mirror of https://github.com/ArduPilot/ardupilot
Adjusted IMU gains and Accelerometers dynamic weighting
git-svn-id: https://arducopter.googlecode.com/svn/trunk@19 f9c3cf11-9bcb-44bc-f272-b75c42450872
This commit is contained in:
parent
015b2599c6
commit
830fa2b104
133
ArduCopter.pde
133
ArduCopter.pde
|
@ -5,10 +5,11 @@
|
|||
/* (Original ArduIMU code from Jordi Muñoz and William Premerlani) */
|
||||
/* Ardupilot core code : from DIYDrones.com development team */
|
||||
/* Quadcopter code from AeroQuad project and ArduIMU quadcopter project */
|
||||
/* Authors : Jose Julio, Ted Carancho, Jordi Muñoz */
|
||||
/* Date : 27-05-2010 */
|
||||
/* Version : 1.0 beta */
|
||||
/* Hardware : ArduPilot Mega + Sensor Shield (codename:FOXTRAP2) */
|
||||
/* Authors : Jose Julio, Ted Carancho (aeroquad), Jordi Muñoz, */
|
||||
/* Roberto Navoni, ... (Arcucopter team) */
|
||||
/* Date : 17-06-2010 */
|
||||
/* Version : 1.1 beta */
|
||||
/* Hardware : ArduPilot Mega + Sensor Shield (Production versions) */
|
||||
/* This code use this libraries : */
|
||||
/* APM_RC_QUAD : Radio library (adapted for quads) */
|
||||
/* APM_ADC : External ADC library */
|
||||
|
@ -32,7 +33,7 @@
|
|||
#define LED_Green 37
|
||||
#define RELE_pin 47
|
||||
#define SW1_pin 41
|
||||
#define SW2_pin 42
|
||||
#define SW2_pin 40
|
||||
/* *** */
|
||||
|
||||
/* ***************************************************************************** */
|
||||
|
@ -45,46 +46,46 @@
|
|||
#define MAGNETOMETER 1 // 0 : No magnetometer, 1: Magnetometer
|
||||
|
||||
// QuadCopter Attitude control PID GAINS
|
||||
#define KP_QUAD_ROLL 1.7 // 1.5 //1.75
|
||||
#define KD_QUAD_ROLL 0.45 //0.35 // 0.4 //Absolute max:0.85
|
||||
#define KI_QUAD_ROLL 0.4 // 0.4 //0.45
|
||||
#define KP_QUAD_PITCH 1.7
|
||||
#define KD_QUAD_PITCH 0.45
|
||||
#define KI_QUAD_PITCH 0.4
|
||||
#define KP_QUAD_YAW 3.5 // 3.8
|
||||
#define KP_QUAD_ROLL 1.8 // 1.5 //1.75
|
||||
#define KD_QUAD_ROLL 0.48 //0.35 // 0.4 //Absolute max:0.85
|
||||
#define KI_QUAD_ROLL 0.30 // 0.4 //0.45
|
||||
#define KP_QUAD_PITCH 1.8
|
||||
#define KD_QUAD_PITCH 0.48
|
||||
#define KI_QUAD_PITCH 0.30 //0.4
|
||||
#define KP_QUAD_YAW 3.6 // 3.8
|
||||
#define KD_QUAD_YAW 1.2 // 1.3
|
||||
#define KI_QUAD_YAW 0.15 // 0.15
|
||||
|
||||
#define KD_QUAD_COMMAND_PART 12.0 // for special KD implementation (in two parts). Higher values makes the quadcopter more responsive to user inputs
|
||||
#define KD_QUAD_COMMAND_PART 2.0 // for special KD implementation (in two parts). Higher values makes the quadcopter more responsive to user inputs
|
||||
|
||||
// Position control PID GAINS
|
||||
#define KP_GPS_ROLL 0.03
|
||||
#define KD_GPS_ROLL 0.0
|
||||
#define KI_GPS_ROLL 0.01
|
||||
#define KP_GPS_PITCH 0.03
|
||||
#define KD_GPS_PITCH 0.0
|
||||
#define KI_GPS_PITCH 0.01
|
||||
#define KP_GPS_ROLL 0.012
|
||||
#define KD_GPS_ROLL 0.005
|
||||
#define KI_GPS_ROLL 0.004
|
||||
#define KP_GPS_PITCH 0.012
|
||||
#define KD_GPS_PITCH 0.005
|
||||
#define KI_GPS_PITCH 0.004
|
||||
|
||||
#define GPS_MAX_ANGLE 16 // Maximun command roll and pitch angle from position control
|
||||
#define GPS_MAX_ANGLE 10 // Maximun command roll and pitch angle from position control
|
||||
|
||||
// Altitude control PID GAINS
|
||||
#define KP_ALTITUDE 0.8
|
||||
#define KD_ALTITUDE 0.3
|
||||
#define KD_ALTITUDE 0.2
|
||||
#define KI_ALTITUDE 0.2
|
||||
|
||||
// The IMU should be correctly adjusted : Gyro Gains and also initial IMU offsets:
|
||||
// We have to take this values with the IMU flat (0º roll, 0º pitch)
|
||||
#define acc_offset_x 2039
|
||||
#define acc_offset_y 2035
|
||||
#define acc_offset_z 2014 // We need to rotate the IMU exactly 90º to take this value
|
||||
#define gyro_offset_roll 1650
|
||||
#define gyro_offset_pitch 1690
|
||||
#define gyro_offset_yaw 1690
|
||||
#define acc_offset_x 2079
|
||||
#define acc_offset_y 2050
|
||||
#define acc_offset_z 2008 // We need to rotate the IMU exactly 90º to take this value
|
||||
#define gyro_offset_roll 1659 //1650
|
||||
#define gyro_offset_pitch 1618 //1690
|
||||
#define gyro_offset_yaw 1673
|
||||
|
||||
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
|
||||
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412
|
||||
// Tested value : 414
|
||||
#define GRAVITY 414 //this equivalent to 1G in the raw data coming from the accelerometer
|
||||
// Tested value : 408
|
||||
#define GRAVITY 408 //this equivalent to 1G in the raw data coming from the accelerometer
|
||||
#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square
|
||||
|
||||
#define ToRad(x) (x*0.01745329252) // *pi/180
|
||||
|
@ -92,19 +93,17 @@
|
|||
|
||||
// IDG500 Sensitivity (from datasheet) => 2.0mV/º/s, 0.8mV/ADC step => 0.8/3.33 = 0.4
|
||||
// Tested values :
|
||||
#define Gyro_Gain_X 0.4 //X axis Gyro gain
|
||||
#define Gyro_Gain_X 0.4 //X axis Gyro gain
|
||||
#define Gyro_Gain_Y 0.41 //Y axis Gyro gain
|
||||
#define Gyro_Gain_Z 0.41 //Z axis Gyro gain
|
||||
#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second
|
||||
#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second
|
||||
#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second
|
||||
|
||||
//#define Kp_ROLLPITCH 0.0125 //0.010 // Pitch&Roll Proportional Gain
|
||||
#define Kp_ROLLPITCH 0.002 //0.003125
|
||||
//#define Ki_ROLLPITCH 0.000010 // Pitch&Roll Integrator Gain
|
||||
#define Ki_ROLLPITCH 0.0000025
|
||||
#define Kp_ROLLPITCH 0.0032 //0.002 //0.003125 // Pitch&Roll Proportional Gain
|
||||
#define Ki_ROLLPITCH 0.000001 //0.000005 //0.0000025 // Pitch&Roll Integrator Gain
|
||||
#define Kp_YAW 1.5 // Yaw Porportional Gain
|
||||
#define Ki_YAW 0.00005 // Yaw Integrator Gain
|
||||
#define Ki_YAW 0.00005 //0.00005 // Yaw Integrator Gain
|
||||
|
||||
/*For debugging purposes*/
|
||||
#define OUTPUTMODE 1 //If value = 1 will print the corrected data, 0 will print uncorrected data of the gyros (with drift), 2 Accel only data
|
||||
|
@ -159,27 +158,11 @@ float Temporary_Matrix[3][3]={
|
|||
float speed_3d=0;
|
||||
int GPS_ground_speed=0;
|
||||
|
||||
//Log variables
|
||||
int log_roll;
|
||||
int log_pitch;
|
||||
int log_yaw;
|
||||
|
||||
long timer=0; //general porpuse timer
|
||||
long timer_old;
|
||||
|
||||
// Sonar variables
|
||||
static volatile unsigned long sonar_start_ms;
|
||||
static volatile unsigned char sonar_start_t0;
|
||||
static volatile unsigned long sonar_pulse_start_ms;
|
||||
static volatile unsigned char sonar_pulse_start_t0;
|
||||
static volatile unsigned long sonar_pulse_end_ms;
|
||||
static volatile unsigned char sonar_pulse_end_t0;
|
||||
static volatile byte sonar_status=0;
|
||||
static volatile byte sonar_new_data=0;
|
||||
int sonar_value=0;
|
||||
|
||||
// Attitude control variables
|
||||
float command_rx_roll=0; // comandos recibidos rx
|
||||
float command_rx_roll=0; // User commands
|
||||
float command_rx_roll_old;
|
||||
float command_rx_roll_diff;
|
||||
float command_rx_pitch=0;
|
||||
|
@ -187,12 +170,12 @@ float command_rx_pitch_old;
|
|||
float command_rx_pitch_diff;
|
||||
float command_rx_yaw=0;
|
||||
float command_rx_yaw_diff;
|
||||
int control_roll; // resultados del control
|
||||
int control_roll; // PID control results
|
||||
int control_pitch;
|
||||
int control_yaw;
|
||||
float K_aux;
|
||||
|
||||
// Attitude control
|
||||
// Attitude PID controls
|
||||
float roll_I=0;
|
||||
float roll_D;
|
||||
float err_roll;
|
||||
|
@ -227,6 +210,10 @@ float command_altitude;
|
|||
float altitude_I;
|
||||
float altitude_D;
|
||||
|
||||
// Sonar variables
|
||||
int Sonar_value=0;
|
||||
#define SonarToCm(x) (x*1.26) // Sonar raw value to centimeters
|
||||
int Sonar_Counter=0;
|
||||
|
||||
// AP_mode : 1=> Position hold 2=>Stabilization assist mode (normal mode)
|
||||
byte AP_mode = 2;
|
||||
|
@ -249,7 +236,7 @@ int ch_yaw;
|
|||
void Altitude_control(int target_sonar_altitude)
|
||||
{
|
||||
err_altitude_old = err_altitude;
|
||||
err_altitude = target_sonar_altitude - sonar_value;
|
||||
err_altitude = target_sonar_altitude - Sonar_value;
|
||||
altitude_D = (float)(err_altitude-err_altitude_old)/G_Dt;
|
||||
altitude_I += (float)err_altitude*G_Dt;
|
||||
altitude_I = constrain(altitude_I,-100,100);
|
||||
|
@ -316,7 +303,7 @@ void Attitude_control()
|
|||
roll_D = command_rx_roll_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[0]); // Take into account Angular velocity of the stick (command)
|
||||
|
||||
// PID control
|
||||
control_roll = KP_QUAD_ROLL*err_roll + KD_QUAD_ROLL*roll_D + KI_QUAD_ROLL*roll_I;
|
||||
control_roll = K_aux*err_roll + KD_QUAD_ROLL*roll_D + KI_QUAD_ROLL*roll_I;
|
||||
|
||||
// PITCH CONTROL
|
||||
if (AP_mode==2) // Normal mode => Stabilization mode
|
||||
|
@ -332,7 +319,7 @@ void Attitude_control()
|
|||
pitch_D = command_rx_pitch_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[1]);
|
||||
|
||||
// PID control
|
||||
control_pitch = KP_QUAD_PITCH*err_pitch + KD_QUAD_PITCH*pitch_D + KI_QUAD_PITCH*pitch_I;
|
||||
control_pitch = K_aux*err_pitch + KD_QUAD_PITCH*pitch_D + KI_QUAD_PITCH*pitch_I;
|
||||
|
||||
// YAW CONTROL
|
||||
|
||||
|
@ -342,7 +329,7 @@ void Attitude_control()
|
|||
else if(err_yaw < -180)
|
||||
err_yaw += 360;
|
||||
|
||||
err_yaw = constrain(err_yaw,-25,25); // to limit max yaw command...
|
||||
err_yaw = constrain(err_yaw,-60,60); // to limit max yaw command...
|
||||
|
||||
yaw_I += err_yaw*G_Dt;
|
||||
yaw_I = constrain(yaw_I,-20,20);
|
||||
|
@ -390,11 +377,14 @@ void setup()
|
|||
pinMode(RELE_pin,OUTPUT); // Rele output
|
||||
digitalWrite(RELE_pin,LOW);
|
||||
|
||||
delay(250);
|
||||
|
||||
APM_RC_QUAD.Init(); // APM Radio initialization
|
||||
APM_ADC.Init(); // APM ADC library initialization
|
||||
DataFlash.Init(); // DataFlash log initialization
|
||||
GPS.Init(); // GPS Initialization
|
||||
|
||||
delay(100);
|
||||
// RC channels Initialization (Quad motors)
|
||||
APM_RC_QUAD.OutputCh(0,MIN_THROTTLE+15); // Motors stoped
|
||||
APM_RC_QUAD.OutputCh(1,MIN_THROTTLE+15);
|
||||
|
@ -498,6 +488,11 @@ void loop(){
|
|||
int aux;
|
||||
int i;
|
||||
float aux_float;
|
||||
//Log variables
|
||||
int log_roll;
|
||||
int log_pitch;
|
||||
int log_yaw;
|
||||
|
||||
|
||||
if((millis()-timer)>=14) // Main loop 70Hz
|
||||
{
|
||||
|
@ -533,8 +528,16 @@ void loop(){
|
|||
Serial.print(",");
|
||||
Serial.print(log_yaw);
|
||||
|
||||
/*
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
Serial.print(AN[i]);
|
||||
Serial.print(",");
|
||||
}
|
||||
*/
|
||||
|
||||
// Write Sensor raw data to DataFlash log
|
||||
//Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
|
||||
Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
|
||||
// Write attitude to DataFlash log
|
||||
Log_Write_Attitude(log_roll,log_pitch,log_yaw);
|
||||
|
||||
|
@ -547,10 +550,10 @@ void loop(){
|
|||
ch_throttle = channel_filter(APM_RC_QUAD.InputCh(2),ch_throttle);
|
||||
ch_yaw = channel_filter(APM_RC_QUAD.InputCh(3),ch_yaw);
|
||||
command_rx_roll_old = command_rx_roll;
|
||||
command_rx_roll = (ch_roll-CHANN_CENTER)/15.0;
|
||||
command_rx_roll = (ch_roll-CHANN_CENTER)/12.0;
|
||||
command_rx_roll_diff = command_rx_roll-command_rx_roll_old;
|
||||
command_rx_pitch_old = command_rx_pitch;
|
||||
command_rx_pitch = (ch_pitch-CHANN_CENTER)/15.0;
|
||||
command_rx_pitch = (ch_pitch-CHANN_CENTER)/12.0;
|
||||
command_rx_pitch_diff = command_rx_pitch-command_rx_pitch_old;
|
||||
aux_float = (ch_yaw-Neutro_yaw)/180.0;
|
||||
command_rx_yaw += aux_float;
|
||||
|
@ -562,14 +565,12 @@ void loop(){
|
|||
|
||||
// I use K_aux (channel 6) to adjust gains linked to a knob in the radio... [not used now]
|
||||
//K_aux = K_aux*0.8 + ((ch_aux-1500)/100.0 + 0.6)*0.2;
|
||||
K_aux = K_aux*0.8 + ((APM_RC_QUAD.InputCh(5)-1500)/300.0 + 0.4)*0.2;
|
||||
K_aux = K_aux*0.8 + ((APM_RC_QUAD.InputCh(5)-1500)/300.0 + 1.7)*0.2; // /300 + 1.0
|
||||
if (K_aux < 0)
|
||||
K_aux = 0;
|
||||
|
||||
/*
|
||||
Serial.print(",");
|
||||
Serial.print(K_aux);
|
||||
*/
|
||||
//Serial.print(",");
|
||||
//Serial.print(K_aux);
|
||||
|
||||
// We read the Quad Mode from Channel 5
|
||||
if (APM_RC_QUAD.InputCh(4) < 1200)
|
||||
|
|
12
DCM.pde
12
DCM.pde
|
@ -7,7 +7,7 @@ void Read_adc_raw(void)
|
|||
for (int i=0;i<6;i++)
|
||||
AN[i] = APM_ADC.Ch(sensors[i]);
|
||||
|
||||
// Correction for non ratiometric sensor (test)
|
||||
// Correction for non ratiometric sensor (test code)
|
||||
//temp = APM_ADC.Ch(3);
|
||||
//AN[0] += 1500-temp;
|
||||
//AN[1] += 1500-temp;
|
||||
|
@ -67,8 +67,8 @@ void Drift_correction(void)
|
|||
// Calculate the magnitude of the accelerometer vector
|
||||
Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]);
|
||||
Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity.
|
||||
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
|
||||
Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1);
|
||||
// Weight for accelerometer info (<0.75G = 0.0, 1G = 1.0 , >1.25G = 0.0)
|
||||
Accel_weight = constrain(1 - 4*abs(1 - Accel_magnitude),0,1);
|
||||
|
||||
Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); //adjust the ground of reference
|
||||
Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight);
|
||||
|
@ -109,9 +109,9 @@ void Matrix_update(void)
|
|||
//Accel_Vector[2]=read_adc(5); // acc z
|
||||
|
||||
// Low pass filter on accelerometer data (to filter vibrations)
|
||||
Accel_Vector[0]=Accel_Vector[0]*0.4 + (float)read_adc(3)*0.6; // acc x
|
||||
Accel_Vector[1]=Accel_Vector[1]*0.4 + (float)read_adc(4)*0.6; // acc y
|
||||
Accel_Vector[2]=Accel_Vector[2]*0.4 + (float)read_adc(5)*0.6; // acc z
|
||||
Accel_Vector[0]=Accel_Vector[0]*0.5 + (float)read_adc(3)*0.5; // acc x
|
||||
Accel_Vector[1]=Accel_Vector[1]*0.5 + (float)read_adc(4)*0.5; // acc y
|
||||
Accel_Vector[2]=Accel_Vector[2]*0.5 + (float)read_adc(5)*0.5; // acc z
|
||||
|
||||
Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]);//adding integrator
|
||||
Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]);//adding proportional
|
||||
|
|
|
@ -0,0 +1,167 @@
|
|||
/*
|
||||
APM_RC.cpp - Radio Control Library for Ardupilot Mega. Arduino
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
RC Input : PPM signal on IC4 pin
|
||||
RC Output : 11 Servo outputs (standard 20ms frame)
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers
|
||||
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10
|
||||
InputCh(ch) : Read a channel input value. ch=0..7
|
||||
GetState() : Returns the state of the input. 1 => New radio frame to process
|
||||
Automatically resets when we call InputCh to read channels
|
||||
|
||||
*/
|
||||
#include "APM_RC.h"
|
||||
|
||||
#include <avr/interrupt.h>
|
||||
#include "WProgram.h"
|
||||
|
||||
// Variable definition for Input Capture interrupt
|
||||
volatile unsigned int ICR4_old;
|
||||
volatile unsigned char PPM_Counter=0;
|
||||
volatile unsigned int PWM_RAW[8] = {2400,2400,2400,2400,2400,2400,2400,2400};
|
||||
volatile unsigned char radio_status=0;
|
||||
|
||||
/****************************************************
|
||||
Input Capture Interrupt ICP4 => PPM signal read
|
||||
****************************************************/
|
||||
ISR(TIMER4_CAPT_vect)
|
||||
{
|
||||
unsigned int Pulse;
|
||||
unsigned int Pulse_Width;
|
||||
|
||||
Pulse=ICR4;
|
||||
if (Pulse<ICR4_old) // Take care of the overflow of Timer4 (TOP=40000)
|
||||
Pulse_Width=(Pulse + 40000)-ICR4_old; //Calculating pulse
|
||||
else
|
||||
Pulse_Width=Pulse-ICR4_old; //Calculating pulse
|
||||
if (Pulse_Width>8000) // SYNC pulse?
|
||||
PPM_Counter=0;
|
||||
else
|
||||
{
|
||||
PPM_Counter &= 0x07; // For safety only (limit PPM_Counter to 7)
|
||||
PWM_RAW[PPM_Counter++]=Pulse_Width; //Saving pulse.
|
||||
if (PPM_Counter >= NUM_CHANNELS)
|
||||
radio_status = 1;
|
||||
}
|
||||
ICR4_old = Pulse;
|
||||
}
|
||||
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
|
||||
APM_RC_Class::APM_RC_Class()
|
||||
{
|
||||
}
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void APM_RC_Class::Init(void)
|
||||
{
|
||||
// Init PWM Timer 1
|
||||
pinMode(11,OUTPUT); // (PB5/OC1A)
|
||||
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B)
|
||||
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C)
|
||||
|
||||
//Remember the registers not declared here remains zero by default...
|
||||
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all...
|
||||
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet
|
||||
OCR1A = 3000; //PB5, none
|
||||
OCR1B = 3000; //PB6, OUT2
|
||||
OCR1C = 3000; //PB7 OUT3
|
||||
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000,
|
||||
|
||||
// Init PWM Timer 3
|
||||
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B)
|
||||
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C)
|
||||
pinMode(4,OUTPUT); // (PE3/OC3A)
|
||||
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1));
|
||||
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
|
||||
OCR3A = 3000; //PE3, NONE
|
||||
OCR3B = 3000; //PE4, OUT7
|
||||
OCR3C = 3000; //PE5, OUT6
|
||||
ICR3 = 40000; //50hz freq
|
||||
|
||||
// Init PWM Timer 5
|
||||
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C)
|
||||
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B)
|
||||
pinMode(46,OUTPUT); // (PL3/OC5A)
|
||||
|
||||
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1));
|
||||
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
|
||||
OCR5A = 3000; //PL3,
|
||||
OCR5B = 3000; //PL4, OUT0
|
||||
OCR5C = 3000; //PL5, OUT1
|
||||
ICR5 = 40000; //50hz freq
|
||||
|
||||
// Init PPM input and PWM Timer 4
|
||||
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input)
|
||||
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B)
|
||||
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C)
|
||||
|
||||
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1));
|
||||
//Prescaler set to 8, that give us a resolution of 0.5us
|
||||
// Input Capture rising edge
|
||||
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4));
|
||||
|
||||
OCR4A = 40000; ///50hz freq.
|
||||
OCR4B = 3000; //PH4, OUT5
|
||||
OCR4C = 3000; //PH5, OUT4
|
||||
|
||||
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge).
|
||||
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge)
|
||||
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask
|
||||
}
|
||||
|
||||
void APM_RC_Class::OutputCh(unsigned char ch, int pwm)
|
||||
{
|
||||
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
pwm<<=1; // pwm*2;
|
||||
|
||||
switch(ch)
|
||||
{
|
||||
case 0: OCR5B=pwm; break; //ch0
|
||||
case 1: OCR5C=pwm; break; //ch1
|
||||
case 2: OCR1B=pwm; break; //ch2
|
||||
case 3: OCR1C=pwm; break; //ch3
|
||||
case 4: OCR4C=pwm; break; //ch4
|
||||
case 5: OCR4B=pwm; break; //ch5
|
||||
case 6: OCR3C=pwm; break; //ch6
|
||||
case 7: OCR3B=pwm; break; //ch7
|
||||
case 8: OCR5A=pwm; break; //ch8, PL3
|
||||
case 9: OCR1A=pwm; break; //ch9, PB5
|
||||
case 10: OCR3A=pwm; break; //ch10, PE3
|
||||
}
|
||||
}
|
||||
|
||||
int APM_RC_Class::InputCh(unsigned char ch)
|
||||
{
|
||||
int result;
|
||||
int result2;
|
||||
|
||||
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted.
|
||||
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct...
|
||||
result = PWM_RAW[ch]>>1; // Because timer runs at 0.5us we need to do value/2
|
||||
result2 = PWM_RAW[ch]>>1;
|
||||
if (result != result2)
|
||||
result = PWM_RAW[ch]>>1; // if the results are different we make a third reading (this should be fine)
|
||||
|
||||
// Limit values to a valid range
|
||||
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH);
|
||||
radio_status=0; // Radio channel read
|
||||
return(result);
|
||||
}
|
||||
|
||||
unsigned char APM_RC_Class::GetState(void)
|
||||
{
|
||||
return(radio_status);
|
||||
}
|
||||
|
||||
// make one instance for the user to use
|
||||
APM_RC_Class APM_RC;
|
|
@ -0,0 +1,21 @@
|
|||
#ifndef APM_RC_h
|
||||
#define APM_RC_h
|
||||
|
||||
#define NUM_CHANNELS 8
|
||||
#define MIN_PULSEWIDTH 900
|
||||
#define MAX_PULSEWIDTH 2100
|
||||
|
||||
class APM_RC_Class
|
||||
{
|
||||
private:
|
||||
public:
|
||||
APM_RC_Class();
|
||||
void Init();
|
||||
void OutputCh(unsigned char ch, int pwm);
|
||||
int InputCh(unsigned char ch);
|
||||
unsigned char GetState();
|
||||
};
|
||||
|
||||
extern APM_RC_Class APM_RC;
|
||||
|
||||
#endif
|
|
@ -0,0 +1,31 @@
|
|||
/*
|
||||
Example of APM_RC library.
|
||||
Code by Jordi Muñoz and Jose Julio. DIYDrones.com
|
||||
|
||||
Print Input values and send Output to the servos
|
||||
(Works with last PPM_encoder firmware)
|
||||
*/
|
||||
|
||||
#include <APM_RC.h> // ArduPilot Mega RC Library
|
||||
|
||||
void setup()
|
||||
{
|
||||
APM_RC.Init(); // APM Radio initialization
|
||||
Serial.begin(57600);
|
||||
Serial.println("ArduPilot Mega RC library test");
|
||||
delay(1000);
|
||||
}
|
||||
void loop()
|
||||
{
|
||||
if (APM_RC.GetState()==1) // New radio frame? (we could use also if((millis()- timer) > 20)
|
||||
{
|
||||
Serial.print("CH:");
|
||||
for(int i=0;i<8;i++)
|
||||
{
|
||||
Serial.print(APM_RC.InputCh(i)); // Print channel values
|
||||
Serial.print(",");
|
||||
APM_RC.OutputCh(i,APM_RC.InputCh(i)); // Copy input to Servos
|
||||
}
|
||||
Serial.println();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,5 @@
|
|||
APM_RC KEYWORD1
|
||||
begin KEYWORD2
|
||||
InputCh KEYWORD2
|
||||
OutputCh KEYWORD2
|
||||
GetState KEYWORD2
|
Loading…
Reference in New Issue