ardupilot/APMrover2/Steering.pde

237 lines
7.5 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit(int16_t last_throttle)
{
// if slew limit rate is set to zero then do not slew limit
if (g.throttle_slewrate) {
// limit throttle change by the given percentage per second
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min);
// allow a minimum change of 1 PWM per cycle
if (temp < 1) {
temp = 1;
}
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp);
}
}
/*
check for triggering of start of auto mode
*/
static bool auto_check_trigger(void)
{
// only applies to AUTO mode
if (control_mode != AUTO) {
return true;
}
// if already triggered, then return true, so you don't
// need to hold the switch down
if (auto_triggered) {
return true;
}
if (g.auto_trigger_pin == -1 && g.auto_kickstart == 0.0f) {
// no trigger configured - let's go!
auto_triggered = true;
return true;
}
if (g.auto_trigger_pin != -1) {
int8_t pin = hal.gpio->analogPinToDigitalPin(g.auto_trigger_pin);
if (pin != -1) {
// ensure we are in input mode
hal.gpio->pinMode(pin, GPIO_INPUT);
// enable pullup
hal.gpio->write(pin, 1);
if (hal.gpio->read(pin) == 0) {
gcs_send_text_P(SEVERITY_LOW, PSTR("Triggered AUTO with pin"));
auto_triggered = true;
return true;
}
}
}
if (g.auto_kickstart != 0.0f) {
float xaccel = ins.get_accel().x;
if (xaccel >= g.auto_kickstart) {
gcs_send_text_fmt(PSTR("Triggered AUTO xaccel=%.1f"), xaccel);
auto_triggered = true;
return true;
}
}
return false;
}
/*
calculate the throtte for auto-throttle modes
*/
static void calc_throttle(float target_speed)
{
if (!auto_check_trigger()) {
g.channel_throttle.servo_out = g.throttle_min.get();
return;
}
if (target_speed <= 0) {
// cope with zero requested speed
g.channel_throttle.servo_out = g.throttle_min.get();
return;
}
int throttle_target = g.throttle_cruise + throttle_nudge;
/*
reduce target speed in proportion to turning rate, up to the
SPEED_TURN_GAIN percentage.
*/
float steer_rate = fabsf((nav_steer_cd/nav_gain_scaler) / (float)SERVO_MAX);
steer_rate = constrain(steer_rate, 0.0, 1.0);
float reduction = 1.0 - steer_rate*(100 - g.speed_turn_gain)*0.01;
if (control_mode >= AUTO && wp_distance <= g.speed_turn_dist) {
// in auto-modes we reduce speed when approaching waypoints
float reduction2 = 1.0 - (100-g.speed_turn_gain)*0.01*((g.speed_turn_dist - wp_distance)/g.speed_turn_dist);
if (reduction2 < reduction) {
reduction = reduction2;
}
}
// reduce the target speed by the reduction factor
target_speed *= reduction;
groundspeed_error = target_speed - ground_speed;
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100);
// also reduce the throttle by the reduction factor. This gives a
// much faster response in turns
throttle *= reduction;
g.channel_throttle.servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get());
}
/*****************************************
* Calculate desired turn angles (in medium freq loop)
*****************************************/
static void calc_nav_steer()
{
// Adjust gain based on ground speed
if (ground_speed < 0.01) {
nav_gain_scaler = 1.4f;
} else {
nav_gain_scaler = g.speed_cruise / ground_speed;
}
nav_gain_scaler = constrain(nav_gain_scaler, 0.2f, 1.4f);
// Calculate the required turn of the wheels rover
// ----------------------------------------
// negative error = left turn
// positive error = right turn
nav_steer_cd = g.pidNavSteer.get_pid_4500(bearing_error_cd, nav_gain_scaler);
// avoid obstacles, if any
nav_steer_cd += obstacle.turn_angle*100;
g.channel_steer.servo_out = nav_steer_cd;
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int16_t last_throttle = g.channel_throttle.radio_out;
if ((control_mode == MANUAL || control_mode == LEARNING) &&
(g.skid_steer_out == g.skid_steer_in)) {
// do a direct pass through of radio values
g.channel_steer.radio_out = hal.rcin->read(CH_STEER);
g.channel_throttle.radio_out = hal.rcin->read(CH_THROTTLE);
if (failsafe.bits & FAILSAFE_EVENT_THROTTLE) {
// suppress throttle if in failsafe and manual
g.channel_throttle.radio_out = g.channel_throttle.radio_trim;
}
} else {
g.channel_steer.calc_pwm();
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out,
g.throttle_min.get(),
g.throttle_max.get());
if ((failsafe.bits & FAILSAFE_EVENT_THROTTLE) && control_mode < AUTO) {
// suppress throttle if in failsafe
g.channel_throttle.servo_out = 0;
}
// convert 0 to 100% into PWM
g.channel_throttle.calc_pwm();
// limit throttle movement speed
throttle_slew_limit(last_throttle);
if (g.skid_steer_out) {
// convert the two radio_out values to skid steering values
/*
mixing rule:
steering = motor1 - motor2
throttle = 0.5*(motor1 + motor2)
motor1 = throttle + 0.5*steering
motor2 = throttle - 0.5*steering
*/
float steering_scaled = g.channel_steer.norm_output();
float throttle_scaled = g.channel_throttle.norm_output();
float motor1 = throttle_scaled + 0.5*steering_scaled;
float motor2 = throttle_scaled - 0.5*steering_scaled;
g.channel_steer.servo_out = 4500*motor1;
g.channel_throttle.servo_out = 100*motor2;
g.channel_steer.calc_pwm();
g.channel_throttle.calc_pwm();
}
}
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
hal.rcout->write(CH_1, g.channel_steer.radio_out); // send to Servos
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_2.output_ch(CH_2);
g.rc_4.output_ch(CH_4);
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
#endif
}
static bool demoing_servos;
static void demo_servos(uint8_t i) {
while(i > 0) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
demoing_servos = true;
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
hal.rcout->write(1, 1400);
mavlink_delay(400);
hal.rcout->write(1, 1600);
mavlink_delay(200);
hal.rcout->write(1, 1500);
#endif
demoing_servos = false;
mavlink_delay(400);
i--;
}
}