2012-02-12 07:26:36 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*
2012-08-21 23:19:50 -03:00
* ArduCopter parameter definitions
*
* This firmware is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value : def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info : class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info : class::var_info} }
2012-02-12 07:26:36 -04:00
2012-08-06 22:03:26 -03:00
const AP_Param::Info var_info[] PROGMEM = {
2012-12-10 08:45:57 -04:00
// @Param: SYSID_SW_MREV
// @DisplayName: Eeprom format version number
// @Description: This value is incremented when changes are made to the eeprom format
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(format_version, "SYSID_SW_MREV", 0),
2012-12-10 08:45:57 -04:00
// @Param: SYSID_SW_TYPE
// @DisplayName: Software Type
// @Description: This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter)
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
2012-02-12 07:26:36 -04:00
2012-12-10 08:45:57 -04:00
// @Param: SYSID_THISMAV
// @DisplayName: Mavlink version
// @Description: Allows reconising the mavlink version
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
2013-01-02 05:50:25 -04:00
// @Param: SYSID_MYGCS
// @DisplayName: My ground station number
// @Description: Allows restricting radio overrides to only come from my ground station
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
2012-07-05 03:33:40 -03:00
// @Param: SERIAL3_BAUD
2012-08-21 23:19:50 -03:00
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial3_baud, "SERIAL3_BAUD", SERIAL3_BAUD/1000),
2012-08-29 20:03:01 -03:00
// @Param: TELEM_DELAY
2012-10-21 18:32:39 -03:00
// @DisplayName: Telemetry startup delay
2012-08-29 20:03:01 -03:00
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: seconds
// @Range: 0 10
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
2013-01-02 05:50:25 -04:00
// @Param: RTL_ALT
2012-08-21 23:19:50 -03:00
// @DisplayName: RTL Altitude
2012-11-29 08:08:19 -04:00
// @Description: The minimum altitude the model will move to before Returning to Launch. Set to zero to return at current altitude.
2012-12-10 08:45:57 -04:00
// @Units: Centimeters
2012-08-21 23:19:50 -03:00
// @Range: 0 4000
// @Increment: 1
// @User: Standard
2012-11-29 08:08:19 -04:00
GSCALAR(rtl_altitude, "RTL_ALT", RTL_ALT),
2012-08-21 23:19:50 -03:00
// @Param: SONAR_ENABLE
// @DisplayName: Enable Sonar
// @Description: Setting this to Enabled(1) will enable the sonar. Setting this to Disabled(0) will disable the sonar
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(sonar_enabled, "SONAR_ENABLE", DISABLED),
2012-12-10 08:45:57 -04:00
// @Param: SONAR_TYPE
// @DisplayName: Sonar type
// @Description: Used to adjust scaling to match the sonar used (only Maxbotix sonars are supported at this time)
// @Values: 0:XL-EZ0,1:LV-EZ0,2:XLL-EZ0,3:HRLV
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(sonar_type, "SONAR_TYPE", AP_RANGEFINDER_MAXSONARXL),
2012-11-13 10:43:54 -04:00
2013-04-20 03:58:36 -03:00
// @Param: SONAR_GAIN
// @DisplayName: Sonar gain
// @Description: Used to adjust the speed with which the target altitude is changed when objects are sensed below the copter
// @Range: 0.01 0.5
// @Increment: 0.01
// @User: Standard
GSCALAR(sonar_gain, "SONAR_GAIN", SONAR_GAIN_DEFAULT),
2012-12-10 08:45:57 -04:00
// @Param: BATT_MONITOR
// @DisplayName: Battery monitoring
// @Description: Controls enabling monitoring of the battery's voltage and current
// @Values: 0:Disabled,3:Voltage Only,4:Voltage and Current
// @User: Standard
2013-03-03 10:02:36 -04:00
GSCALAR(battery_monitoring, "BATT_MONITOR", BATT_MONITOR_DISABLED),
2012-08-21 23:19:50 -03:00
2012-12-10 10:47:14 -04:00
// @Param: FS_BATT_ENABLE
2012-11-13 10:43:54 -04:00
// @DisplayName: Battery Failsafe Enable
// @Description: Controls whether failsafe will be invoked when battery voltage or current runs low
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2012-12-10 10:47:14 -04:00
GSCALAR(failsafe_battery_enabled, "FS_BATT_ENABLE", FS_BATTERY),
2012-11-13 10:43:54 -04:00
2013-03-16 05:27:46 -03:00
// @Param: FS_GPS_ENABLE
// @DisplayName: GPS Failsafe Enable
// @Description: Controls whether failsafe will be invoked when gps signal is lost
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(failsafe_gps_enabled, "FS_GPS_ENABLE", FS_GPS),
2012-08-21 23:19:50 -03:00
// @Param: VOLT_DIVIDER
// @DisplayName: Voltage Divider
2012-12-10 08:45:57 -04:00
// @Description: Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin voltage * INPUT_VOLTS/1024 * VOLT_DIVIDER)
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(volt_div_ratio, "VOLT_DIVIDER", VOLT_DIV_RATIO),
2012-12-10 08:45:57 -04:00
// @Param: AMP_PER_VOLT
// @DisplayName: Current Amps per volt
// @Description: Used to convert the voltage on the current sensing pin (BATT_CURR_PIN) to the actual current being consumed in amps (curr pin voltage * INPUT_VOLTS/1024 * AMP_PER_VOLT )
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(curr_amp_per_volt, "AMP_PER_VOLT", CURR_AMP_PER_VOLT),
2012-12-10 08:45:57 -04:00
2012-08-21 23:19:50 -03:00
// @Param: BATT_CAPACITY
// @DisplayName: Battery Capacity
// @Description: Battery capacity in milliamp-hours (mAh)
// @Units: mAh
GSCALAR(pack_capacity, "BATT_CAPACITY", HIGH_DISCHARGE),
// @Param: MAG_ENABLE
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
// @Param: FLOW_ENABLE
// @DisplayName: Enable Optical Flow
// @Description: Setting this to Enabled(1) will enable optical flow. Setting this to Disabled(0) will disable optical flow
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2012-12-10 11:09:45 -04:00
GSCALAR(optflow_enabled, "FLOW_ENABLE", DISABLED),
2012-08-21 23:19:50 -03:00
// @Param: LOW_VOLT
// @DisplayName: Low Voltage
// @Description: Set this to the voltage you want to represent low voltage
// @Range: 0 20
// @Increment: .1
// @User: Standard
GSCALAR(low_voltage, "LOW_VOLT", LOW_VOLTAGE),
// @Param: SUPER_SIMPLE
// @DisplayName: Enable Super Simple Mode
// @Description: Setting this to Enabled(1) will enable Super Simple Mode. Setting this to Disabled(0) will disable Super Simple Mode
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(super_simple, "SUPER_SIMPLE", SUPER_SIMPLE),
2012-11-29 08:08:19 -04:00
// @Param: RTL_ALT_FINAL
// @DisplayName: RTL Final Altitude
2013-01-14 02:20:33 -04:00
// @Description: This is the altitude the vehicle will move to as the final stage of Returning to Launch or after completing a mission. Set to zero to land.
2012-12-10 08:45:57 -04:00
// @Units: Centimeters
2012-11-29 08:08:19 -04:00
// @Range: -1 1000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
2012-11-29 08:08:19 -04:00
GSCALAR(rtl_alt_final, "RTL_ALT_FINAL", RTL_ALT_FINAL),
2012-08-21 23:19:50 -03:00
2012-10-13 06:40:46 -03:00
// @Param: BATT_VOLT_PIN
2012-10-13 08:52:14 -03:00
// @DisplayName: Battery Voltage sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
2012-11-20 05:26:14 -04:00
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
2012-10-13 06:40:46 -03:00
// @User: Standard
GSCALAR(battery_volt_pin, "BATT_VOLT_PIN", BATTERY_VOLT_PIN),
// @Param: BATT_CURR_PIN
2012-10-13 08:52:14 -03:00
// @DisplayName: Battery Current sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
2013-01-19 18:32:41 -04:00
// @Values: -1:Disabled, 1:A1, 2:A2, 12:A12
2012-10-13 06:40:46 -03:00
// @User: Standard
GSCALAR(battery_curr_pin, "BATT_CURR_PIN", BATTERY_CURR_PIN),
2012-08-21 23:19:50 -03:00
2012-11-22 05:59:33 -04:00
// @Param: RSSI_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum
// @Values: -1:Disabled, 0:A0, 1:A1, 2:A2, 13:A13
// @User: Standard
GSCALAR(rssi_pin, "RSSI_PIN", -1),
2012-12-03 10:05:14 -04:00
// @Param: THR_ACC_ENABLE
// @DisplayName: Enable Accel based throttle controller
// @Description: This allows enabling and disabling the accelerometer based throttle controller. If disabled a velocity based controller is used.
// @Values: 0:Disabled, 1:Enabled
// @User: Standard
GSCALAR(throttle_accel_enabled, "THR_ACC_ENABLE", 1),
2013-04-18 03:30:18 -03:00
// @Param: WP_YAW_BEHAVIOR
// @DisplayName: Yaw behaviour during missions
// @Description: Determines how the autopilot controls the yaw during missions and RTL
// @Values: 0:Never change yaw, 1:Face next waypoint, 2:Face next waypoint except RTL
2012-12-09 05:04:31 -04:00
// @User: Advanced
2013-04-20 03:36:24 -03:00
GSCALAR(wp_yaw_behavior, "WP_YAW_BEHAVIOR", WP_YAW_BEHAVIOR_DEFAULT),
2012-12-09 05:04:31 -04:00
2012-12-10 08:45:57 -04:00
// @Param: WP_TOTAL
// @DisplayName: Waypoint Total
// @Description: Total number of commands in the mission stored in the eeprom. Do not update this parameter directly!
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_total, "WP_TOTAL", 0),
2012-12-10 08:45:57 -04:00
// @Param: WP_INDEX
// @DisplayName: Waypoint Index
// @Description: The index number of the command that is currently being executed. Do not update this parameter directly!
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(command_index, "WP_INDEX", 0),
2012-07-05 03:33:40 -03:00
2012-12-10 08:45:57 -04:00
// @Param: CIRCLE_RADIUS
// @DisplayName: Circle radius
// @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode
2012-08-21 23:19:50 -03:00
// @Units: Meters
// @Range: 1 127
// @Increment: 1
// @User: Standard
2012-12-10 08:45:57 -04:00
GSCALAR(circle_radius, "CIRCLE_RADIUS", CIRCLE_RADIUS),
2012-10-21 18:32:39 -03:00
2013-04-20 00:03:55 -03:00
// @Param: CIRCLE_RATE
// @DisplayName: Circle rate
// @Description: Circle mode's turn rate in degrees / second. Positive to turn clockwise, negative for counter clockwise
// @Units: Degrees / second
// @Range: -90 90
// @Increment: 1
// @User: Standard
GSCALAR(circle_rate, "CIRCLE_RATE", CIRCLE_RATE),
2013-01-02 05:50:25 -04:00
// @Param: RTL_LOIT_TIME
2012-11-29 08:08:19 -04:00
// @DisplayName: RTL loiter time
// @Description: Time (in milliseconds) to loiter above home before begining final descent
// @Units: ms
// @Range: 0 60000
// @Increment: 1000
// @User: Standard
GSCALAR(rtl_loiter_time, "RTL_LOIT_TIME", RTL_LOITER_TIME),
2012-02-12 07:26:36 -04:00
2012-11-24 09:50:09 -04:00
// @Param: LAND_SPEED
// @DisplayName: Land speed
// @Description: The descent speed for the final stage of landing in cm/s
2012-12-10 08:45:57 -04:00
// @Units: Centimeters/Second
2012-11-24 09:50:09 -04:00
// @Range: 10 200
// @Increment: 10
// @User: Standard
GSCALAR(land_speed, "LAND_SPEED", LAND_SPEED),
2012-12-21 23:52:49 -04:00
// @Param: PILOT_VELZ_MAX
// @DisplayName: Pilot maximum vertical speed
// @Description: The maximum vertical velocity the pilot may request in cm/s
// @Units: Centimeters/Second
// @Range: 10 500
// @Increment: 10
// @User: Standard
GSCALAR(pilot_velocity_z_max, "PILOT_VELZ_MAX", PILOT_VELZ_MAX),
2012-07-05 03:33:40 -03:00
// @Param: THR_MIN
2012-08-21 23:19:50 -03:00
// @DisplayName: Minimum Throttle
2012-12-10 08:45:57 -04:00
// @Description: The minimum throttle that will be sent to the motors to keep them spinning
2012-11-20 19:42:53 -04:00
// @Units: ms
// @Range: 0 1000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
GSCALAR(throttle_min, "THR_MIN", MINIMUM_THROTTLE),
2012-07-05 03:33:40 -03:00
// @Param: THR_MAX
2012-08-21 23:19:50 -03:00
// @DisplayName: Maximum Throttle
2012-12-10 08:45:57 -04:00
// @Description: The maximum throttle that will be sent to the motors
2012-11-20 19:42:53 -04:00
// @Units: ms
// @Range: 0 1000
2012-08-21 23:19:50 -03:00
// @Increment: 1
// @User: Standard
GSCALAR(throttle_max, "THR_MAX", MAXIMUM_THROTTLE),
2012-07-05 03:33:40 -03:00
2012-12-10 10:38:43 -04:00
// @Param: FS_THR_ENABLE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel
2012-12-10 10:38:43 -04:00
// @Values: 0:Disabled,1:Enabled always RTL,2:Enabled Continue with Mission in Auto Mode
2012-08-21 23:19:50 -03:00
// @User: Standard
2012-12-10 10:38:43 -04:00
GSCALAR(failsafe_throttle, "FS_THR_ENABLE", FS_THR_DISABLED),
2012-07-05 03:33:40 -03:00
2012-12-10 10:38:43 -04:00
// @Param: FS_THR_VALUE
2012-08-21 23:19:50 -03:00
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level on channel 3 below which throttle sailsafe triggers
// @User: Standard
2012-12-10 10:38:43 -04:00
GSCALAR(failsafe_throttle_value, "FS_THR_VALUE", FS_THR_VALUE_DEFAULT),
2012-07-05 03:33:40 -03:00
2012-12-10 08:45:57 -04:00
// @Param: TRIM_THROTTLE
// @DisplayName: Throttle Trim
2013-01-02 11:39:18 -04:00
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
// @Range: 0 1000
// @Units: PWM
2012-12-10 08:45:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(throttle_cruise, "TRIM_THROTTLE", THROTTLE_CRUISE),
2012-02-12 07:26:36 -04:00
2013-01-30 11:25:41 -04:00
// @Param: THR_MID
// @DisplayName: Throttle Mid Position
// @Description: The throttle output (0 ~ 1000) when throttle stick is in mid position. Used to scale the manual throttle so that the mid throttle stick position is close to the throttle required to hover
// @User: Standard
// @Range: 300 700
// @Increment: 1
GSCALAR(throttle_mid, "THR_MID", THR_MID),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE1
// @DisplayName: Flight Mode 1
// @Description: Flight mode when Channel 5 pwm is <= 1230
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode1, "FLTMODE1", FLIGHT_MODE_1),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE2
// @DisplayName: Flight Mode 2
// @Description: Flight mode when Channel 5 pwm is >1230, <= 1360
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode2, "FLTMODE2", FLIGHT_MODE_2),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE3
// @DisplayName: Flight Mode 3
// @Description: Flight mode when Channel 5 pwm is >1360, <= 1490
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode3, "FLTMODE3", FLIGHT_MODE_3),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE4
// @DisplayName: Flight Mode 4
// @Description: Flight mode when Channel 5 pwm is >1490, <= 1620
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode4, "FLTMODE4", FLIGHT_MODE_4),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE5
// @DisplayName: Flight Mode 5
// @Description: Flight mode when Channel 5 pwm is >1620, <= 1749
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode5, "FLTMODE5", FLIGHT_MODE_5),
2012-12-10 08:45:57 -04:00
// @Param: FLTMODE6
// @DisplayName: Flight Mode 6
// @Description: Flight mode when Channel 5 pwm is >=1750
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(flight_mode6, "FLTMODE6", FLIGHT_MODE_6),
2012-12-10 08:45:57 -04:00
// @Param: SIMPLE
// @DisplayName: Simple mode bitmask
// @Description: Bitmask which holds which flight modes use simple heading mode (eg bit 0 = 1 means Flight Mode 0 uses simple mode)
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(simple_modes, "SIMPLE", 0),
2012-02-12 07:26:36 -04:00
2012-07-05 03:33:40 -03:00
// @Param: LOG_BITMASK
2012-08-21 23:19:50 -03:00
// @DisplayName: Log bitmask
2012-12-10 08:45:57 -04:00
// @Description: 2 byte bitmap of log types to enable
2012-08-21 23:19:50 -03:00
// @User: Advanced
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
2012-12-10 08:45:57 -04:00
// @Param: TOY_RATE
// @DisplayName: Toy Yaw Rate
// @Description: Controls yaw rate in Toy mode. Higher values will cause a slower yaw rate. Do not set to zero!
// @User: Advanced
// @Range: 1 10
2012-08-21 23:19:50 -03:00
GSCALAR(toy_yaw_rate, "TOY_RATE", 1),
2012-12-10 08:45:57 -04:00
// @Param: ESC
// @DisplayName: ESC Calibration
// @Description: Controls whether ArduCopter will enter ESC calibration on the next restart. Do not adjust this parameter manually.
// @User: Advanced
// @Values: 0:Normal Start-up,1:Start-up in ESC Calibration mode
2012-08-21 23:19:50 -03:00
GSCALAR(esc_calibrate, "ESC", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE
// @DisplayName: Channel 6 Tuning
// @Description: Controls which parameters (normally PID gains) are being tuned with transmitter's channel 6 knob
// @User: Standard
2013-04-20 00:03:55 -03:00
// @Values: 0:CH6_NONE,1:CH6_STABILIZE_KP,2:CH6_STABILIZE_KI,3:CH6_YAW_KP,4:CH6_RATE_KP,5:CH6_RATE_KI,6:CH6_YAW_RATE_KP,7:CH6_THROTTLE_KP,8:CH6_TOP_BOTTOM_RATIO,9:CH6_RELAY,10:CH6_WP_SPEED,12:CH6_LOITER_KP,13:CH6_HELI_EXTERNAL_GYRO,14:CH6_THR_HOLD_KP,17:CH6_OPTFLOW_KP,18:CH6_OPTFLOW_KI,19:CH6_OPTFLOW_KD,21:CH6_RATE_KD,22:CH6_LOITER_RATE_KP,23:CH6_LOITER_RATE_KD,24:CH6_YAW_KI,25:CH6_ACRO_KP,26:CH6_YAW_RATE_KD,27:CH6_LOITER_KI,28:CH6_LOITER_RATE_KI,29:CH6_STABILIZE_KD,30:CH6_AHRS_YAW_KP,31:CH6_AHRS_KP,32:CH6_INAV_TC,33:CH6_THROTTLE_KI,34:CH6_THR_ACCEL_KP,35:CH6_THR_ACCEL_KI,36:CH6_THR_ACCEL_KD,38:CH6_DECLINATION,39:CH6_CIRCLE_RATE
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning, "TUNE", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE_LOW
// @DisplayName: Tuning minimum
// @Description: The minimum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning_low, "TUNE_LOW", 0),
2012-12-10 08:45:57 -04:00
// @Param: TUNE_HIGH
// @DisplayName: Tuning maximum
// @Description: The maximum value that will be applied to the parameter currently being tuned with the transmitter's channel 6 knob
// @User: Standard
// @Range: 0 32767
2012-08-21 23:19:50 -03:00
GSCALAR(radio_tuning_high, "TUNE_HIGH", 1000),
2012-12-10 08:45:57 -04:00
// @Param: FRAME
2013-01-14 02:49:26 -04:00
// @DisplayName: Frame Orientation (+, X or V)
// @Description: Controls motor mixing for multicopters. Not used for Tri or Traditional Helicopters.
// @Values: 0:Plus, 1:X, 2:V
2012-12-10 08:45:57 -04:00
// @User: Standard
// @Range: 0 32767
2012-08-21 23:19:50 -03:00
GSCALAR(frame_orientation, "FRAME", FRAME_ORIENTATION),
2012-12-06 04:40:36 -04:00
// @Param: CH7_OPT
// @DisplayName: Channel 7 option
2012-12-10 08:45:57 -04:00
// @Description: Select which function if performed when CH7 is above 1800 pwm
2013-01-14 02:49:26 -04:00
// @Values: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 9:Camera Trigger, 10:Sonar
2012-12-06 04:40:36 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GSCALAR(ch7_option, "CH7_OPT", CH7_OPTION),
2012-10-21 18:32:39 -03:00
2012-10-15 10:37:02 -03:00
// @Param: AUTO_SLEW
// @DisplayName: Auto Slew Rate
2012-12-08 01:23:32 -04:00
// @Description: This restricts the rate of change of the roll and pitch attitude commanded by the auto pilot
2012-10-15 10:37:02 -03:00
// @Units: Degrees/Second
2013-02-18 02:26:17 -04:00
// @Range: 1 90
2012-10-15 10:37:02 -03:00
// @Increment: 1
// @User: Advanced
2012-08-21 23:19:50 -03:00
GSCALAR(auto_slew_rate, "AUTO_SLEW", AUTO_SLEW_RATE),
#if FRAME_CONFIG == HELI_FRAME
GGROUP(heli_servo_1, "HS1_", RC_Channel),
GGROUP(heli_servo_2, "HS2_", RC_Channel),
GGROUP(heli_servo_3, "HS3_", RC_Channel),
GGROUP(heli_servo_4, "HS4_", RC_Channel),
2012-12-10 22:02:16 -04:00
GSCALAR(heli_pitch_ff, "RATE_PIT_FF", HELI_PITCH_FF),
GSCALAR(heli_roll_ff, "RATE_RLL_FF", HELI_ROLL_FF),
GSCALAR(heli_yaw_ff, "RATE_YAW_FF", HELI_YAW_FF),
2012-08-21 23:19:50 -03:00
#endif
2012-02-12 07:26:36 -04:00
2012-08-21 23:19:50 -03:00
// RC channel
//-----------
// @Group: RC1_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_1, "RC1_", RC_Channel),
// @Group: RC2_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_2, "RC2_", RC_Channel),
// @Group: RC3_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_3, "RC3_", RC_Channel),
// @Group: RC4_
// @Path: ../libraries/RC_Channel/RC_Channel.cpp
GGROUP(rc_4, "RC4_", RC_Channel),
// @Group: RC5_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_5, "RC5_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC6_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_6, "RC6_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC7_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_7, "RC7_", RC_Channel_aux),
2012-08-21 23:19:50 -03:00
// @Group: RC8_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-09-02 00:51:23 -03:00
GGROUP(rc_8, "RC8_", RC_Channel_aux),
2012-07-10 19:39:13 -03:00
2012-09-02 00:51:23 -03:00
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: RC10_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_10, "RC10_", RC_Channel_aux),
2012-07-10 19:39:13 -03:00
2012-08-21 23:19:50 -03:00
// @Group: RC11_
2013-01-02 05:40:59 -04:00
// @Path: ../libraries/RC_Channel/RC_Channel.cpp,../libraries/RC_Channel/RC_Channel_aux.cpp
2012-08-21 23:19:50 -03:00
GGROUP(rc_11, "RC11_", RC_Channel_aux),
2012-07-15 04:36:05 -03:00
#endif
2012-06-29 18:34:40 -03:00
2012-08-21 23:19:50 -03:00
// @Param: RC_SPEED
// @DisplayName: ESC Update Speed
// @Description: This is the speed in Hertz that your ESCs will receive updates
// @Units: Hertz (Hz)
// @Values: 125,400,490
// @User: Advanced
GSCALAR(rc_speed, "RC_SPEED", RC_FAST_SPEED),
2012-12-10 08:45:57 -04:00
// @Param: ACRO_P
// @DisplayName: Acro P gain
// @Description: Used to convert pilot roll, pitch and yaw input into a dssired rate of rotation in ACRO mode. Higher values mean faster rate of rotation.
// @Range: 1 10
// @User: Standard
2012-10-23 09:30:50 -03:00
GSCALAR(acro_p, "ACRO_P", ACRO_P),
2012-12-10 08:45:57 -04:00
// @Param: AXIS_ENABLE
// @DisplayName: Acro Axis
// @Description: Used to control whether acro mode actively maintains the current angle when control sticks are released (Enabled = maintains current angle)
// @Values: 0:Disabled, 1:Enabled
// @User: Standard
2012-10-23 09:30:50 -03:00
GSCALAR(axis_enabled, "AXIS_ENABLE", AXIS_LOCK_ENABLED),
2012-12-10 08:45:57 -04:00
2012-10-23 09:30:50 -03:00
// @Param: ACRO_BAL_ROLL
// @DisplayName: Acro Balance Roll
// @Description: rate at which roll angle returns to level in acro mode
// @Range: 0 300
// @Increment: 1
// @User: Advanced
GSCALAR(acro_balance_roll, "ACRO_BAL_ROLL", ACRO_BALANCE_ROLL),
// @Param: ACRO_BAL_PITCH
// @DisplayName: Acro Balance Pitch
// @Description: rate at which pitch angle returns to level in acro mode
// @Range: 0 300
// @Increment: 1
// @User: Advanced
GSCALAR(acro_balance_pitch, "ACRO_BAL_PITCH", ACRO_BALANCE_PITCH),
2012-12-10 09:27:46 -04:00
// @Param: ACRO_TRAINER
// @DisplayName: Acro Trainer Enabled
// @Description: Set to 1 (Enabled) to make roll return to within 45 degrees of level automatically
// @Values: 0:Disabled,1:Enabled
// @User: Advanced
GSCALAR(acro_trainer_enabled, "ACRO_TRAINER", ACRO_TRAINER_ENABLED),
2012-12-10 08:45:57 -04:00
// @Param: LED_MODE
// @DisplayName: Copter LED Mode
// @Description: bitmap to control the copter led mode
// @Values: 0:Disabled,1:Enable,2:GPS On,4:Aux,8:Buzzer,16:Oscillate,32:Nav Blink,64:GPS Nav Blink
// @User: Standard
2012-10-23 09:30:50 -03:00
GSCALAR(copter_leds_mode, "LED_MODE", 9),
2012-08-21 23:19:50 -03:00
// PID controller
//---------------
2013-01-02 04:05:57 -04:00
// @Param: RATE_RLL_P
// @DisplayName: Roll axis rate controller P gain
// @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.08 0.20
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_RLL_I
// @DisplayName: Roll axis rate controller I gain
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
2013-01-02 04:20:58 -04:00
// @Range: 0.01 0.5
// @User: Standard
// @Param: RATE_RLL_IMAX
// @DisplayName: Roll axis rate controller I gain maximum
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
// @Unit: PWM
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_RLL_D
// @DisplayName: Roll axis rate controller D gain
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
2013-01-02 04:20:58 -04:00
// @Range: 0.001 0.008
2013-01-02 04:05:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_rate_roll, "RATE_RLL_", AC_PID),
2013-01-02 04:05:57 -04:00
// @Param: RATE_PIT_P
// @DisplayName: Pitch axis rate controller P gain
// @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.08 0.20
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_PIT_I
// @DisplayName: Pitch axis rate controller I gain
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate
2013-01-02 04:20:58 -04:00
// @Range: 0.01 0.5
// @User: Standard
// @Param: RATE_PIT_IMAX
// @DisplayName: Pitch axis rate controller I gain maximum
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
// @Unit: PWM
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_PIT_D
// @DisplayName: Pitch axis rate controller D gain
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate
2013-01-02 04:20:58 -04:00
// @Range: 0.001 0.008
2013-01-02 04:05:57 -04:00
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_rate_pitch, "RATE_PIT_", AC_PID),
2013-01-02 04:05:57 -04:00
// @Param: RATE_YAW_P
// @DisplayName: Yaw axis rate controller P gain
// @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output
2013-01-02 04:20:58 -04:00
// @Range: 0.150 0.250
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_YAW_I
// @DisplayName: Yaw axis rate controller I gain
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate
2013-01-02 04:20:58 -04:00
// @Range: 0.010 0.020
// @User: Standard
// @Param: RATE_YAW_IMAX
// @DisplayName: Yaw axis rate controller I gain maximum
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 500
// @Unit: PWM
2013-01-02 04:05:57 -04:00
// @User: Standard
// @Param: RATE_YAW_D
// @DisplayName: Yaw axis rate controller D gain
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate
2013-01-02 04:20:58 -04:00
// @Range: 0.000 0.001
2013-01-02 04:05:57 -04:00
// @User: Standard
GGROUP(pid_rate_yaw, "RATE_YAW_", AC_PID),
2012-08-21 23:19:50 -03:00
2013-01-02 04:20:58 -04:00
// @Param: LOITER_LAT_P
// @DisplayName: Loiter latitude rate controller P gain
// @Description: Loiter latitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the latitude direction
// @Range: 2.000 6.000
// @User: Standard
// @Param: LOITER_LAT_I
// @DisplayName: Loiter latitude rate controller I gain
// @Description: Loiter latitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the latitude direction
// @Range: 0.020 0.060
// @User: Standard
// @Param: LOITER_LAT_IMAX
// @DisplayName: Loiter rate controller I gain maximum
// @Description: Loiter rate controller I gain maximum. Constrains the lean angle that the I gain will output
// @Range: 0 4500
// @Unit: Centi-Degrees
// @User: Standard
// @Param: LOITER_LAT_D
// @DisplayName: Loiter latitude rate controller D gain
// @Description: Loiter latitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed
// @Range: 0.200 0.600
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_loiter_rate_lat, "LOITER_LAT_", AC_PID),
2013-01-02 04:20:58 -04:00
// @Param: LOITER_LON_P
// @DisplayName: Loiter longitude rate controller P gain
// @Description: Loiter longitude rate controller P gain. Converts the difference between desired speed and actual speed into a lean angle in the longitude direction
// @Range: 2.000 6.000
// @User: Standard
// @Param: LOITER_LON_I
// @DisplayName: Loiter longitude rate controller I gain
// @Description: Loiter longitude rate controller I gain. Corrects long-term difference in desired speed and actual speed in the longitude direction
// @Range: 0.020 0.060
// @User: Standard
// @Param: LOITER_LON_IMAX
// @DisplayName: Loiter longitude rate controller I gain maximum
// @Description: Loiter longitude rate controller I gain maximum. Constrains the lean angle that the I gain will output
// @Range: 0 4500
// @Unit: Centi-Degrees
// @User: Standard
// @Param: LOITER_LON_D
// @DisplayName: Loiter longituderate controller D gain
// @Description: Loiter longitude rate controller D gain. Compensates for short-term change in desired speed vs actual speed
// @Range: 0.200 0.600
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_loiter_rate_lon, "LOITER_LON_", AC_PID),
2013-01-02 04:44:21 -04:00
// @Param: THR_RATE_P
// @DisplayName: Throttle rate controller P gain
// @Description: Throttle rate controller P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller
// @Range: 1.000 8.000
// @User: Standard
// @Param: THR_RATE_I
// @DisplayName: Throttle rate controller I gain
// @Description: Throttle rate controller I gain. Corrects long-term difference in desired vertical speed and actual speed
// @Range: 0.000 0.100
// @User: Standard
// @Param: THR_RATE_IMAX
// @DisplayName: Throttle rate controller I gain maximum
// @Description: Throttle rate controller I gain maximum. Constrains the desired acceleration that the I gain will generate
// @Range: 0 500
// @Unit: cm/s/s
// @User: Standard
// @Param: THR_RATE_D
// @DisplayName: Throttle rate controller D gain
// @Description: Throttle rate controller D gain. Compensates for short-term change in desired vertical speed vs actual speed
// @Range: 0.000 0.400
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_throttle, "THR_RATE_", AC_PID),
2013-01-02 04:44:21 -04:00
// @Param: THR_ACCEL_P
// @DisplayName: Throttle acceleration controller P gain
// @Description: Throttle acceleration controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output
// @Range: 0.500 1.500
// @User: Standard
// @Param: THR_ACCEL_I
// @DisplayName: Throttle acceleration controller I gain
// @Description: Throttle acceleration controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration
// @Range: 0.000 3.000
// @User: Standard
// @Param: THR_ACCEL_IMAX
// @DisplayName: Throttle acceleration controller I gain maximum
// @Description: Throttle acceleration controller I gain maximum. Constrains the maximum pwm that the I term will generate
// @Range: 0 500
// @Unit: PWM
// @User: Standard
// @Param: THR_ACCEL_D
// @DisplayName: Throttle acceleration controller D gain
// @Description: Throttle acceleration controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration
// @Range: 0.000 0.400
// @User: Standard
2012-11-23 02:57:49 -04:00
GGROUP(pid_throttle_accel,"THR_ACCEL_", AC_PID),
2013-01-02 05:32:11 -04:00
// @Param: OF_RLL_P
// @DisplayName: Optical Flow based loiter controller roll axis P gain
// @Description: Optical Flow based loiter controller roll axis P gain. Converts the position error from the target point to a roll angle
// @Range: 2.000 3.000
// @User: Standard
// @Param: OF_RLL_I
// @DisplayName: Optical Flow based loiter controller roll axis I gain
// @Description: Optical Flow based loiter controller roll axis I gain. Corrects long-term position error by more persistently rolling left or right
// @Range: 0.250 0.750
// @User: Standard
// @Param: OF_RLL_IMAX
// @DisplayName: Optical Flow based loiter controller roll axis I gain maximum
// @Description: Optical Flow based loiter controller roll axis I gain maximum. Constrains the maximum roll angle that the I term will generate
// @Range: 0 4500
// @Unit: Centi-Degrees
// @User: Standard
// @Param: OF_RLL_D
// @DisplayName: Optical Flow based loiter controller roll axis D gain
// @Description: Optical Flow based loiter controller roll axis D gain. Compensates for short-term change in speed in the roll direction
// @Range: 0.100 0.140
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_optflow_roll, "OF_RLL_", AC_PID),
2013-01-02 05:32:11 -04:00
// @Param: OF_PIT_P
// @DisplayName: Optical Flow based loiter controller pitch axis P gain
// @Description: Optical Flow based loiter controller pitch axis P gain. Converts the position error from the target point to a pitch angle
// @Range: 2.000 3.000
// @User: Standard
// @Param: OF_PIT_I
// @DisplayName: Optical Flow based loiter controller pitch axis I gain
// @Description: Optical Flow based loiter controller pitch axis I gain. Corrects long-term position error by more persistently pitching left or right
// @Range: 0.250 0.750
// @User: Standard
// @Param: OF_PIT_IMAX
// @DisplayName: Optical Flow based loiter controller pitch axis I gain maximum
// @Description: Optical Flow based loiter controller pitch axis I gain maximum. Constrains the maximum pitch angle that the I term will generate
// @Range: 0 4500
// @Unit: Centi-Degrees
// @User: Standard
// @Param: OF_PIT_D
// @DisplayName: Optical Flow based loiter controller pitch axis D gain
// @Description: Optical Flow based loiter controller pitch axis D gain. Compensates for short-term change in speed in the pitch direction
// @Range: 0.100 0.140
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pid_optflow_pitch, "OF_PIT_", AC_PID),
// PI controller
//--------------
2013-01-02 05:32:11 -04:00
// @Param: STB_RLL_P
// @DisplayName: Roll axis stabilize controller P gain
// @Description: Roll axis stabilize (i.e. angle) controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_RLL_I
// @DisplayName: Roll axis stabilize controller I gain
// @Description: Roll axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired roll angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_RLL_IMAX
// @DisplayName: Roll axis stabilize controller I gain maximum
// @Description: Roll axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum roll rate that the I term will generate
// @Range: 0 4500
// @Unit: Centi-Degrees/Sec
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_roll, "STB_RLL_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: STB_PIT_P
// @DisplayName: Pitch axis stabilize controller P gain
// @Description: Pitch axis stabilize (i.e. angle) controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_PIT_I
// @DisplayName: Pitch axis stabilize controller I gain
// @Description: Pitch axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired pitch angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_PIT_IMAX
// @DisplayName: Pitch axis stabilize controller I gain maximum
// @Description: Pitch axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum pitch rate that the I term will generate
// @Range: 0 4500
// @Unit: Centi-Degrees/Sec
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_pitch, "STB_PIT_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: STB_YAW_P
// @DisplayName: Yaw axis stabilize controller P gain
// @Description: Yaw axis stabilize (i.e. angle) controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate
// @Range: 3.000 6.000
// @User: Standard
// @Param: STB_YAW_I
// @DisplayName: Yaw axis stabilize controller I gain
// @Description: Yaw axis stabilize (i.e. angle) controller I gain. Corrects for longer-term difference in desired yaw angle and actual angle
// @Range: 0.000 0.100
// @User: Standard
// @Param: STB_YAW_IMAX
// @DisplayName: Yaw axis stabilize controller I gain maximum
// @Description: Yaw axis stabilize (i.e. angle) controller I gain maximum. Constrains the maximum yaw rate that the I term will generate
// @Range: 0 4500
// @Unit: Centi-Degrees/Sec
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_stabilize_yaw, "STB_YAW_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: THR_ALT_P
// @DisplayName: Altitude controller P gain
// @Description: Altitude controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller
2013-04-03 10:38:34 -03:00
// @Range: 1.000 3.000
2013-01-02 05:32:11 -04:00
// @User: Standard
// @Param: THR_ALT_I
// @DisplayName: Altitude controller I gain
// @Description: Altitude controller I gain. Corrects for longer-term difference in desired altitude and actual altitude
// @Range: 0.000 0.100
// @User: Standard
// @Param: THR_ALT_IMAX
// @DisplayName: Altitude controller I gain maximum
// @Description: Altitude controller I gain maximum. Constrains the maximum climb rate rate that the I term will generate
// @Range: 0 500
// @Unit: cm/s
// @User: Standard
GGROUP(pi_alt_hold, "THR_ALT_", APM_PI),
// @Param: HLD_LAT_P
// @DisplayName: Loiter latitude position controller P gain
// @Description: Loiter latitude position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller
// @Range: 0.100 0.300
// @User: Standard
// @Param: HLD_LAT_I
// @DisplayName: Loiter latitude position controller I gain
// @Description: Loiter latitude position controller I gain. Corrects for longer-term distance (in latitude) to the target location
// @Range: 0.000 0.100
// @User: Standard
// @Param: HLD_LAT_IMAX
// @DisplayName: Loiter latitude position controller I gain maximum
// @Description: Loiter latitude position controller I gain maximum. Constrains the maximum desired speed that the I term will generate
// @Range: 0 3000
// @Unit: cm/s
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_loiter_lat, "HLD_LAT_", APM_PI),
2013-01-02 05:32:11 -04:00
// @Param: HLD_LON_P
// @DisplayName: Loiter longitude position controller P gain
// @Description: Loiter longitude position controller P gain. Converts the distance (in the longitude direction) to the target location into a desired speed which is then passed to the loiter longitude rate controller
// @Range: 0.100 0.300
// @User: Standard
// @Param: HLD_LON_I
// @DisplayName: Loiter longitude position controller I gain
// @Description: Loiter longitude position controller I gain. Corrects for longer-term distance (in longitude direction) to the target location
// @Range: 0.000 0.100
// @User: Standard
// @Param: HLD_LON_IMAX
// @DisplayName: Loiter longitudeposition controller I gain maximum
// @Description: Loiter longitudeposition controller I gain maximum. Constrains the maximum desired speed that the I term will generate
// @Range: 0 3000
// @Unit: cm/s
// @User: Standard
2012-08-21 23:19:50 -03:00
GGROUP(pi_loiter_lon, "HLD_LON_", APM_PI),
// variables not in the g class which contain EEPROM saved variables
2012-12-22 04:26:27 -04:00
// variables not in the g class which contain EEPROM saved variables
#if CAMERA == ENABLED
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
#endif
2012-08-21 23:19:50 -03:00
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: INS_
2012-11-05 00:32:38 -04:00
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
#if HIL_MODE == HIL_MODE_DISABLED
GOBJECT(ins, "INS_", AP_InertialSensor),
2012-08-11 04:12:09 -03:00
#endif
2012-07-19 02:56:13 -03:00
2012-11-07 06:03:30 -04:00
// @Group: INAV_
// @Path: ../libraries/AP_InertialNav/AP_InertialNav.cpp
2012-11-07 09:24:00 -04:00
GOBJECT(inertial_nav, "INAV_", AP_InertialNav),
2012-11-07 06:03:30 -04:00
2013-04-05 06:32:36 -03:00
//@Group: WPNAV_
//@Path: ../libraries/AC_WPNav/AC_WPNav.cpp
GOBJECT(wp_nav, "WPNAV_", AC_WPNav),
2013-01-02 10:36:48 -04:00
// @Group: SR0_
2013-01-02 10:51:27 -04:00
// @Path: ./GCS_Mavlink.pde
2012-08-21 23:19:50 -03:00
GOBJECT(gcs0, "SR0_", GCS_MAVLINK),
2013-01-02 10:36:48 -04:00
// @Group: SR3_
2013-01-02 10:51:27 -04:00
// @Path: ./GCS_Mavlink.pde
2012-08-21 23:19:50 -03:00
GOBJECT(gcs3, "SR3_", GCS_MAVLINK),
2012-04-25 13:23:46 -03:00
2012-08-21 23:19:50 -03:00
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
2012-04-04 10:55:07 -03:00
2012-07-15 04:36:05 -03:00
#if MOUNT == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT_", AP_Mount),
2012-07-15 04:36:05 -03:00
#endif
2012-08-08 17:16:48 -03:00
#if MOUNT2 == ENABLED
2012-08-21 23:19:50 -03:00
// @Group: MNT2_
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount2, "MNT2_", AP_Mount),
2012-08-08 17:16:48 -03:00
#endif
2012-12-18 06:15:11 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
2012-08-21 23:19:50 -03:00
GOBJECT(sitl, "SIM_", SITL),
#endif
2012-12-18 06:15:11 -04:00
GOBJECT(barometer, "GND_", AP_Baro),
2013-01-11 21:01:10 -04:00
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
2012-12-18 06:15:11 -04:00
2012-12-13 03:07:34 -04:00
#if AP_LIMITS == ENABLED
2012-08-21 23:19:50 -03:00
//@Group: LIM_
2013-01-02 05:40:59 -04:00
//@Path: ../libraries/AP_Limits/AP_Limits.cpp,../libraries/AP_Limits/AP_Limit_GPSLock.cpp,../libraries/AP_Limits/AP_Limit_Geofence.cpp,../libraries/AP_Limits/AP_Limit_Altitude.cpp,../libraries/AP_Limits/AP_Limit_Module.cpp
2012-08-21 23:19:50 -03:00
GOBJECT(limits, "LIM_", AP_Limits),
GOBJECT(gpslock_limit, "LIM_", AP_Limit_GPSLock),
GOBJECT(geofence_limit, "LIM_", AP_Limit_Geofence),
GOBJECT(altitude_limit, "LIM_", AP_Limit_Altitude),
2012-12-13 03:07:34 -04:00
#endif
2012-08-21 23:19:50 -03:00
#if FRAME_CONFIG == HELI_FRAME
// @Group: H_
// @Path: ../libraries/AP_Motors/AP_MotorsHeli.cpp
GOBJECT(motors, "H_", AP_MotorsHeli),
#else
2013-01-02 04:05:57 -04:00
// @Group: MOT_
// @Path: ../libraries/AP_Motors/AP_Motors_Class.cpp
2012-08-21 23:19:50 -03:00
GOBJECT(motors, "MOT_", AP_Motors),
2012-06-29 02:10:35 -03:00
#endif
2012-08-21 23:19:50 -03:00
AP_VAREND
2012-02-12 07:26:36 -04:00
};
static void load_parameters(void)
{
2012-08-21 23:19:50 -03:00
// change the default for the AHRS_GPS_GAIN for ArduCopter
// if it hasn't been set by the user
if (!ahrs.gps_gain.load()) {
2012-10-21 18:32:39 -03:00
ahrs.gps_gain.set_and_save(1.0);
2012-08-21 23:19:50 -03:00
}
// setup different AHRS gains for ArduCopter than the default
// but allow users to override in their config
if (!ahrs._kp.load()) {
ahrs._kp.set_and_save(0.1);
}
if (!ahrs._kp_yaw.load()) {
ahrs._kp_yaw.set_and_save(0.1);
}
2012-09-29 12:25:40 -03:00
#if SECONDARY_DMP_ENABLED == ENABLED
if (!ahrs2._kp.load()) {
ahrs2._kp.set(0.1);
}
if (!ahrs2._kp_yaw.load()) {
ahrs2._kp_yaw.set(0.1);
}
#endif
2013-04-16 06:47:39 -03:00
// setup different Compass learn setting for ArduCopter than the default
// but allow users to override in their config
if (!compass._learn.load()) {
compass._learn.set_and_save(0);
}
2012-08-21 23:19:50 -03:00
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
2012-11-21 02:08:03 -04:00
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
2012-08-21 23:19:50 -03:00
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
default_dead_zones();
2012-11-21 02:08:03 -04:00
cliSerial->println_P(PSTR("done."));
2012-08-21 23:19:50 -03:00
} else {
uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
2012-11-21 02:08:03 -04:00
cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before);
2012-08-21 23:19:50 -03:00
}
2012-02-12 07:26:36 -04:00
}