery 2
//static float current_total2; // Totalized current (Amp-hours) from battery 2
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Airspeed Sensors
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Raw differential pressure measurement (filtered). ADC units
2012-06-10 17:10:07 -03:00
static float airspeed_raw;
2012-01-16 12:45:42 -04:00
// Raw differential pressure less the zero pressure offset. ADC units
static float airspeed_pressure;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Altitude Sensor variables
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Raw absolute pressure measurement (filtered). ADC units
static unsigned long abs_pressure;
// Altitude from the sonar sensor. Meters. Not yet implemented.
2011-09-09 11:18:38 -03:00
static int sonar_alt;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// flight mode specific
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Flag for using gps ground course instead of IMU yaw. Set false when takeoff command in process.
2012-06-10 17:10:07 -03:00
static bool takeoff_complete = true;
2012-01-16 12:45:42 -04:00
// Flag to indicate if we have landed.
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
2011-09-09 11:18:38 -03:00
static bool land_complete;
2012-01-16 12:45:42 -04:00
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters
2011-09-09 11:18:38 -03:00
static long takeoff_altitude;
2012-01-16 12:45:42 -04:00
// Pitch to hold during landing command in the no airspeed sensor case. Hundredths of a degree
static int landing_pitch;
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
2011-09-09 11:18:38 -03:00
static int takeoff_pitch;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Loiter management
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree
static long old_target_bearing;
// Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees
2012-06-10 17:10:07 -03:00
static int loiter_total;
2012-01-16 12:45:42 -04:00
// The amount in degrees we have turned since recording old_target_bearing
static int loiter_delta;
// Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees
static int loiter_sum;
// The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds.
static long loiter_time;
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
static int loiter_time_max;
2011-09-08 22:29:39 -03:00
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Navigation control variables
////////////////////////////////////////////////////////////////////////////////
// The instantaneous desired bank angle. Hundredths of a degree
static long nav_roll;
// The instantaneous desired pitch angle. Hundredths of a degree
static long nav_pitch;
////////////////////////////////////////////////////////////////////////////////
// Waypoint distances
////////////////////////////////////////////////////////////////////////////////
// Distance between plane and next waypoint. Meters
2012-06-13 16:00:20 -03:00
// is not static because AP_Camera uses it
long wp_distance;
2012-01-16 12:45:42 -04:00
// Distance between previous and next waypoint. Meters
static long wp_totalDistance;
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// repeating event control
2012-01-16 12:45:42 -04:00
////////////////////////////////////////////////////////////////////////////////
// Flag indicating current event type
static byte event_id;
// when the event was started in ms
static long event_timer;
// how long to delay the next firing of event in millis
2012-06-10 17:10:07 -03:00
static uint16_t event_delay;
2012-01-16 12:45:42 -04:00
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
static int event_repeat = 0;
// per command value, such as PWM for servos
2012-06-10 17:10:07 -03:00
static int event_value;
2012-01-16 12:45:42 -04:00
// the value used to cycle events (alternate value to event_value)
static int event_undo_value;
////////////////////////////////////////////////////////////////////////////////
// Conditional command
////////////////////////////////////////////////////////////////////////////////
// A value used in condition commands (eg delay, change alt, etc.)
// For example in a change altitude command, it is the altitude to change to.
static long condition_value;
// A starting value used to check the status of a conditional command.
// For example in a delay command the condition_start records that start time for the delay
2011-09-09 11:18:38 -03:00
static long condition_start;
2012-01-16 12:45:42 -04:00
// A value used in condition commands. For example the rate at which to change altitude.
static int condition_rate;
2011-09-08 22:29:39 -03:00
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// 3D Location vectors
2012-01-16 13:28:03 -04:00
// Location structure defined in AP_Common
////////////////////////////////////////////////////////////////////////////////
// The home location used for RTL. The location is set when we first get stable GPS lock
static struct Location home;
// Flag for if we have g_gps lock and have set the home location
static bool home_is_set;
// The location of the previous waypoint. Used for track following and altitude ramp calculations
static struct Location prev_WP;
// The plane's current location
static struct Location current_loc;
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
static struct Location next_WP;
// The location of the active waypoint in Guided mode.
static struct Location guided_WP;
// The location structure information from the Nav command being processed
2012-06-10 17:10:07 -03:00
static struct Location next_nav_command;
2012-01-16 13:28:03 -04:00
// The location structure information from the Non-Nav command being processed
static struct Location next_nonnav_command;
////////////////////////////////////////////////////////////////////////////////
// Altitude / Climb rate control
////////////////////////////////////////////////////////////////////////////////
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters
static long target_altitude;
// Altitude difference between previous and current waypoint. Centimeters
static long offset_altitude;
2011-09-08 22:29:39 -03:00
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// IMU variables
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
// The main loop execution time. Seconds
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
2012-06-10 17:10:07 -03:00
static float G_Dt = 0.02;
2011-09-08 22:29:39 -03:00
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// Performance monitoring
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
// Timer used to accrue data and trigger recording of the performanc monitoring log message
static long perf_mon_timer;
// The maximum main loop execution time recorded in the current performance monitoring interval
static int G_Dt_max = 0;
// The number of gps fixes recorded in the current performance monitoring interval
2011-09-09 11:18:38 -03:00
static int gps_fix_count = 0;
2012-01-16 13:28:03 -04:00
// A variable used by developers to track performanc metrics.
// Currently used to record the number of GCS heartbeat messages received
2011-09-09 11:18:38 -03:00
static int pmTest1 = 0;
2011-09-08 22:45:13 -03:00
2011-09-08 22:29:39 -03:00
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
2011-09-08 22:29:39 -03:00
// System Timers
2012-01-16 13:28:03 -04:00
////////////////////////////////////////////////////////////////////////////////
// Time in miliseconds of start of main control loop. Milliseconds
static unsigned long fast_loopTimer;
// Time Stamp when fast loop was complete. Milliseconds
static unsigned long fast_loopTimeStamp;
// Number of milliseconds used in last main loop cycle
static uint8_t delta_ms_fast_loop;
// Counter of main loop executions. Used for performance monitoring and failsafe processing
2011-12-21 08:23:55 -04:00
static uint16_t mainLoop_count;
2011-09-09 11:18:38 -03:00
2012-01-16 13:28:03 -04:00
// Time in miliseconds of start of medium control loop. Milliseconds
static unsigned long medium_loopTimer;
// Counters for branching from main control loop to slower loops
2012-06-10 17:10:07 -03:00
static byte medium_loopCounter;
2012-01-16 13:28:03 -04:00
// Number of milliseconds used in last medium loop cycle
2011-09-09 11:18:38 -03:00
static uint8_t delta_ms_medium_loop;
2011-09-08 22:45:13 -03:00
2012-01-16 13:28:03 -04:00
// Counters for branching from medium control loop to slower loops
2011-09-09 11:18:38 -03:00
static byte slow_loopCounter;
2012-01-16 13:28:03 -04:00
// Counter to trigger execution of very low rate processes
2011-09-09 11:18:38 -03:00
static byte superslow_loopCounter;
2012-01-16 13:28:03 -04:00
// Counter to trigger execution of 1 Hz processes
static byte counter_one_herz;
2011-09-08 22:45:13 -03:00
2012-01-16 13:28:03 -04:00
// used to track the elapsed time for navigation PID integral terms
2012-06-10 17:10:07 -03:00
static unsigned long nav_loopTimer;
2012-01-16 13:28:03 -04:00
// Elapsed time since last call to navigation pid functions
static unsigned long dTnav;
// % MCU cycles used
static float load;
2011-09-08 22:45:13 -03:00
2011-10-31 18:55:58 -03:00
2012-06-13 15:55:19 -03:00
// Camera/Antenna mount tracking and stabilisation stuff
// --------------------------------------
#if MOUNT == ENABLED
// current_loc uses the baro/gps soloution for altitude rather than gps only.
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs);
#endif
2012-06-13 16:00:20 -03:00
#if CAMERA == ENABLED
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82)
#endif
2011-10-31 18:55:58 -03:00
2011-09-08 22:29:39 -03:00
////////////////////////////////////////////////////////////////////////////////
// Top-level logic
////////////////////////////////////////////////////////////////////////////////
void setup() {
2011-09-09 11:18:38 -03:00
memcheck_init();
2011-09-08 22:29:39 -03:00
init_ardupilot();
}
void loop()
{
// We want this to execute at 50Hz if possible
// -------------------------------------------
if (millis()-fast_loopTimer > 19) {
delta_ms_fast_loop = millis() - fast_loopTimer;
load = (float)(fast_loopTimeStamp - fast_loopTimer)/delta_ms_fast_loop;
G_Dt = (float)delta_ms_fast_loop / 1000.f;
fast_loopTimer = millis();
mainLoop_count++;
// Execute the fast loop
// ---------------------
fast_loop();
// Execute the medium loop
// -----------------------
medium_loop();
counter_one_herz++;
if(counter_one_herz == 50){
one_second_loop();
counter_one_herz = 0;
}
if (millis() - perf_mon_timer > 20000) {
if (mainLoop_count != 0) {
if (g.log_bitmask & MASK_LOG_PM)
2011-11-16 11:29:40 -04:00
#if HIL_MODE != HIL_MODE_ATTITUDE
2011-09-08 22:29:39 -03:00
Log_Write_Performance();
2011-11-16 11:29:40 -04:00
#endif
2011-09-08 22:29:39 -03:00
resetPerfData();
}
}
fast_loopTimeStamp = millis();
}
}
// Main loop 50Hz
2011-09-09 11:18:38 -03:00
static void fast_loop()
2011-09-08 22:29:39 -03:00
{
// This is the fast loop - we want it to execute at 50Hz if possible
// -----------------------------------------------------------------
if (delta_ms_fast_loop > G_Dt_max)
G_Dt_max = delta_ms_fast_loop;
// Read radio
// ----------
read_radio();
2011-09-09 11:18:38 -03:00
// try to send any deferred messages if the serial port now has
2011-12-09 19:40:56 -04:00
// some space available
2011-09-18 00:46:42 -03:00
gcs_send_message(MSG_RETRY_DEFERRED);
2011-09-09 11:18:38 -03:00
2011-09-08 22:29:39 -03:00
// check for loss of control signal failsafe condition
// ------------------------------------
check_short_failsafe();
2011-12-09 19:40:56 -04:00
// Read Airspeed
// -------------
2011-10-07 19:12:02 -03:00
if (g.airspeed_enabled == true) {
#if HIL_MODE != HIL_MODE_ATTITUDE
2011-09-08 22:29:39 -03:00
read_airspeed();
2011-12-09 19:40:56 -04:00
#else
2011-09-08 22:29:39 -03:00
calc_airspeed_errors();
2011-12-09 19:40:56 -04:00
#endif
2011-09-08 22:29:39 -03:00
}
#if HIL_MODE == HIL_MODE_SENSORS
2012-03-11 05:13:31 -03:00
// update hil before AHRS update
2011-10-13 11:22:03 -03:00
gcs_update();
2011-09-08 22:29:39 -03:00
#endif
2012-03-11 05:13:31 -03:00
ahrs.update();
2011-09-08 22:29:39 -03:00
// uses the yaw from the DCM to give more accurate turns
calc_bearing_error();
# if HIL_MODE == HIL_MODE_DISABLED
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
2012-03-11 05:13:31 -03:00
Log_Write_Attitude((int)ahrs.roll_sensor, (int)ahrs.pitch_sensor, (uint16_t)ahrs.yaw_sensor);
2011-09-08 22:29:39 -03:00
if (g.log_bitmask & MASK_LOG_RAW)
Log_Write_Raw();
#endif
// inertial navigation
// ------------------
#if INERTIAL_NAVIGATION == ENABLED
// TODO: implement inertial nav function
inertialNavigation();
#endif
// custom code/exceptions for flight modes
// ---------------------------------------
update_current_flight_mode();
// apply desired roll, pitch and yaw to the plane
// ----------------------------------------------
if (control_mode > MANUAL)
stabilize();
// write out the servo PWM values
// ------------------------------
2011-09-09 11:18:38 -03:00
set_servos();
2011-09-08 22:29:39 -03:00
2011-09-18 01:00:49 -03:00
gcs_update();
2012-04-01 20:24:05 -03:00
gcs_data_stream_send();
2011-09-08 22:29:39 -03:00
}
2011-09-09 11:18:38 -03:00
static void medium_loop()
2011-09-08 22:29:39 -03:00
{
2011-10-31 18:55:58 -03:00
#if MOUNT == ENABLED
camera_mount.update_mount_position();
#endif
2012-06-13 16:00:20 -03:00
#if CAMERA == ENABLED
g.camera.trigger_pic_cleanup();
#endif
2011-09-08 22:29:39 -03:00
// This is the start of the medium (10 Hz) loop pieces
// -----------------------------------------
switch(medium_loopCounter) {
// This case deals with the GPS
//-------------------------------
case 0:
medium_loopCounter++;
2011-12-09 19:40:56 -04:00
if(GPS_enabled){
update_GPS();
calc_gndspeed_undershoot();
}
2011-09-08 22:29:39 -03:00
#if HIL_MODE != HIL_MODE_ATTITUDE
2011-12-28 05:33:47 -04:00
if (g.compass_enabled && compass.read()) {
2012-03-11 05:13:31 -03:00
ahrs.set_compass(&compass);
2012-03-03 03:33:40 -04:00
// Calculate heading
2012-03-11 05:13:31 -03:00
Matrix3f m = ahrs.get_dcm_matrix();
2012-03-07 00:13:13 -04:00
compass.calculate(m);
2012-03-27 01:16:41 -03:00
compass.null_offsets();
2012-02-24 23:26:54 -04:00
} else {
2012-03-11 05:13:31 -03:00
ahrs.set_compass(NULL);
2011-12-28 05:33:47 -04:00
}
2011-09-08 22:29:39 -03:00
#endif
/*{
2012-03-11 05:13:31 -03:00
Serial.print(ahrs.roll_sensor, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(ahrs.pitch_sensor, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(ahrs.yaw_sensor, DEC); Serial.printf_P(PSTR("\t"));
2011-09-08 22:29:39 -03:00
Vector3f tempaccel = imu.get_accel();
Serial.print(tempaccel.x, DEC); Serial.printf_P(PSTR("\t"));
Serial.print(tempaccel.y, DEC); Serial.printf_P(PSTR("\t"));
Serial.println(tempaccel.z, DEC);
}*/
break;
// This case performs some navigation computations
//------------------------------------------------
case 1:
medium_loopCounter++;
if(g_gps->new_data){
g_gps->new_data = false;
dTnav = millis() - nav_loopTimer;
nav_loopTimer = millis();
// calculate the plane's desired bearing
// -------------------------------------
navigate();
}
break;
// command processing
//------------------------------
case 2:
medium_loopCounter++;
// Read altitude from sensors
// ------------------
update_alt();
2011-09-09 11:18:38 -03:00
if(g.sonar_enabled) sonar_alt = sonar.read();
2011-09-08 22:29:39 -03:00
// altitude smoothing
// ------------------
if (control_mode != FLY_BY_WIRE_B)
calc_altitude_error();
// perform next command
// --------------------
update_commands();
break;
// This case deals with sending high rate telemetry
//-------------------------------------------------
case 3:
medium_loopCounter++;
#if HIL_MODE != HIL_MODE_ATTITUDE
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
2012-03-11 05:13:31 -03:00
Log_Write_Attitude((int)ahrs.roll_sensor, (int)ahrs.pitch_sensor, (uint16_t)ahrs.yaw_sensor);
2011-09-08 22:29:39 -03:00
if (g.log_bitmask & MASK_LOG_CTUN)
Log_Write_Control_Tuning();
#endif
if (g.log_bitmask & MASK_LOG_NTUN)
Log_Write_Nav_Tuning();
if (g.log_bitmask & MASK_LOG_GPS)
Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats);
break;
// This case controls the slow loop
//---------------------------------
case 4:
medium_loopCounter = 0;
delta_ms_medium_loop = millis() - medium_loopTimer;
medium_loopTimer = millis();
if (g.battery_monitoring != 0){
read_battery();
}
slow_loop();
break;
}
}
2011-09-09 11:18:38 -03:00
static void slow_loop()
2011-09-08 22:29:39 -03:00
{
// This is the slow (3 1/3 Hz) loop pieces
//----------------------------------------
switch (slow_loopCounter){
case 0:
slow_loopCounter++;
check_long_failsafe();
superslow_loopCounter++;
if(superslow_loopCounter >=200) { // 200 = Execute every minute
#if HIL_MODE != HIL_MODE_ATTITUDE
if(g.compass_enabled) {
compass.save_offsets();
}
#endif
superslow_loopCounter = 0;
}
break;
case 1:
slow_loopCounter++;
// Read 3-position switch on radio
// -------------------------------
read_control_switch();
// Read Control Surfaces/Mix switches
// ----------------------------------
2011-09-09 11:18:38 -03:00
update_servo_switches();
2011-09-12 20:54:47 -03:00
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
2011-10-31 18:55:58 -03:00
#if MOUNT == ENABLED
camera_mount.update_mount_type();
#endif
2011-09-08 22:29:39 -03:00
break;
case 2:
slow_loopCounter = 0;
update_events();
2011-09-17 23:15:23 -03:00
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter
2011-11-20 05:31:45 -04:00
#if USB_MUX_PIN > 0
check_usb_mux();
#endif
2011-09-08 22:29:39 -03:00
break;
}
}
2011-09-09 11:18:38 -03:00
static void one_second_loop()
2011-09-08 22:29:39 -03:00
{
if (g.log_bitmask & MASK_LOG_CUR)
Log_Write_Current();
// send a heartbeat
2011-09-18 00:46:42 -03:00
gcs_send_message(MSG_HEARTBEAT);
2011-09-08 22:29:39 -03:00
}
2011-09-09 11:18:38 -03:00
static void update_GPS(void)
2011-09-08 22:29:39 -03:00
{
g_gps->update();
update_GPS_light();
if (g_gps->new_data && g_gps->fix) {
// for performance
// ---------------
gps_fix_count++;
if(ground_start_count > 1){
ground_start_count--;
ground_start_avg += g_gps->ground_speed;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0) {
ground_start_count = 5;
} else {
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){
startup_ground();
if (g.log_bitmask & MASK_LOG_CMD)
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
init_home();
} else if (ENABLE_AIR_START == 0) {
init_home();
}
2012-03-11 07:46:41 -03:00
if (g.compass_enabled) {
2012-03-10 19:20:54 -04:00
// Set compass declination automatically
2012-03-30 00:19:02 -03:00
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
2012-03-10 19:20:54 -04:00
}
2011-09-08 22:29:39 -03:00
ground_start_count = 0;
}
}
current_loc.lng = g_gps->longitude; // Lon * 10**7
current_loc.lat = g_gps->latitude; // Lat * 10**7
2011-12-15 03:09:29 -04:00
// see if we've breached the geo-fence
2011-12-15 21:41:11 -04:00
geofence_check(false);
2011-09-08 22:29:39 -03:00
}
}
2011-09-09 11:18:38 -03:00
static void update_current_flight_mode(void)
2011-09-08 22:29:39 -03:00
{
if(control_mode == AUTO){
crash_checker();
2011-10-25 22:27:23 -03:00
switch(nav_command_ID){
2011-09-08 22:29:39 -03:00
case MAV_CMD_NAV_TAKEOFF:
2012-02-14 17:44:33 -04:00
if (hold_course != -1) {
2011-09-08 22:29:39 -03:00
calc_nav_roll();
} else {
nav_roll = 0;
}
2012-06-10 17:10:07 -03:00
if(g.airspeed_enabled == true && g.airspeed_use == true){
2011-09-08 22:29:39 -03:00
calc_nav_pitch();
2012-06-10 17:10:07 -03:00
if(nav_pitch < (long)takeoff_pitch)
nav_pitch = (long)takeoff_pitch;
2011-09-08 22:29:39 -03:00
} else {
nav_pitch = (long)((float)g_gps->ground_speed / (float)g.airspeed_cruise * (float)takeoff_pitch * 0.5);
nav_pitch = constrain(nav_pitch, 500l, (long)takeoff_pitch);
}
g.channel_throttle.servo_out = g.throttle_max; //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle
// What is the case for doing something else? Why wouldn't you want max throttle for TO?
// ******************************
break;
case MAV_CMD_NAV_LAND:
calc_nav_roll();
2012-05-22 06:47:20 -03:00
if (g.airspeed_enabled == true && g.airspeed_use == true) {
2011-09-08 22:29:39 -03:00
calc_nav_pitch();
calc_throttle();
}else{
calc_nav_pitch(); // calculate nav_pitch just to use for calc_throttle
calc_throttle(); // throttle based on altitude error
nav_pitch = landing_pitch; // pitch held constant
}
2012-02-14 17:44:33 -04:00
if (land_complete) {
// we are in the final stage of a landing - force
// zero throttle
2011-09-08 22:29:39 -03:00
g.channel_throttle.servo_out = 0;
}
break;
default:
2012-02-14 17:44:33 -04:00
// we are doing normal AUTO flight, the special cases
// are for takeoff and landing
2011-09-08 22:29:39 -03:00
hold_course = -1;
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
}
}else{
2012-02-14 17:44:33 -04:00
// hold_course is only used in takeoff and landing
hold_course = -1;
2011-09-08 22:29:39 -03:00
switch(control_mode){
case RTL:
case LOITER:
2011-09-09 11:18:38 -03:00
case GUIDED:
2011-09-08 22:29:39 -03:00
crash_checker();
calc_nav_roll();
calc_nav_pitch();
calc_throttle();
break;
case FLY_BY_WIRE_A:
2011-09-30 10:22:56 -03:00
// set nav_roll and nav_pitch using sticks
2011-09-08 22:29:39 -03:00
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
nav_pitch = g.channel_pitch.norm_input() * (-1) * g.pitch_limit_min;
// We use pitch_min above because it is usually greater magnitude then pitch_max. -1 is to compensate for its sign.
nav_pitch = constrain(nav_pitch, -3000, 3000); // trying to give more pitch authority
2011-09-09 11:18:38 -03:00
if (inverted_flight) nav_pitch = -nav_pitch;
2011-09-08 22:29:39 -03:00
break;
case FLY_BY_WIRE_B:
2011-10-17 02:11:40 -03:00
// Substitute stick inputs for Navigation control output
2011-09-08 22:29:39 -03:00
// We use g.pitch_limit_min because its magnitude is
// normally greater than g.pitch_limit_max
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
2011-12-31 18:44:40 -04:00
if ((current_loc.alt>=home.alt+g.FBWB_min_altitude) || (g.FBWB_min_altitude == 0)) {
2011-10-17 02:11:40 -03:00
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
} else {
2011-12-09 19:40:56 -04:00
if (g.channel_pitch.norm_input()<0)
altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) + g.channel_pitch.norm_input() * g.pitch_limit_min ;
else altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) ;
2011-10-17 02:11:40 -03:00
}
2011-09-08 22:29:39 -03:00
calc_throttle();
calc_nav_pitch();
break;
case STABILIZE:
nav_roll = 0;
nav_pitch = 0;
// throttle is passthrough
break;
case CIRCLE:
// we have no GPS installed and have lost radio contact
// or we just want to fly around in a gentle circle w/o GPS
// ----------------------------------------------------
nav_roll = g.roll_limit / 3;
nav_pitch = 0;
if (failsafe != FAILSAFE_NONE){
g.channel_throttle.servo_out = g.throttle_cruise;
}
break;
case MANUAL:
// servo_out is for Sim control only
// ---------------------------------
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle();
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle();
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle();
break;
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
}
}
}
2011-09-09 11:18:38 -03:00
static void update_navigation()
2011-09-08 22:29:39 -03:00
{
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
// ------------------------------------------------------------------------
// distance and bearing calcs only
if(control_mode == AUTO){
verify_commands();
}else{
switch(control_mode){
case LOITER:
2011-09-09 11:18:38 -03:00
case RTL:
case GUIDED:
2011-09-08 22:29:39 -03:00
update_loiter();
calc_bearing_error();
break;
}
}
}
2011-09-09 11:18:38 -03:00
static void update_alt()
2011-09-08 22:29:39 -03:00
{
#if HIL_MODE == HIL_MODE_ATTITUDE
current_loc.alt = g_gps->altitude;
#else
// this function is in place to potentially add a sonar sensor in the future
//altitude_sensor = BARO;
2011-12-28 05:34:11 -04:00
if (barometer.healthy) {
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100)
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt);
} else if (g_gps->fix) {
2012-06-10 17:10:07 -03:00
current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100)
2011-12-28 05:34:11 -04:00
}
2011-09-08 22:29:39 -03:00
#endif
2011-12-15 21:41:11 -04:00
geofence_check(true);
2011-09-08 22:29:39 -03:00
// Calculate new climb rate
2011-09-09 11:18:38 -03:00
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
2011-09-08 22:29:39 -03:00
}