ardupilot/ArduCopter.pde

681 lines
22 KiB
Plaintext
Raw Normal View History

/* ********************************************************************** */
/* ArduCopter Quadcopter code */
/* */
/* Code based on ArduIMU DCM code from Diydrones.com */
/* (Original ArduIMU code from Jordi Muñoz and William Premerlani) */
/* Ardupilot core code : from DIYDrones.com development team */
/* Quadcopter code from AeroQuad project and ArduIMU quadcopter project */
/* Authors : Jose Julio, Ted Carancho, Jordi Muñoz */
/* Date : 27-05-2010 */
/* Version : 1.0 beta */
/* Hardware : ArduPilot Mega + Sensor Shield (codename:FOXTRAP2) */
/* This code use this libraries : */
/* APM_RC_QUAD : Radio library (adapted for quads) */
/* APM_ADC : External ADC library */
/* DataFlash : DataFlash log library */
/* APM_BMP085 : BMP085 barometer library */
/* APM_Compass : HMC5843 compass library [optional] */
/* GPS_UBLOX or GPS_NMEA: GPS library [optional] */
/* ********************************************************************** */
#include <Wire.h>
#include <APM_ADC.h>
#include <APM_RC_QUAD.h>
#include <DataFlash.h>
#include <APM_Compass.h>
// Put your GPS library here:
#include <GPS_NMEA.h> // MTK GPS
/* APM Hardware definitions */
#define LED_Yellow 36
#define LED_Red 35
#define LED_Green 37
#define RELE_pin 47
#define SW1_pin 41
#define SW2_pin 42
/* *** */
/* ***************************************************************************** */
/* CONFIGURATION PART */
/* ***************************************************************************** */
//Adjust this parameter for your lattitude
#define GEOG_CORRECTION_FACTOR 0.87 // cos(lattitude)
#define RADIO_TEST_MODE 0 // 0:Normal 1:Radio Test mode (to test radio channels)
#define MAGNETOMETER 1 // 0 : No magnetometer, 1: Magnetometer
// QuadCopter Attitude control PID GAINS
#define KP_QUAD_ROLL 1.7 // 1.5 //1.75
#define KD_QUAD_ROLL 0.45 //0.35 // 0.4 //Absolute max:0.85
#define KI_QUAD_ROLL 0.4 // 0.4 //0.45
#define KP_QUAD_PITCH 1.7
#define KD_QUAD_PITCH 0.45
#define KI_QUAD_PITCH 0.4
#define KP_QUAD_YAW 3.5 // 3.8
#define KD_QUAD_YAW 1.2 // 1.3
#define KI_QUAD_YAW 0.15 // 0.15
#define KD_QUAD_COMMAND_PART 12.0 // for special KD implementation (in two parts). Higher values makes the quadcopter more responsive to user inputs
// Position control PID GAINS
#define KP_GPS_ROLL 0.03
#define KD_GPS_ROLL 0.0
#define KI_GPS_ROLL 0.01
#define KP_GPS_PITCH 0.03
#define KD_GPS_PITCH 0.0
#define KI_GPS_PITCH 0.01
#define GPS_MAX_ANGLE 16 // Maximun command roll and pitch angle from position control
// Altitude control PID GAINS
#define KP_ALTITUDE 0.8
#define KD_ALTITUDE 0.3
#define KI_ALTITUDE 0.2
// The IMU should be correctly adjusted : Gyro Gains and also initial IMU offsets:
// We have to take this values with the IMU flat (0º roll, 0º pitch)
#define acc_offset_x 2039
#define acc_offset_y 2035
#define acc_offset_z 2014 // We need to rotate the IMU exactly 90º to take this value
#define gyro_offset_roll 1650
#define gyro_offset_pitch 1690
#define gyro_offset_yaw 1690
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412
// Tested value : 414
#define GRAVITY 414 //this equivalent to 1G in the raw data coming from the accelerometer
#define Accel_Scale(x) x*(GRAVITY/9.81)//Scaling the raw data of the accel to actual acceleration in meters for seconds square
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
// IDG500 Sensitivity (from datasheet) => 2.0mV/º/s, 0.8mV/ADC step => 0.8/3.33 = 0.4
// Tested values :
#define Gyro_Gain_X 0.4 //X axis Gyro gain
#define Gyro_Gain_Y 0.41 //Y axis Gyro gain
#define Gyro_Gain_Z 0.41 //Z axis Gyro gain
#define Gyro_Scaled_X(x) x*ToRad(Gyro_Gain_X) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Y(x) x*ToRad(Gyro_Gain_Y) //Return the scaled ADC raw data of the gyro in radians for second
#define Gyro_Scaled_Z(x) x*ToRad(Gyro_Gain_Z) //Return the scaled ADC raw data of the gyro in radians for second
//#define Kp_ROLLPITCH 0.0125 //0.010 // Pitch&Roll Proportional Gain
#define Kp_ROLLPITCH 0.002 //0.003125
//#define Ki_ROLLPITCH 0.000010 // Pitch&Roll Integrator Gain
#define Ki_ROLLPITCH 0.0000025
#define Kp_YAW 1.5 // Yaw Porportional Gain
#define Ki_YAW 0.00005 // Yaw Integrator Gain
/*For debugging purposes*/
#define OUTPUTMODE 1 //If value = 1 will print the corrected data, 0 will print uncorrected data of the gyros (with drift), 2 Accel only data
//Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
uint8_t sensors[6] = {1,2,0,4,5,6}; // For ArduPilot Mega Sensor Shield Hardware
//Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
int SENSOR_SIGN[]={-1,1,-1,1,-1,1,-1,-1,-1}; //{1,-1,-1,1,-1,1,-1,-1,-1}
int AN[6]; //array that store the 6 ADC channels
int AN_OFFSET[6]; //Array that store the Offset of the gyros and accelerometers
float G_Dt=0.02; // Integration time for the gyros (DCM algorithm)
float Accel_Vector[3]= {0,0,0}; //Store the acceleration in a vector
float Accel_Vector_unfiltered[3]= {0,0,0}; //Store the acceleration in a vector
//float Accel_magnitude;
//float Accel_weight;
float Gyro_Vector[3]= {0,0,0};//Store the gyros rutn rate in a vector
float Omega_Vector[3]= {0,0,0}; //Corrected Gyro_Vector data
float Omega_P[3]= {0,0,0};//Omega Proportional correction
float Omega_I[3]= {0,0,0};//Omega Integrator
float Omega[3]= {0,0,0};
float errorRollPitch[3]= {0,0,0};
float errorYaw[3]= {0,0,0};
float errorCourse=0;
float COGX=0; //Course overground X axis
float COGY=1; //Course overground Y axis
float roll=0;
float pitch=0;
float yaw=0;
unsigned int counter=0;
float DCM_Matrix[3][3]= {
{1,0,0}
,{0,1,0}
,{0,0,1}
};
float Update_Matrix[3][3]={{0,1,2},{3,4,5},{6,7,8}}; //Gyros here
float Temporary_Matrix[3][3]={
{0,0,0}
,{0,0,0}
,{0,0,0}
};
// GPS variables
float speed_3d=0;
int GPS_ground_speed=0;
//Log variables
int log_roll;
int log_pitch;
int log_yaw;
long timer=0; //general porpuse timer
long timer_old;
// Sonar variables
static volatile unsigned long sonar_start_ms;
static volatile unsigned char sonar_start_t0;
static volatile unsigned long sonar_pulse_start_ms;
static volatile unsigned char sonar_pulse_start_t0;
static volatile unsigned long sonar_pulse_end_ms;
static volatile unsigned char sonar_pulse_end_t0;
static volatile byte sonar_status=0;
static volatile byte sonar_new_data=0;
int sonar_value=0;
// Attitude control variables
float command_rx_roll=0; // comandos recibidos rx
float command_rx_roll_old;
float command_rx_roll_diff;
float command_rx_pitch=0;
float command_rx_pitch_old;
float command_rx_pitch_diff;
float command_rx_yaw=0;
float command_rx_yaw_diff;
int control_roll; // resultados del control
int control_pitch;
int control_yaw;
float K_aux;
// Attitude control
float roll_I=0;
float roll_D;
float err_roll;
float pitch_I=0;
float pitch_D;
float err_pitch;
float yaw_I=0;
float yaw_D;
float err_yaw;
//Position control
long target_longitude;
long target_lattitude;
byte target_position;
float gps_err_roll;
float gps_err_roll_old;
float gps_roll_D;
float gps_roll_I=0;
float gps_err_pitch;
float gps_err_pitch_old;
float gps_pitch_D;
float gps_pitch_I=0;
float command_gps_roll;
float command_gps_pitch;
//Altitude control
int Initial_Throttle;
int target_sonar_altitude;
int err_altitude;
int err_altitude_old;
float command_altitude;
float altitude_I;
float altitude_D;
// AP_mode : 1=> Position hold 2=>Stabilization assist mode (normal mode)
byte AP_mode = 2;
long t0;
int num_iter;
float aux_debug;
// Radio definitions
int Neutro_yaw;
int ch_roll;
int ch_pitch;
int ch_throttle;
int ch_yaw;
#define CHANN_CENTER 1500
#define MIN_THROTTLE 1040 // Throttle pulse width at minimun...
/* ************************************************************ */
/* Altitude control... (based on sonar) */
void Altitude_control(int target_sonar_altitude)
{
err_altitude_old = err_altitude;
err_altitude = target_sonar_altitude - sonar_value;
altitude_D = (float)(err_altitude-err_altitude_old)/G_Dt;
altitude_I += (float)err_altitude*G_Dt;
altitude_I = constrain(altitude_I,-100,100);
command_altitude = Initial_Throttle + KP_ALTITUDE*err_altitude + KD_ALTITUDE*altitude_D + KI_ALTITUDE*altitude_I;
}
/* ************************************************************ */
/* Position control... */
void Position_control(long lat_dest, long lon_dest)
{
long Lon_diff;
long Lat_diff;
float gps_err_roll;
float gps_err_pitch;
Lon_diff = lon_dest - GPS.Longitude;
Lat_diff = lat_dest - GPS.Lattitude;
// ROLL
gps_err_roll_old = gps_err_roll;
//Optimization : cos(yaw) = DCM_Matrix[0][0] ; sin(yaw) = DCM_Matrix[1][0]
gps_err_roll = (float)Lon_diff*GEOG_CORRECTION_FACTOR*DCM_Matrix[0][0] - (float)Lat_diff*DCM_Matrix[1][0];
gps_roll_D = (gps_err_roll-gps_err_roll_old)/G_Dt;
gps_roll_I += gps_err_roll*G_Dt;
gps_roll_I = constrain(gps_roll_I,-500,500);
command_gps_roll = KP_GPS_ROLL*gps_err_roll + KD_GPS_ROLL*gps_roll_D + KI_GPS_ROLL*gps_roll_I;
command_gps_roll = constrain(command_gps_roll,-GPS_MAX_ANGLE,GPS_MAX_ANGLE); // Limit max command
// PITCH
gps_err_pitch_old = gps_err_pitch;
gps_err_pitch = -(float)Lat_diff*DCM_Matrix[0][0]- (float)Lon_diff*GEOG_CORRECTION_FACTOR*DCM_Matrix[1][0];
gps_pitch_D = (gps_err_pitch-gps_err_pitch_old)/G_Dt;
gps_pitch_I += gps_err_pitch*G_Dt;
gps_pitch_I = constrain(gps_pitch_I,-500,500);
command_gps_pitch = KP_GPS_PITCH*gps_err_pitch + KD_GPS_PITCH*gps_pitch_D + KI_GPS_PITCH*gps_pitch_I;
command_gps_pitch = constrain(command_gps_pitch,-GPS_MAX_ANGLE,GPS_MAX_ANGLE); // Limit max command
}
/* ************************************************************ */
// ROLL, PITCH and YAW PID controls...
// Input : desired Roll, Pitch and Yaw absolute angles. Output : Motor commands
void Attitude_control()
{
// ROLL CONTROL
if (AP_mode==2) // Normal Mode => Stabilization mode
err_roll = command_rx_roll - ToDeg(roll);
else
err_roll = (command_rx_roll + command_gps_roll) - ToDeg(roll); // Position control
err_roll = constrain(err_roll,-25,25); // to limit max roll command...
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
// D term implementation => two parts: gyro part and command part
// To have a better (faster) response we can use the Gyro reading directly for the Derivative term...
// Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
// We also add a part that takes into account the command from user (stick) to make the system more responsive to user inputs
roll_D = command_rx_roll_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[0]); // Take into account Angular velocity of the stick (command)
// PID control
control_roll = KP_QUAD_ROLL*err_roll + KD_QUAD_ROLL*roll_D + KI_QUAD_ROLL*roll_I;
// PITCH CONTROL
if (AP_mode==2) // Normal mode => Stabilization mode
err_pitch = command_rx_pitch - ToDeg(pitch);
else
err_pitch = (command_rx_pitch + command_gps_pitch) - ToDeg(pitch); // Position Control
err_pitch = constrain(err_pitch,-25,25); // to limit max pitch command...
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
// D term
pitch_D = command_rx_pitch_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[1]);
// PID control
control_pitch = KP_QUAD_PITCH*err_pitch + KD_QUAD_PITCH*pitch_D + KI_QUAD_PITCH*pitch_I;
// YAW CONTROL
err_yaw = command_rx_yaw - ToDeg(yaw);
if (err_yaw > 180) // Normalize to -180,180
err_yaw -= 360;
else if(err_yaw < -180)
err_yaw += 360;
err_yaw = constrain(err_yaw,-25,25); // to limit max yaw command...
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
yaw_D = command_rx_yaw_diff*KD_QUAD_COMMAND_PART - ToDeg(Omega[2]);
// PID control
control_yaw = KP_QUAD_YAW*err_yaw + KD_QUAD_YAW*yaw_D + KI_QUAD_YAW*yaw_I;
}
// Maximun slope filter for radio inputs... (limit max differences between readings)
int channel_filter(int ch, int ch_old)
{
int diff_ch_old;
if (ch_old==0) // ch_old not initialized
return(ch);
diff_ch_old = ch - ch_old; // Difference with old reading
if (diff_ch_old<0)
{
if (diff_ch_old<-40)
return(ch_old-40); // We limit the max difference between readings
}
else
{
if (diff_ch_old>40)
return(ch_old+40);
}
//return((ch+ch_old)>>1); // Small filtering
return(ch);
}
/* ****** SETUP ********************************************************************* */
void setup()
{
int i;
float aux_float[3];
pinMode(LED_Yellow,OUTPUT); //Yellow LED A (PC1)
pinMode(LED_Red,OUTPUT); //Red LED B (PC2)
pinMode(LED_Green,OUTPUT); //Green LED C (PC0)
pinMode(SW1_pin,INPUT); //Switch SW1 (pin PG0)
pinMode(RELE_pin,OUTPUT); // Rele output
digitalWrite(RELE_pin,LOW);
APM_RC_QUAD.Init(); // APM Radio initialization
APM_ADC.Init(); // APM ADC library initialization
DataFlash.Init(); // DataFlash log initialization
GPS.Init(); // GPS Initialization
// RC channels Initialization (Quad motors)
APM_RC_QUAD.OutputCh(0,MIN_THROTTLE+15); // Motors stoped
APM_RC_QUAD.OutputCh(1,MIN_THROTTLE+15);
APM_RC_QUAD.OutputCh(2,MIN_THROTTLE+15);
APM_RC_QUAD.OutputCh(3,MIN_THROTTLE+15);
#if (MAGNETOMETER)
APM_Compass.Init(); // I2C initialization
#endif
DataFlash.StartWrite(1); // Start a write session on page 1
Serial.begin(57600);
Serial.println();
Serial.println("ArduCopter Quadcopter v1.0");
// Check if we enable the DataFlash log Read Mode (switch)
// If we press switch 1 at startup we read the Dataflash eeprom
while (digitalRead(SW1_pin)==0)
{
Serial.println("Entering Log Read Mode...");
Log_Read(1,1000);
delay(30000);
}
delay(3000);
Read_adc_raw();
delay(20);
// Offset values for accels and gyros...
AN_OFFSET[3] = acc_offset_x;
AN_OFFSET[4] = acc_offset_y;
AN_OFFSET[5] = acc_offset_z;
aux_float[0] = gyro_offset_roll;
aux_float[1] = gyro_offset_pitch;
aux_float[2] = gyro_offset_yaw;
// Take the gyro offset values
for(i=0;i<250;i++)
{
Read_adc_raw();
for(int y=0; y<=2; y++) // Read initial ADC values for gyro offset.
{
aux_float[y]=aux_float[y]*0.8 + AN[y]*0.2;
//Serial.print(AN[y]);
//Serial.print(",");
}
//Serial.println();
Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
delay(14);
}
for(int y=0; y<=2; y++)
AN_OFFSET[y]=aux_float[y];
for(i=0;i<6;i++)
{
Serial.print("AN[]:");
Serial.println(AN_OFFSET[i]);
}
Neutro_yaw = APM_RC_QUAD.InputCh(3); // Take yaw neutral radio value
Serial.print("Yaw neutral value:");
Serial.println(Neutro_yaw);
#if (RADIO_TEST_MODE) // RADIO TEST MODE TO TEST RADIO CHANNELS
while(1)
{
if (APM_RC_QUAD.GetState()==1)
{
Serial.print("AIL:");
Serial.print(APM_RC_QUAD.InputCh(0));
Serial.print("ELE:");
Serial.print(APM_RC_QUAD.InputCh(1));
Serial.print("THR:");
Serial.print(APM_RC_QUAD.InputCh(2));
Serial.print("YAW:");
Serial.print(APM_RC_QUAD.InputCh(3));
Serial.print("AUX(mode):");
Serial.print(APM_RC_QUAD.InputCh(4));
Serial.print("AUX2:");
Serial.print(APM_RC_QUAD.InputCh(5));
Serial.println();
delay(200);
}
}
#endif
delay(1000);
DataFlash.StartWrite(1); // Start a write session on page 1
timer = millis();
Read_adc_raw(); // Initialize ADC readings...
delay(20);
digitalWrite(LED_Green,HIGH); // Ready to go...
}
/* ***** MAIN LOOP ***** */
void loop(){
int aux;
int i;
float aux_float;
if((millis()-timer)>=14) // Main loop 70Hz
{
counter++;
timer_old = timer;
timer=millis();
G_Dt = (timer-timer_old)/1000.0; // Real time of loop run
// IMU DCM Algorithm
Read_adc_raw();
#if (MAGNETOMETER)
if (counter > 8) // Read compass data at 10Hz... (7 loop runs)
{
counter=0;
APM_Compass.Read(); // Read magnetometer
APM_Compass.Calculate(roll,pitch); // Calculate heading
}
#endif
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
// *****************
// Output data
log_roll = ToDeg(roll)*10;
log_pitch = ToDeg(pitch)*10;
log_yaw = ToDeg(yaw)*10;
Serial.print(log_roll);
Serial.print(",");
Serial.print(log_pitch);
Serial.print(",");
Serial.print(log_yaw);
// Write Sensor raw data to DataFlash log
//Log_Write_Sensor(AN[0],AN[1],AN[2],AN[3],AN[4],AN[5],ch_throttle);
// Write attitude to DataFlash log
Log_Write_Attitude(log_roll,log_pitch,log_yaw);
if (APM_RC_QUAD.GetState()==1) // New radio frame?
{
// Commands from radio Rx...
// Stick position defines the desired angle in roll, pitch and yaw
ch_roll = channel_filter(APM_RC_QUAD.InputCh(0),ch_roll);
ch_pitch = channel_filter(APM_RC_QUAD.InputCh(1),ch_pitch);
ch_throttle = channel_filter(APM_RC_QUAD.InputCh(2),ch_throttle);
ch_yaw = channel_filter(APM_RC_QUAD.InputCh(3),ch_yaw);
command_rx_roll_old = command_rx_roll;
command_rx_roll = (ch_roll-CHANN_CENTER)/15.0;
command_rx_roll_diff = command_rx_roll-command_rx_roll_old;
command_rx_pitch_old = command_rx_pitch;
command_rx_pitch = (ch_pitch-CHANN_CENTER)/15.0;
command_rx_pitch_diff = command_rx_pitch-command_rx_pitch_old;
aux_float = (ch_yaw-Neutro_yaw)/180.0;
command_rx_yaw += aux_float;
command_rx_yaw_diff = aux_float;
if (command_rx_yaw > 180) // Normalize yaw to -180,180 degrees
command_rx_yaw -= 360.0;
else if (command_rx_yaw < -180)
command_rx_yaw += 360.0;
// I use K_aux (channel 6) to adjust gains linked to a knob in the radio... [not used now]
//K_aux = K_aux*0.8 + ((ch_aux-1500)/100.0 + 0.6)*0.2;
K_aux = K_aux*0.8 + ((APM_RC_QUAD.InputCh(5)-1500)/300.0 + 0.4)*0.2;
if (K_aux < 0)
K_aux = 0;
/*
Serial.print(",");
Serial.print(K_aux);
*/
// We read the Quad Mode from Channel 5
if (APM_RC_QUAD.InputCh(4) < 1200)
{
AP_mode = 1; // Position hold mode (GPS position control)
digitalWrite(LED_Yellow,HIGH); // Yellow LED On
}
else
{
AP_mode = 2; // Normal mode (Stabilization assist mode)
digitalWrite(LED_Yellow,LOW); // Yellow LED off
}
// Write Radio data to DataFlash log
Log_Write_Radio(ch_roll,ch_pitch,ch_throttle,ch_yaw,int(K_aux*100),(int)AP_mode);
} // END new radio data
if (AP_mode==1) // Position Control
{
if (target_position==0) // If this is the first time we switch to Position control, actual position is our target position
{
target_lattitude = GPS.Lattitude;
target_longitude = GPS.Longitude;
Serial.println();
Serial.print("* Target:");
Serial.print(target_longitude);
Serial.print(",");
Serial.println(target_lattitude);
target_position=1;
//target_sonar_altitude = sonar_value;
//Initial_Throttle = ch3;
// Reset I terms
altitude_I = 0;
gps_roll_I = 0;
gps_pitch_I = 0;
}
}
else
target_position=0;
//Read GPS
GPS.Read();
if (GPS.NewData) // New GPS data?
{
GPS.NewData=0; // We Reset the flag...
//Output GPS data
//Serial.print(",");
//Serial.print(GPS.Lattitude);
//Serial.print(",");
//Serial.print(GPS.Longitude);
// Write GPS data to DataFlash log
Log_Write_GPS(GPS.Time, GPS.Lattitude,GPS.Longitude,GPS.Altitude, GPS.Ground_Speed, GPS.Ground_Course, GPS.Fix, GPS.NumSats);
if (GPS.Fix)
digitalWrite(LED_Red,HIGH); // GPS Fix => Blue LED
else
digitalWrite(LED_Red,LOW);
if (AP_mode==1)
{
if ((target_position==1)&&(GPS.Fix))
{
Position_control(target_lattitude,target_longitude); // Call position hold routine
/*
Serial.print("PC:");
Serial.print(command_gps_roll);
Serial.print(",");
Serial.print(command_gps_pitch);
Serial.println();
*/
}
else
{
//Serial.print("NOFIX");
command_gps_roll=0;
command_gps_pitch=0;
}
}
}
// Attitude control (Roll, Pitch, yaw)
Attitude_control();
// Quadcopter mix
if (ch_throttle > (MIN_THROTTLE+20)) // Minimun throttle to start control
{
APM_RC_QUAD.OutputCh(0,ch_throttle - control_roll - control_yaw); // Right motor
APM_RC_QUAD.OutputCh(1,ch_throttle + control_roll - control_yaw); // Left motor
APM_RC_QUAD.OutputCh(2,ch_throttle + control_pitch + control_yaw); // Front motor
APM_RC_QUAD.OutputCh(3,ch_throttle - control_pitch + control_yaw); // Back motor
}
else
{
roll_I = 0; // reset I terms of PID controls
pitch_I = 0;
yaw_I = 0;
APM_RC_QUAD.OutputCh(0,MIN_THROTTLE); // Motors stoped
APM_RC_QUAD.OutputCh(1,MIN_THROTTLE);
APM_RC_QUAD.OutputCh(2,MIN_THROTTLE);
APM_RC_QUAD.OutputCh(3,MIN_THROTTLE);
// Initialize yaw command to actual yaw
command_rx_yaw = ToDeg(yaw);
command_rx_yaw_diff = 0;
}
Serial.println(); // Line END
}
}