ardupilot/APMrover2/Attitude.pde

156 lines
5.1 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
//****************************************************************
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed.
//****************************************************************
static void learning()
{
// Calculate desired servo output for the turn // Wheels Direction
// ---------------------------------------------
g.channel_roll.servo_out = nav_roll;
g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain;
g.channel_rudder.servo_out = g.channel_roll.servo_out;
}
/*****************************************
* Throttle slew limit
*****************************************/
static void throttle_slew_limit(int16_t last_throttle)
{
// if slew limit rate is set to zero then do not slew limit
if (g.throttle_slewrate) {
// limit throttle change by the given percentage per second
float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min);
// allow a minimum change of 1 PWM per cycle
if (temp < 1) {
temp = 1;
}
g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp);
}
}
static void calc_throttle()
{
int rov_speed;
int throttle_target = g.throttle_cruise + throttle_nudge;
rov_speed = g.airspeed_cruise;
if (speed_boost)
rov_speed *= g.booster;
groundspeed_error = rov_speed - (float)ground_speed;
throttle = throttle_target + g.pidTeThrottle.get_pid(groundspeed_error);
g.channel_throttle.servo_out = constrain_int16(throttle, 0, g.throttle_max.get());
}
/*****************************************
* Calculate desired turn angles (in medium freq loop)
*****************************************/
static void calc_nav_roll()
{
// Adjust gain based on ground speed
nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0);
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4);
// Calculate the required turn of the wheels rover
// ----------------------------------------
// negative error = left turn
// positive error = right turn
nav_roll = g.pidNavRoll.get_pid(bearing_error, nav_gain_scaler); //returns desired bank angle in degrees*100
if(obstacle) { // obstacle avoidance
nav_roll += 9000; // if obstacle in front turn 90° right
speed_boost = false;
}
nav_roll = constrain_int16(nav_roll, -g.roll_limit.get(), g.roll_limit.get());
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
static void reset_I(void)
{
g.pidNavRoll.reset_I();
g.pidTeThrottle.reset_I();
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
static void set_servos(void)
{
int16_t last_throttle = g.channel_throttle.radio_out;
if((control_mode == MANUAL) || (control_mode == LEARNING)){
// do a direct pass through of radio values
g.channel_roll.radio_out = g.channel_roll.radio_in;
2012-12-18 17:00:17 -04:00
if(obstacle) // obstacle in front, turn right in Stabilize mode
g.channel_roll.radio_out -= 500;
g.channel_pitch.radio_out = g.channel_pitch.radio_in;
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_rudder.radio_out = g.channel_roll.radio_in;
} else {
g.channel_roll.calc_pwm();
g.channel_pitch.calc_pwm();
g.channel_rudder.calc_pwm();
g.channel_throttle.radio_out = g.channel_throttle.radio_in;
g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get());
}
if (control_mode >= AUTO) {
// convert 0 to 100% into PWM
g.channel_throttle.calc_pwm();
// limit throttle movement speed
throttle_slew_limit(last_throttle);
}
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
// send values to the PWM timers for output
// ----------------------------------------
hal.rcout->write(CH_1, g.channel_roll.radio_out); // send to Servos
hal.rcout->write(CH_2, g.channel_pitch.radio_out); // send to Servos
hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos
hal.rcout->write(CH_4, g.channel_rudder.radio_out); // send to Servos
// Route configurable aux. functions to their respective servos
g.rc_5.output_ch(CH_5);
g.rc_6.output_ch(CH_6);
g.rc_7.output_ch(CH_7);
g.rc_8.output_ch(CH_8);
#endif
}
static bool demoing_servos;
static void demo_servos(uint8_t i) {
while(i > 0) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!"));
demoing_servos = true;
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS
hal.rcout->write(1, 1400);
mavlink_delay(400);
hal.rcout->write(1, 1600);
mavlink_delay(200);
hal.rcout->write(1, 1500);
#endif
demoing_servos = false;
mavlink_delay(400);
i--;
}
}