ardupilot/libraries/AP_Compass/AP_Compass_HMC5843.cpp

247 lines
6.5 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 3; indent-tabs-mode: t -*-
/*
AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Sensor is conected to I2C port
Sensor is initialized in Continuos mode (10Hz)
*/
// AVR LibC Includes
#include <math.h>
#include "WConstants.h"
#include <Wire.h>
#include "AP_Compass_HMC5843.h"
#define COMPASS_ADDRESS 0x1E
#define ConfigRegA 0x00
#define ConfigRegB 0x01
#define magGain 0x20
#define PositiveBiasConfig 0x11
#define NegativeBiasConfig 0x12
#define NormalOperation 0x10
#define ModeRegister 0x02
#define ContinuousConversion 0x00
#define SingleConversion 0x01
// ConfigRegA valid sample averaging for 5883L
#define SampleAveraging_1 0x00
#define SampleAveraging_2 0x01
#define SampleAveraging_4 0x02
#define SampleAveraging_8 0x03
// ConfigRegA valid data output rates for 5883L
#define DataOutputRate_0_75HZ 0x00
#define DataOutputRate_1_5HZ 0x01
#define DataOutputRate_3HZ 0x02
#define DataOutputRate_7_5HZ 0x03
#define DataOutputRate_15HZ 0x04
#define DataOutputRate_30HZ 0x05
#define DataOutputRate_75HZ 0x06
// read_register - read a register value
static bool
read_register(int address, byte *value)
{
bool ret = false;
*value = 0;
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(address); //sends address to read from
if (0 != Wire.endTransmission())
return false;
Wire.requestFrom(COMPASS_ADDRESS, 1); // request 1 byte from device
if( Wire.available() ) {
*value = Wire.receive(); // receive one byte
ret = true;
}
if (0 != Wire.endTransmission())
return false;
return ret;
}
// write_register - update a register value
static bool
write_register(int address, byte value)
{
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(address);
Wire.send(value);
if (0 != Wire.endTransmission())
return false;
delay(10);
return true;
}
// Public Methods //////////////////////////////////////////////////////////////
bool
AP_Compass_HMC5843::init()
{
int numAttempts = 0;
bool success = false;
byte base_config; // used to test compass type
byte calibration_gain = 0x20;
uint16_t expected_xy = 715;
uint16_t expected_z = 715;
delay(10);
// determine if we are using 5843 or 5883L
if (! write_register(ConfigRegA, SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation) ||
! read_register(ConfigRegA, &base_config)) {
return false;
}
if ( base_config == (SampleAveraging_8<<5 | DataOutputRate_75HZ<<2 | NormalOperation)) {
// a 5883L supports the sample averaging config
int old_product_id = product_id;
product_id = AP_COMPASS_TYPE_HMC5883L;
calibration_gain = 0x60;
expected_xy = 766;
expected_z = 713;
if (old_product_id != product_id) {
/* now we know the compass type we need to rotate the
* orientation matrix that we were given
*/
Matrix3f rot_mat = _orientation_matrix.get();
_orientation_matrix.set_and_save(rot_mat * Matrix3f(ROTATION_YAW_90));
}
} else if (base_config == (NormalOperation | DataOutputRate_75HZ<<2)) {
product_id = AP_COMPASS_TYPE_HMC5843;
} else {
// not behaving like either supported compass type
return false;
}
while( success == 0 && numAttempts < 5 )
{
unsigned long update_stamp = last_update;
// record number of attempts at initialisation
numAttempts++;
// force positiveBias (compass should return 715 for all channels)
if (! write_register(ConfigRegA, PositiveBiasConfig))
continue; // compass not responding on the bus
delay(50);
// set gains
if (! write_register(ConfigRegB, calibration_gain) ||
! write_register(ModeRegister, SingleConversion))
continue;
// calibration initialisation
calibration[0] = 1.0;
calibration[1] = 1.0;
calibration[2] = 1.0;
// read values from the compass
delay(50);
read();
if (last_update == update_stamp)
continue; // we didn't read valid values
delay(10);
// calibrate
if( abs(mag_x) > 500 && abs(mag_x) < 2000 && abs(mag_y) > 500 && abs(mag_y) < 2000 && abs(mag_z) > 500 && abs(mag_z) < 2000)
{
calibration[0] = fabs(expected_xy / (float)mag_x);
calibration[1] = fabs(expected_xy / (float)mag_y);
calibration[2] = fabs(expected_z / (float)mag_z);
// mark success
success = true;
}
}
// leave test mode
if (! write_register(ConfigRegA, base_config))
return false;
delay(50);
if (! write_register(ConfigRegB, magGain) ||
! write_register(ModeRegister, ContinuousConversion))
return false;
delay(50);
return success;
}
// Read Sensor data
void
AP_Compass_HMC5843::read()
{
int i = 0;
byte buff[6];
Vector3f rot_mag;
Wire.beginTransmission(COMPASS_ADDRESS);
Wire.send(0x03); //sends address to read from
if (0 != Wire.endTransmission())
return;
//Wire.beginTransmission(COMPASS_ADDRESS);
Wire.requestFrom(COMPASS_ADDRESS, 6); // request 6 bytes from device
while(Wire.available())
{
buff[i] = Wire.receive(); // receive one byte
i++;
}
if (0 != Wire.endTransmission())
return;
if (i==6) // All bytes received?
{
int16_t rx, ry, rz;
rx = (int16_t)(buff[0] << 8) | buff[1];
if (product_id == AP_COMPASS_TYPE_HMC5883L) {
rz = (int16_t)(buff[2] << 8) | buff[3];
ry = (int16_t)(buff[4] << 8) | buff[5];
} else {
ry = (int16_t)(buff[2] << 8) | buff[3];
rz = (int16_t)(buff[4] << 8) | buff[5];
}
if (rx == -4096 || ry == -4096 || rz == -4096) {
// no valid data available, last_update is not updated
return;
}
mag_x = -rx * calibration[0];
mag_y = ry * calibration[1];
mag_z = -rz * calibration[2];
last_update = millis(); // record time of update
// rotate and offset the magnetometer values
// XXX this could well be done in common code...
rot_mag = _orientation_matrix.get() * Vector3f(mag_x,mag_y,mag_z);
rot_mag = rot_mag + _offset.get();
mag_x = rot_mag.x;
mag_y = rot_mag.y;
mag_z = rot_mag.z;
}
}
// set orientation
void
AP_Compass_HMC5843::set_orientation(const Matrix3f &rotation_matrix)
{
if( product_id == AP_COMPASS_TYPE_HMC5883L ) {
_orientation_matrix.set_and_save(rotation_matrix * Matrix3f(ROTATION_YAW_90));
}else{
_orientation_matrix.set_and_save(rotation_matrix);
}
}