ardupilot/Arducopter/Arducopter.pde

779 lines
24 KiB
Plaintext
Raw Normal View History

/* ********************************************************************** */
/* ArduCopter Quadcopter code */
/* */
/* Quadcopter code from AeroQuad project and ArduIMU quadcopter project */
/* IMU DCM code from Diydrones.com */
/* (Original ArduIMU code from Jordi Muñoz and William Premerlani) */
/* Ardupilot core code : from DIYDrones.com development team */
/* Authors : Arducopter development team */
/* Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, */
/* Jani Hirvinen, Ken McEwans, Roberto Navoni, */
/* Sandro Benigno, Chris Anderson */
/* Date : 04-07-2010 */
/* Version : 1.3 beta */
/* Hardware : ArduPilot Mega + Sensor Shield (Production versions) */
/* Mounting position : RC connectors pointing backwards */
/* This code use this libraries : */
/* APM_RC : Radio library (with InstantPWM) */
/* APM_ADC : External ADC library */
/* DataFlash : DataFlash log library */
/* APM_BMP085 : BMP085 barometer library */
/* APM_Compass : HMC5843 compass library [optional] */
/* GPS_UBLOX or GPS_NMEA: GPS library [optional] */
/* ********************************************************************** */
/*
**** Switch Functions *****
AUX1 ON = Stable Mode
AUX1 OFF = Acro Mode
GEAR ON = GPS Hold
GEAR OFF = Flight Assist (Stable Mode)
**** LED Feedback ****
Green LED On = APM Initialization Finished
Yellow LED On = GPS Hold Mode
Yellow LED Off = Flight Assist Mode (No GPS)
Red LED On = GPS Fix
Red LED Off = No GPS Fix
*/
#include <Wire.h>
#include <APM_ADC.h>
#include <APM_RC.h>
#include <DataFlash.h>
#include <APM_Compass.h>
// Put your GPS library here:
#include <GPS_NMEA.h> // MTK GPS
//#include <GPS_UBLOX.h>
// EEPROM storage for user configurable values
#include <EEPROM.h>
#include "UserSettings.h"
/* APM Hardware definitions */
#define LED_Yellow 36
#define LED_Red 35
#define LED_Green 37
#define RELE_pin 47
#define SW1_pin 41
#define SW2_pin 40
/* *** */
/* ***************************************************************************** */
/* CONFIGURATION PART */
/* ***************************************************************************** */
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412
// Tested value : 408
#define GRAVITY 408 //this equivalent to 1G in the raw data coming from the accelerometer
#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
// IDG500 Sensitivity (from datasheet) => 2.0mV/º/s, 0.8mV/ADC step => 0.8/3.33 = 0.4
// Tested values :
#define Gyro_Gain_X 0.4 //X axis Gyro gain
#define Gyro_Gain_Y 0.41 //Y axis Gyro gain
#define Gyro_Gain_Z 0.41 //Z axis Gyro gain
#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second
/*For debugging purposes*/
#define OUTPUTMODE 1 //If value = 1 will print the corrected data, 0 will print uncorrected data of the gyros (with drift), 2 Accel only data
//Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
uint8_t sensors[6] = {1,2,0,4,5,6}; // For ArduPilot Mega Sensor Shield Hardware
//Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
int SENSOR_SIGN[]={1,-1,-1,-1,1,1,-1,-1,-1}; //{-1,1,-1,1,-1,1,-1,-1,-1};
int AN[6]; //array that store the 6 ADC channels
int AN_OFFSET[6]; //Array that store the Offset of the gyros and accelerometers
float G_Dt=0.02; // Integration time for the gyros (DCM algorithm)
float Accel_Vector[3]= {0,0,0}; //Store the acceleration in a vector
float Accel_Vector_unfiltered[3]= {0,0,0}; //Store the acceleration in a vector
//float Accel_magnitude;
//float Accel_weight;
float Gyro_Vector[3]= {0,0,0};//Store the gyros rutn rate in a vector
float Omega_Vector[3]= {0,0,0}; //Corrected Gyro_Vector data
float Omega_P[3]= {0,0,0};//Omega Proportional correction
float Omega_I[3]= {0,0,0};//Omega Integrator
float Omega[3]= {0,0,0};
float errorRollPitch[3]= {0,0,0};
float errorYaw[3]= {0,0,0};
float errorCourse=0;
float COGX=0; //Course overground X axis
float COGY=1; //Course overground Y axis
float roll=0;
float pitch=0;
float yaw=0;
unsigned int counter=0;
float DCM_Matrix[3][3]= {
{1,0,0}
,{0,1,0}
,{0,0,1}
};
float Update_Matrix[3][3]={{0,1,2},{3,4,5},{6,7,8}}; //Gyros here
float Temporary_Matrix[3][3]={
{0,0,0}
,{0,0,0}
,{0,0,0}
};
// GPS variables
float speed_3d=0;
int GPS_ground_speed=0;
long timer=0; //general porpuse timer
long timer_old;
// Attitude control variables
float command_rx_roll=0; // User commands
float command_rx_roll_old;
float command_rx_roll_diff;
float command_rx_pitch=0;
float command_rx_pitch_old;
float command_rx_pitch_diff;
float command_rx_yaw=0;
float command_rx_yaw_diff;
int control_roll; // PID control results
int control_pitch;
int control_yaw;
float K_aux;
// Attitude PID controls
float roll_I=0;
float roll_D;
float err_roll;
float pitch_I=0;
float pitch_D;
float err_pitch;
float yaw_I=0;
float yaw_D;
float err_yaw;
//Position control
long target_longitude;
long target_lattitude;
byte target_position;
float gps_err_roll;
float gps_err_roll_old;
float gps_roll_D;
float gps_roll_I=0;
float gps_err_pitch;
float gps_err_pitch_old;
float gps_pitch_D;
float gps_pitch_I=0;
float command_gps_roll;
float command_gps_pitch;
//Altitude control
int Initial_Throttle;
int target_sonar_altitude;
int err_altitude;
int err_altitude_old;
float command_altitude;
float altitude_I;
float altitude_D;
// Sonar variables
int Sonar_value=0;
#define SonarToCm(x) (x*1.26) // Sonar raw value to centimeters
int Sonar_Counter=0;
// AP_mode : 1=> Position hold 2=>Stabilization assist mode (normal mode)
byte AP_mode = 2;
long t0;
int num_iter;
float aux_debug;
// Radio definitions
int Neutro_yaw;
int ch_roll;
int ch_pitch;
int ch_throttle;
int ch_yaw;
int ch_aux;
int ch_aux2;
#define CHANN_CENTER 1500
#define MIN_THROTTLE 1040 // Throttle pulse width at minimun...
// Motor variables
#define FLIGHT_MODE_+
//#define FLIGHT_MODE_X
int frontMotor;
int backMotor;
int leftMotor;
int rightMotor;
byte motorArmed = 0;
int minThrottle = 0;
// Serial communication
#define CONFIGURATOR
char queryType;
long tlmTimer = 0;
/* ************************************************************ */
/* Altitude control... (based on sonar) */
void Altitude_control(int target_sonar_altitude)
{
err_altitude_old = err_altitude;
err_altitude = target_sonar_altitude - Sonar_value;
altitude_D = (float)(err_altitude-err_altitude_old)/G_Dt;
altitude_I += (float)err_altitude*G_Dt;
altitude_I = constrain(altitude_I,-100,100);
command_altitude = Initial_Throttle + KP_ALTITUDE*err_altitude + KD_ALTITUDE*altitude_D + KI_ALTITUDE*altitude_I;
}
/* ************************************************************ */
/* Position control... */
void Position_control(long lat_dest, long lon_dest)
{
long Lon_diff;
long Lat_diff;
float gps_err_roll;
float gps_err_pitch;
Lon_diff = lon_dest - GPS.Longitude;
Lat_diff = lat_dest - GPS.Lattitude;
// ROLL
gps_err_roll_old = gps_err_roll;
//Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0]
gps_err_roll = (float)Lon_diff*GEOG_CORRECTION_FACTOR*DCM_Matrix[0][0] - (float)Lat_diff*DCM_Matrix[1][0];
gps_roll_D = (gps_err_roll-gps_err_roll_old)/G_Dt;
gps_roll_I += gps_err_roll*G_Dt;
gps_roll_I = constrain(gps_roll_I,-500,500);
command_gps_roll = KP_GPS_ROLL*gps_err_roll + KD_GPS_ROLL*gps_roll_D + KI_GPS_ROLL*gps_roll_I;
command_gps_roll = constrain(command_gps_roll,-GPS_MAX_ANGLE,GPS_MAX_ANGLE); // Limit max command
// PITCH
gps_err_pitch_old = gps_err_pitch;
gps_err_pitch = -(float)Lat_diff*DCM_Matrix[0][0]- (float)Lon_diff*GEOG_CORRECTION_FACTOR*DCM_Matrix[1][0];
gps_pitch_D = (gps_err_pitch-gps_err_pitch_old)/G_Dt;
gps_pitch_I += gps_err_pitch*G_Dt;
gps_pitch_I = constrain(gps_pitch_I,-500,500);
command_gps_pitch = KP_GPS_PITCH*gps_err_pitch + KD_GPS_PITCH*gps_pitch_D + KI_GPS_PITCH*gps_pitch_I;
command_gps_pitch = constrain(command_gps_pitch,-GPS_MAX_ANGLE,GPS_MAX_ANGLE); // Limit max command
}
/* ************************************************************ */
// ROLL, PITCH and YAW PID controls...
// Input : desired Roll, Pitch and Yaw absolute angles. Output : Motor commands
// Stable Mode
void Attitude_control()
{
// ROLL CONTROL
if (AP_mode==2) // Normal Mode => Stabilization mode
err_roll = command_rx_roll - ToDeg(roll);
else
err_roll = (command_rx_roll + command_gps_roll) - ToDeg(roll); // Position control
err_roll = constrain(err_roll,-25,25); // to limit max roll command...
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
// D term implementation => two parts: gyro part and command part
// To have a better (faster) response we can use the Gyro reading directly for the Derivative term...
// Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
// We also add a part that takes into account the command from user (stick) to make the system more responsive to user inputs
roll_D = command_rx_roll_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[0]); // Take into account Angular velocity of the stick (command)
// PID control
K_aux = KP_QUAD_ROLL; // Comment this out if you want to use transmitter to adjust gain
control_roll = K_aux*err_roll + KD_QUAD_ROLL*roll_D + KI_QUAD_ROLL*roll_I;
// PITCH CONTROL
if (AP_mode==2) // Normal mode => Stabilization mode
err_pitch = command_rx_pitch - ToDeg(pitch);
else
err_pitch = (command_rx_pitch + command_gps_pitch) - ToDeg(pitch); // Position Control
err_pitch = constrain(err_pitch,-25,25); // to limit max pitch command...
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
// D term
pitch_D = command_rx_pitch_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[1]);
// PID control
K_aux = KP_QUAD_PITCH; // Comment this out if you want to use transmitter to adjust gain
control_pitch = K_aux*err_pitch + KD_QUAD_PITCH*pitch_D + KI_QUAD_PITCH*pitch_I;
// YAW CONTROL
err_yaw = command_rx_yaw - ToDeg(yaw);
if (err_yaw > 180) // Normalize to -180,180
err_yaw -= 360;
else if(err_yaw < -180)
err_yaw += 360;
err_yaw = constrain(err_yaw,-60,60); // to limit max yaw command...
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
yaw_D = command_rx_yaw_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[2]);
// PID control
control_yaw = KP_QUAD_YAW*err_yaw + KD_QUAD_YAW*yaw_D + KI_QUAD_YAW*yaw_I;
}
// Acro Mode
void Rate_control()
{
static float previousRollRate, previousPitchRate, previousYawRate;
float currentRollRate, currentPitchRate, currentYawRate;
// ROLL CONTROL
currentRollRate = read_adc(0); // I need a positive sign here
err_roll = ((ch_roll-1500) * xmitFactor) - currentRollRate;
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
roll_D = currentRollRate - previousRollRate;
previousRollRate = currentRollRate;
// PID control
control_roll = Kp_RateRoll*err_roll + Kd_RateRoll*roll_D + Ki_RateRoll*roll_I;
// PITCH CONTROL
currentPitchRate = read_adc(1);
// err_pitch = ((1500-ch_pitch) * xmitFactor) - currentPitchRate; // was incorrect, inverted ELE between Arco / Stable
err_pitch = ((ch_pitch - 1500) * xmitFactor) - currentPitchRate; // correct one, now ELE is ok on both modes
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
pitch_D = currentPitchRate - previousPitchRate;
previousPitchRate = currentPitchRate;
// PID control
control_pitch = Kp_RatePitch*err_pitch + Kd_RatePitch*pitch_D + Ki_RatePitch*pitch_I;
// YAW CONTROL
currentYawRate = read_adc(2);
err_yaw = ((ch_yaw-1500)* xmitFactor) - currentYawRate;
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
yaw_D = currentYawRate - previousYawRate;
previousYawRate = currentYawRate;
// PID control
K_aux = KP_QUAD_YAW; // Comment this out if you want to use transmitter to adjust gain
control_yaw = Kp_RateYaw*err_yaw + Kd_RateYaw*yaw_D + Ki_RateYaw*yaw_I;
}
// Maximun slope filter for radio inputs... (limit max differences between readings)
int channel_filter(int ch, int ch_old)
{
int diff_ch_old;
if (ch_old==0) // ch_old not initialized
return(ch);
diff_ch_old = ch - ch_old; // Difference with old reading
if (diff_ch_old<0)
{
if (diff_ch_old<-40)
return(ch_old-40); // We limit the max difference between readings
}
else
{
if (diff_ch_old>40)
return(ch_old+40);
}
//return((ch+ch_old)>>1); // Small filtering
return(ch);
}
/* ****** SETUP ********************************************************************* */
void setup()
{
int i;
float aux_float[3];
pinMode(LED_Yellow,OUTPUT); //Yellow LED A (PC1)
pinMode(LED_Red,OUTPUT); //Red LED B (PC2)
pinMode(LED_Green,OUTPUT); //Green LED C (PC0)
pinMode(SW1_pin,INPUT); //Switch SW1 (pin PG0)
pinMode(RELE_pin,OUTPUT); // Rele output
digitalWrite(RELE_pin,LOW);
delay(250);
APM_RC.Init(); // APM Radio initialization
APM_ADC.Init(); // APM ADC library initialization
DataFlash.Init(); // DataFlash log initialization
GPS.Init(); // GPS Initialization
readUserConfig(); // Load user configurable items from EEPROM
// RC channels Initialization (Quad motors)
APM_RC.OutputCh(0,MIN_THROTTLE); // Motors stoped
APM_RC.OutputCh(1,MIN_THROTTLE);
APM_RC.OutputCh(2,MIN_THROTTLE);
APM_RC.OutputCh(3,MIN_THROTTLE);
if (MAGNETOMETER == 1)
APM_Compass.Init(); // I2C initialization
DataFlash.StartWrite(1); // Start a write session on page 1
//Serial.begin(57600);
Serial.begin(115200);
//Serial.println();
//Serial.println("ArduCopter Quadcopter v1.0");
// Check if we enable the DataFlash log Read Mode (switch)
// If we press switch 1 at startup we read the Dataflash eeprom
while (digitalRead(SW1_pin)==0)
{
Serial.println("Entering Log Read Mode...");
Log_Read(1,1000);
delay(30000);
}
//delay(3000);
Read_adc_raw();
delay(20);
// Offset values for accels and gyros...
AN_OFFSET[3] = acc_offset_x;
AN_OFFSET[4] = acc_offset_y;
AN_OFFSET[5] = acc_offset_z;
aux_float[0] = gyro_offset_roll;
aux_float[1] = gyro_offset_pitch;
aux_float[2] = gyro_offset_yaw;
// Take the gyro offset values
for(i=0;i<300;i++)
{
Read_adc_raw();
for(int y=0; y<=2; y++) // Read initial ADC values for gyro offset.
{
aux_float[y]=aux_float[y]*0.8 + AN[y]*0.2;
//Serial.print(AN[y]);
//Serial.print(",");
}
//Serial.println();
Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
delay(14);
}
for(int y=0; y<=2; y++)
AN_OFFSET[y]=aux_float[y];
Neutro_yaw = APM_RC.InputCh(3); // Take yaw neutral radio value
#ifndef CONFIGURATOR
for(i=0;i<6;i++)
{
Serial.print("AN[]:");
Serial.println(AN_OFFSET[i]);
}
Serial.print("Yaw neutral value:");
Serial.println(Neutro_yaw);
#endif
#if (RADIO_TEST_MODE) // RADIO TEST MODE TO TEST RADIO CHANNELS
while(1)
{
if (APM_RC.GetState()==1)
{
Serial.print("AIL:");
Serial.print(APM_RC.InputCh(0));
Serial.print("ELE:");
Serial.print(APM_RC.InputCh(1));
Serial.print("THR:");
Serial.print(APM_RC.InputCh(2));
Serial.print("YAW:");
Serial.print(APM_RC.InputCh(3));
Serial.print("AUX(mode):");
Serial.print(APM_RC.InputCh(4));
Serial.print("AUX2:");
Serial.print(APM_RC.InputCh(5));
Serial.println();
delay(200);
}
}
#endif
delay(1000);
DataFlash.StartWrite(1); // Start a write session on page 1
timer = millis();
tlmTimer = millis();
Read_adc_raw(); // Initialize ADC readings...
delay(20);
motorArmed = 0;
digitalWrite(LED_Green,HIGH); // Ready to go...
}
/* ***** MAIN LOOP ***** */
void loop(){
int aux;
int i;
float aux_float;
//Log variables
int log_roll;
int log_pitch;
int log_yaw;
if((millis()-timer)>=10) // Main loop 100Hz
{
counter++;
timer_old = timer;
timer=millis();
G_Dt = (timer-timer_old)/1000.0; // Real time of loop run
// IMU DCM Algorithm
Read_adc_raw();
if (MAGNETOMETER == 1) {
if (counter > 10) // Read compass data at 10Hz... (10 loop runs)
{
counter=0;
APM_Compass.Read(); // Read magnetometer
APM_Compass.Calculate(roll,pitch); // Calculate heading
}
}
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
// *****************
// Output data
log_roll = ToDeg(roll)*10;
log_pitch = ToDeg(pitch)*10;
log_yaw = ToDeg(yaw)*10;
#ifndef CONFIGURATOR
Serial.print(log_roll);
Serial.print(",");
Serial.print(log_pitch);
Serial.print(",");
Serial.print(log_yaw);
for (int i=0;i<6;i++)
{
Serial.print(AN[i]);
Serial.print(",");
}
#endif
// Write Sensor raw data to DataFlash log
Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
// Write attitude to DataFlash log
Log_Write_Attitude(log_roll,log_pitch,log_yaw);
if (APM_RC.GetState()==1) // New radio frame?
{
// Commands from radio Rx...
// Stick position defines the desired angle in roll, pitch and yaw
ch_roll = channel_filter(APM_RC.InputCh(0),ch_roll);
ch_pitch = channel_filter(APM_RC.InputCh(1),ch_pitch);
ch_throttle = channel_filter(APM_RC.InputCh(2),ch_throttle);
ch_yaw = channel_filter(APM_RC.InputCh(3),ch_yaw);
ch_aux = APM_RC.InputCh(4);
ch_aux2 = APM_RC.InputCh(5);
command_rx_roll_old = command_rx_roll;
command_rx_roll = (ch_roll-CHANN_CENTER)/12.0;
command_rx_roll_diff = command_rx_roll-command_rx_roll_old;
command_rx_pitch_old = command_rx_pitch;
command_rx_pitch = (ch_pitch-CHANN_CENTER)/12.0;
command_rx_pitch_diff = command_rx_pitch-command_rx_pitch_old;
aux_float = (ch_yaw-Neutro_yaw)/180.0;
command_rx_yaw += aux_float;
command_rx_yaw_diff = aux_float;
if (command_rx_yaw > 180) // Normalize yaw to -180,180 degrees
command_rx_yaw -= 360.0;
else if (command_rx_yaw < -180)
command_rx_yaw += 360.0;
// Read through comments in Attitude_control() if you wish to use transmitter to adjust P gains
// I use K_aux (channel 6) to adjust gains linked to a knob in the radio... [not used now]
//K_aux = K_aux*0.8 + ((ch_aux-1500)/100.0 + 0.6)*0.2;
K_aux = K_aux*0.8 + ((ch_aux2-1500)/300.0 + 1.7)*0.2; // /300 + 1.0
if (K_aux < 0)
K_aux = 0;
//Serial.print(",");
//Serial.print(K_aux);
// We read the Quad Mode from Channel 5
if (ch_aux < 1200)
{
AP_mode = 1; // Position hold mode (GPS position control)
digitalWrite(LED_Yellow,HIGH); // Yellow LED On
}
else
{
AP_mode = 2; // Normal mode (Stabilization assist mode)
digitalWrite(LED_Yellow,LOW); // Yellow LED off
}
// Write Radio data to DataFlash log
Log_Write_Radio(ch_roll,ch_pitch,ch_throttle,ch_yaw,int(K_aux*100),(int)AP_mode);
} // END new radio data
if (AP_mode==1) // Position Control
{
if (target_position==0) // If this is the first time we switch to Position control, actual position is our target position
{
target_lattitude = GPS.Lattitude;
target_longitude = GPS.Longitude;
#ifndef CONFIGURATOR
Serial.println();
Serial.print("* Target:");
Serial.print(target_longitude);
Serial.print(",");
Serial.println(target_lattitude);
#endif
target_position=1;
//target_sonar_altitude = sonar_value;
//Initial_Throttle = ch3;
// Reset I terms
altitude_I = 0;
gps_roll_I = 0;
gps_pitch_I = 0;
}
}
else
target_position=0;
//Read GPS
GPS.Read();
if (GPS.NewData) // New GPS data?
{
GPS.NewData=0; // We Reset the flag...
//Output GPS data
//Serial.print(",");
Serial.print(GPS.Lattitude);
Serial.print(",");
Serial.print(GPS.Longitude);
// Write GPS data to DataFlash log
Log_Write_GPS(GPS.Time, GPS.Lattitude,GPS.Longitude,GPS.Altitude, GPS.Ground_Speed, GPS.Ground_Course, GPS.Fix, GPS.NumSats);
if (GPS.Fix)
digitalWrite(LED_Red,HIGH); // GPS Fix => Blue LED
else
digitalWrite(LED_Red,LOW);
if (AP_mode==1)
{
if ((target_position==1)&&(GPS.Fix))
{
Position_control(target_lattitude,target_longitude); // Call position hold routine
}
else
{
//Serial.print("NOFIX");
command_gps_roll=0;
command_gps_pitch=0;
}
}
}
// Control methodology selected using AUX2
if (ch_aux2 < 1200)
Attitude_control();
else
{
Rate_control();
// Reset yaw, so if we change to stable mode we continue with the actual yaw direction
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
}
// Arm motor output
if (ch_throttle < 1200) {
control_yaw = 0;
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
if (ch_yaw > 1800) {
motorArmed = 1;
minThrottle = 1100;
}
if (ch_yaw < 1200) {
motorArmed = 0;
minThrottle = MIN_THROTTLE;
}
}
// Quadcopter mix
// Ask Jose if we still need this IF statement, and if we want to do an ESC calibration
if (motorArmed == 1) {
#ifdef FLIGHT_MODE_+
rightMotor = constrain(ch_throttle - control_roll - control_yaw, minThrottle, 2000);
leftMotor = constrain(ch_throttle + control_roll - control_yaw, minThrottle, 2000);
frontMotor = constrain(ch_throttle + control_pitch + control_yaw, minThrottle, 2000);
backMotor = constrain(ch_throttle - control_pitch + control_yaw, minThrottle, 2000);
#endif
#ifdef FLIGHT_MODE_X
frontMotor = constrain(ch_throttle + control_roll + control_pitch - control_yaw, minThrottle, 2000); // front left motor
rightMotor = constrain(ch_throttle - control_roll + control_pitch + control_yaw, minThrottle, 2000); // front right motor
leftMotor = constrain(ch_throttle + control_roll - control_pitch + control_yaw, minThrottle, 2000); // rear left motor
backMotor = constrain(ch_throttle - control_roll - control_pitch - control_yaw, minThrottle, 2000); // rear right motor
#endif
}
if (motorArmed == 0) {
rightMotor = MIN_THROTTLE;
leftMotor = MIN_THROTTLE;
frontMotor = MIN_THROTTLE;
backMotor = MIN_THROTTLE;
roll_I = 0; // reset I terms of PID controls
pitch_I = 0;
yaw_I = 0;
// Initialize yaw command to actual yaw when throttle is down...
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
}
APM_RC.OutputCh(0, rightMotor); // Right motor
APM_RC.OutputCh(1, leftMotor); // Left motor
APM_RC.OutputCh(2, frontMotor); // Front motor
APM_RC.OutputCh(3, backMotor); // Back motor
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
#ifndef CONFIGURATOR
Serial.println(); // Line END
#endif
}
#ifdef CONFIGURATOR
if((millis()-tlmTimer)>=100) {
readSerialCommand();
sendSerialTelemetry();
tlmTimer = millis();
}
#endif
}