2014-07-28 19:21:07 -03:00
/*
2019-07-12 07:06:12 -03:00
Inspired by work done here
https : //github.com/PX4/Firmware/tree/master/src/drivers/frsky_telemetry from Stefan Rado <px4@sradonia.net>
https : //github.com/opentx/opentx/tree/2.3/radio/src/telemetry from the OpenTX team
2014-07-28 19:21:07 -03:00
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
FRSKY Telemetry library
*/
2018-09-21 03:22:04 -03:00
2015-08-11 03:28:43 -03:00
# include "AP_Frsky_Telem.h"
2018-09-21 03:22:04 -03:00
2019-02-12 02:51:17 -04:00
# include <AP_AHRS/AP_AHRS.h>
2019-02-12 02:53:59 -04:00
# include <AP_BattMonitor/AP_BattMonitor.h>
2019-02-12 03:39:45 -04:00
# include <AP_RangeFinder/AP_RangeFinder.h>
2019-04-04 08:07:30 -03:00
# include <AP_Common/AP_FWVersion.h>
2016-10-27 20:38:19 -03:00
# include <GCS_MAVLink/GCS.h>
2019-04-05 10:02:42 -03:00
# include <AP_Common/Location.h>
2019-06-13 23:59:09 -03:00
# include <AP_GPS/AP_GPS.h>
2019-09-18 18:19:24 -03:00
# include <AP_Baro/AP_Baro.h>
2019-07-12 07:06:12 -03:00
# include <math.h>
2018-06-13 08:11:52 -03:00
2014-07-28 19:21:07 -03:00
extern const AP_HAL : : HAL & hal ;
2019-12-02 23:08:12 -04:00
AP_Frsky_Telem * AP_Frsky_Telem : : singleton ;
2020-04-04 13:25:50 -03:00
AP_Frsky_Telem : : AP_Frsky_Telem ( bool _external_data ) : AP_RCTelemetry ( TIME_SLOT_MAX ) ,
2020-01-01 02:32:04 -04:00
use_external_data ( _external_data )
2019-06-18 04:39:56 -03:00
{
2019-12-02 23:08:12 -04:00
singleton = this ;
}
AP_Frsky_Telem : : ~ AP_Frsky_Telem ( void )
{
singleton = nullptr ;
}
/*
setup ready for passthrough telem
*/
2020-04-04 13:25:50 -03:00
void AP_Frsky_Telem : : setup_wfq_scheduler ( void )
2019-12-02 23:08:12 -04:00
{
// initialize packet weights for the WFQ scheduler
2020-04-04 13:25:50 -03:00
// priority[i] = 1/_scheduler.packet_weight[i]
2020-01-10 03:06:15 -04:00
// rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) )
2020-04-04 13:25:50 -03:00
set_scheduler_entry ( TEXT , 35 , 28 ) ; // 0x5000 status text (dynamic)
set_scheduler_entry ( ATTITUDE , 50 , 38 ) ; // 0x5006 Attitude and range (dynamic)
set_scheduler_entry ( GPS_LAT , 550 , 280 ) ; // 0x800 GPS lat
set_scheduler_entry ( GPS_LON , 550 , 280 ) ; // 0x800 GPS lon
set_scheduler_entry ( VEL_YAW , 400 , 250 ) ; // 0x5005 Vel and Yaw
set_scheduler_entry ( AP_STATUS , 700 , 500 ) ; // 0x5001 AP status
set_scheduler_entry ( GPS_STATUS , 700 , 500 ) ; // 0x5002 GPS status
set_scheduler_entry ( HOME , 400 , 500 ) ; // 0x5004 Home
set_scheduler_entry ( BATT_2 , 1300 , 500 ) ; // 0x5008 Battery 2 status
set_scheduler_entry ( BATT_1 , 1300 , 500 ) ; // 0x5008 Battery 1 status
set_scheduler_entry ( PARAM , 1700 , 1000 ) ; // 0x5007 parameters
2019-06-18 04:39:56 -03:00
}
2016-09-20 23:40:17 -03:00
2016-05-03 14:43:16 -03:00
/*
* init - perform required initialisation
2016-05-03 19:04:46 -03:00
*/
2019-06-18 04:32:31 -03:00
bool AP_Frsky_Telem : : init ( )
2016-05-03 19:04:46 -03:00
{
2020-04-04 13:25:50 -03:00
if ( use_external_data ) {
return AP_RCTelemetry : : init ( ) ;
}
2019-02-12 02:34:06 -04:00
const AP_SerialManager & serial_manager = AP : : serialmanager ( ) ;
2016-05-03 19:04:46 -03:00
// check for protocol configured for a serial port - only the first serial port with one of these protocols will then run (cannot have FrSky on multiple serial ports)
if ( ( _port = serial_manager . find_serial ( AP_SerialManager : : SerialProtocol_FrSky_D , 0 ) ) ) {
_protocol = AP_SerialManager : : SerialProtocol_FrSky_D ; // FrSky D protocol (D-receivers)
} else if ( ( _port = serial_manager . find_serial ( AP_SerialManager : : SerialProtocol_FrSky_SPort , 0 ) ) ) {
_protocol = AP_SerialManager : : SerialProtocol_FrSky_SPort ; // FrSky SPort protocol (X-receivers)
} else if ( ( _port = serial_manager . find_serial ( AP_SerialManager : : SerialProtocol_FrSky_SPort_Passthrough , 0 ) ) ) {
_protocol = AP_SerialManager : : SerialProtocol_FrSky_SPort_Passthrough ; // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers)
2020-04-04 13:25:50 -03:00
AP_RCTelemetry : : init ( ) ;
2016-05-03 19:04:46 -03:00
}
2019-12-02 23:08:12 -04:00
2016-10-30 02:24:21 -03:00
if ( _port ! = nullptr ) {
2019-09-04 19:12:37 -03:00
if ( ! hal . scheduler - > thread_create ( FUNCTOR_BIND_MEMBER ( & AP_Frsky_Telem : : loop , void ) ,
" FrSky " ,
1024 , AP_HAL : : Scheduler : : PRIORITY_RCIN , 1 ) ) {
return false ;
}
2016-05-03 19:04:46 -03:00
// we don't want flow control for either protocol
_port - > set_flow_control ( AP_HAL : : UARTDriver : : FLOW_CONTROL_DISABLE ) ;
2019-06-18 04:32:31 -03:00
return true ;
2016-05-03 19:04:46 -03:00
}
2019-06-18 04:32:31 -03:00
return false ;
2016-05-03 19:04:46 -03:00
}
2020-04-04 13:25:50 -03:00
void AP_Frsky_Telem : : adjust_packet_weight ( bool queue_empty )
2019-07-12 07:06:12 -03:00
{
2020-04-04 13:25:50 -03:00
if ( ! queue_empty ) {
_scheduler . packet_weight [ TEXT ] = 45 ; // messages
_scheduler . packet_weight [ ATTITUDE ] = 80 ; // attitude
} else {
_scheduler . packet_weight [ TEXT ] = 5000 ; // messages
_scheduler . packet_weight [ ATTITUDE ] = 45 ; // attitude
}
}
2019-07-12 07:06:12 -03:00
2020-04-04 13:25:50 -03:00
// WFQ scheduler
bool AP_Frsky_Telem : : is_packet_ready ( uint8_t idx , bool queue_empty )
{
bool packet_ready = false ;
switch ( idx ) {
case TEXT :
packet_ready = ! queue_empty ;
break ;
case AP_STATUS :
packet_ready = gcs ( ) . vehicle_initialised ( ) ;
break ;
case BATT_2 :
packet_ready = AP : : battery ( ) . num_instances ( ) > 1 ;
break ;
default :
packet_ready = true ;
break ;
2019-07-12 07:06:12 -03:00
}
2020-04-04 13:25:50 -03:00
return packet_ready ;
2019-07-12 07:06:12 -03:00
}
/*
* WFQ scheduler
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
2020-04-04 13:25:50 -03:00
void AP_Frsky_Telem : : process_packet ( uint8_t idx )
2019-07-12 07:06:12 -03:00
{
// send packet
2020-04-04 13:25:50 -03:00
switch ( idx ) {
case TEXT : // 0x5000 status text
2019-07-12 07:06:12 -03:00
if ( get_next_msg_chunk ( ) ) {
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID , _msg_chunk . chunk ) ;
2019-07-12 07:06:12 -03:00
}
break ;
2020-04-04 13:25:50 -03:00
case ATTITUDE : // 0x5006 Attitude and range
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 6 , calc_attiandrng ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case GPS_LAT : // 0x800 GPS lat
2019-07-12 07:06:12 -03:00
// sample both lat and lon at the same time
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , GPS_LONG_LATI_FIRST_ID , calc_gps_latlng ( & _passthrough . send_latitude ) ) ; // gps latitude or longitude
2019-07-12 07:06:12 -03:00
_passthrough . gps_lng_sample = calc_gps_latlng ( & _passthrough . send_latitude ) ;
// force the scheduler to select GPS lon as packet that's been waiting the most
// this guarantees that gps coords are sent at max
2020-04-04 13:25:50 -03:00
// _scheduler.avg_polling_period*number_of_downlink_sensors time separation
_scheduler . packet_timer [ GPS_LON ] = _scheduler . packet_timer [ GPS_LAT ] - 10000 ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case GPS_LON : // 0x800 GPS lon
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , GPS_LONG_LATI_FIRST_ID , _passthrough . gps_lng_sample ) ; // gps longitude
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case VEL_YAW : // 0x5005 Vel and Yaw
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 5 , calc_velandyaw ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case AP_STATUS : // 0x5001 AP status
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 1 , calc_ap_status ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case GPS_STATUS : // 0x5002 GPS Status
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 2 , calc_gps_status ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case HOME : // 0x5004 Home
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 4 , calc_home ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case BATT_2 : // 0x5008 Battery 2 status
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 8 , calc_batt ( 1 ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case BATT_1 : // 0x5003 Battery 1 status
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 3 , calc_batt ( 0 ) ) ;
2019-07-12 07:06:12 -03:00
break ;
2020-04-04 13:25:50 -03:00
case PARAM : // 0x5007 parameters
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DIY_FIRST_ID + 7 , calc_param ( ) ) ;
2019-07-12 07:06:12 -03:00
break ;
}
}
2015-01-20 15:30:25 -04:00
2016-05-03 19:04:46 -03:00
/*
* send telemetry data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
void AP_Frsky_Telem : : send_SPort_Passthrough ( void )
{
int16_t numc ;
numc = _port - > available ( ) ;
// check if available is negative
if ( numc < 0 ) {
return ;
}
// this is the constant for hub data frame
if ( _port - > txspace ( ) < 19 ) {
return ;
}
// keep only the last two bytes of the data found in the serial buffer, as we shouldn't respond to old poll requests
uint8_t prev_byte = 0 ;
for ( int16_t i = 0 ; i < numc ; i + + ) {
prev_byte = _passthrough . new_byte ;
_passthrough . new_byte = _port - > read ( ) ;
}
2020-05-09 19:15:49 -03:00
if ( prev_byte = = FRAME_HEAD ) {
if ( _passthrough . new_byte = = SENSOR_ID_27 ) { // byte 0x7E is the header of each poll request
2020-04-04 13:25:50 -03:00
run_wfq_scheduler ( ) ;
2016-05-03 19:04:46 -03:00
}
}
}
2015-01-27 07:35:46 -04:00
/*
2016-05-03 19:03:49 -03:00
* send telemetry data
2016-05-03 14:43:16 -03:00
* for FrSky SPort protocol ( X - receivers )
*/
2016-05-03 19:03:49 -03:00
void AP_Frsky_Telem : : send_SPort ( void )
2016-05-03 14:43:16 -03:00
{
2016-05-03 19:04:46 -03:00
int16_t numc ;
numc = _port - > available ( ) ;
// check if available is negative
if ( numc < 0 ) {
return ;
}
// this is the constant for hub data frame
if ( _port - > txspace ( ) < 19 ) {
return ;
}
2019-09-18 18:19:24 -03:00
if ( numc = = 0 ) {
// no serial data to process do bg tasks
2020-03-08 19:29:08 -03:00
if ( _SPort . vario_refresh ) {
calc_nav_alt ( ) ; // nav altitude is not recalculated until all of it has been sent
_SPort . vario_refresh = false ;
}
if ( _SPort . gps_refresh ) {
calc_gps_position ( ) ; // gps data is not recalculated until all of it has been sent
_SPort . gps_refresh = false ;
2019-09-18 18:19:24 -03:00
}
return ;
}
2016-05-03 19:04:46 -03:00
for ( int16_t i = 0 ; i < numc ; i + + ) {
int16_t readbyte = _port - > read ( ) ;
if ( _SPort . sport_status = = false ) {
2020-05-09 19:15:49 -03:00
if ( readbyte = = FRAME_HEAD ) {
2016-05-03 19:04:46 -03:00
_SPort . sport_status = true ;
}
} else {
2019-02-12 02:53:59 -04:00
const AP_BattMonitor & _battery = AP : : battery ( ) ;
2016-05-03 14:43:16 -03:00
switch ( readbyte ) {
2019-09-18 18:19:24 -03:00
case SENSOR_ID_VARIO : // Sensor ID 0
switch ( _SPort . vario_call ) {
case 0 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_BARO_ALT_BP , _SPort_data . alt_nav_meters ) ; // send altitude integer part
2019-09-18 18:19:24 -03:00
break ;
case 1 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_BARO_ALT_AP , _SPort_data . alt_nav_cm ) ; // send altitude decimal part
2019-09-18 18:19:24 -03:00
break ;
case 2 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_VARIO , _SPort_data . vario_vspd ) ; // send vspeed m/s
2020-03-08 19:29:08 -03:00
_SPort . vario_refresh = true ;
2019-09-18 18:19:24 -03:00
break ;
}
if ( + + _SPort . vario_call > 2 ) {
_SPort . vario_call = 0 ;
}
break ;
case SENSOR_ID_FAS : // Sensor ID 2
2016-05-03 19:04:46 -03:00
switch ( _SPort . fas_call ) {
case 0 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_FUEL , ( uint16_t ) roundf ( _battery . capacity_remaining_pct ( ) ) ) ; // send battery remaining
2016-05-03 19:04:46 -03:00
break ;
2016-05-03 14:43:16 -03:00
case 1 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_VFAS , ( uint16_t ) roundf ( _battery . voltage ( ) * 10.0f ) ) ; // send battery voltage
2016-05-03 14:43:16 -03:00
break ;
case 2 :
2019-07-07 11:37:28 -03:00
{
float current ;
if ( ! _battery . current_amps ( current ) ) {
current = 0 ;
}
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_CURRENT , ( uint16_t ) roundf ( current * 10.0f ) ) ; // send current consumption
2019-07-07 11:37:28 -03:00
break ;
2019-07-12 07:06:12 -03:00
}
break ;
2016-05-03 14:43:16 -03:00
}
2019-09-18 18:19:24 -03:00
if ( + + _SPort . fas_call > 2 ) {
_SPort . fas_call = 0 ;
}
2016-05-03 14:43:16 -03:00
break ;
2019-09-18 18:19:24 -03:00
case SENSOR_ID_GPS : // Sensor ID 3
2016-05-03 19:04:46 -03:00
switch ( _SPort . gps_call ) {
case 0 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , GPS_LONG_LATI_FIRST_ID , calc_gps_latlng ( & _passthrough . send_latitude ) ) ; // gps latitude or longitude
2016-05-03 19:04:46 -03:00
break ;
case 1 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , GPS_LONG_LATI_FIRST_ID , calc_gps_latlng ( & _passthrough . send_latitude ) ) ; // gps latitude or longitude
2016-05-03 14:43:16 -03:00
break ;
case 2 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_GPS_SPEED_BP , _SPort_data . speed_in_meter ) ; // send gps speed integer part
2016-05-03 14:43:16 -03:00
break ;
case 3 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_GPS_SPEED_AP , _SPort_data . speed_in_centimeter ) ; // send gps speed decimal part
2016-05-03 14:43:16 -03:00
break ;
case 4 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_GPS_ALT_BP , _SPort_data . alt_gps_meters ) ; // send gps altitude integer part
2016-05-03 14:43:16 -03:00
break ;
case 5 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_GPS_ALT_AP , _SPort_data . alt_gps_cm ) ; // send gps altitude decimals
2016-05-03 14:43:16 -03:00
break ;
case 6 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_GPS_COURS_BP , _SPort_data . yaw ) ; // send heading in degree based on AHRS and not GPS
2020-03-08 19:29:08 -03:00
_SPort . gps_refresh = true ;
2016-05-03 14:43:16 -03:00
break ;
}
2019-09-18 18:19:24 -03:00
if ( + + _SPort . gps_call > 6 ) {
_SPort . gps_call = 0 ;
}
2016-05-03 14:43:16 -03:00
break ;
2019-09-18 18:19:24 -03:00
case SENSOR_ID_SP2UR : // Sensor ID 6
2016-05-03 19:04:46 -03:00
switch ( _SPort . various_call ) {
case 0 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_TEMP2 , ( uint16_t ) ( AP : : gps ( ) . num_sats ( ) * 10 + AP : : gps ( ) . status ( ) ) ) ; // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t)
2016-05-03 14:43:16 -03:00
break ;
2016-05-03 19:04:46 -03:00
case 1 :
2020-05-09 19:15:49 -03:00
send_sport_frame ( SPORT_DATA_FRAME , DATA_ID_TEMP1 , gcs ( ) . custom_mode ( ) ) ; // send flight mode
2016-05-03 14:43:16 -03:00
break ;
}
2019-09-18 18:19:24 -03:00
if ( + + _SPort . various_call > 1 ) {
_SPort . various_call = 0 ;
}
2016-05-03 14:43:16 -03:00
break ;
}
2016-05-03 19:04:46 -03:00
_SPort . sport_status = false ;
2015-01-27 07:35:46 -04:00
}
}
}
2015-01-27 07:52:17 -04:00
/*
2016-05-03 19:03:49 -03:00
* send frame1 and frame2 telemetry data
2016-05-03 14:43:16 -03:00
* one frame ( frame1 ) is sent every 200 ms with baro alt , nb sats , batt volts and amp , control_mode
* a second frame ( frame2 ) is sent every second ( 1000 ms ) with gps position data , and ahrs . yaw_sensor heading ( instead of GPS heading )
* for FrSky D protocol ( D - receivers )
2015-01-27 07:52:17 -04:00
*/
2016-05-03 19:03:49 -03:00
void AP_Frsky_Telem : : send_D ( void )
2015-01-27 07:52:17 -04:00
{
2019-02-12 02:53:59 -04:00
const AP_BattMonitor & _battery = AP : : battery ( ) ;
2015-11-19 23:10:09 -04:00
uint32_t now = AP_HAL : : millis ( ) ;
2015-01-27 07:35:46 -04:00
// send frame1 every 200ms
2016-11-04 15:29:41 -03:00
if ( now - _D . last_200ms_frame > = 200 ) {
2016-05-03 19:04:46 -03:00
_D . last_200ms_frame = now ;
2017-12-01 21:01:44 -04:00
send_uint16 ( DATA_ID_TEMP2 , ( uint16_t ) ( AP : : gps ( ) . num_sats ( ) * 10 + AP : : gps ( ) . status ( ) ) ) ; // send GPS status and number of satellites as num_sats*10 + status (to fit into a uint8_t)
2019-02-12 07:55:07 -04:00
send_uint16 ( DATA_ID_TEMP1 , gcs ( ) . custom_mode ( ) ) ; // send flight mode
2016-05-03 19:04:46 -03:00
send_uint16 ( DATA_ID_FUEL , ( uint16_t ) roundf ( _battery . capacity_remaining_pct ( ) ) ) ; // send battery remaining
send_uint16 ( DATA_ID_VFAS , ( uint16_t ) roundf ( _battery . voltage ( ) * 10.0f ) ) ; // send battery voltage
2019-07-07 11:37:28 -03:00
float current ;
if ( ! _battery . current_amps ( current ) ) {
current = 0 ;
}
2019-07-12 07:06:12 -03:00
send_uint16 ( DATA_ID_CURRENT , ( uint16_t ) roundf ( current * 10.0f ) ) ; // send current consumption
2016-05-03 14:43:16 -03:00
calc_nav_alt ( ) ;
2019-09-18 18:19:24 -03:00
send_uint16 ( DATA_ID_BARO_ALT_BP , _SPort_data . alt_nav_meters ) ; // send nav altitude integer part
send_uint16 ( DATA_ID_BARO_ALT_AP , _SPort_data . alt_nav_cm ) ; // send nav altitude decimal part
2015-01-27 07:35:46 -04:00
}
// send frame2 every second
2016-11-04 15:29:41 -03:00
if ( now - _D . last_1000ms_frame > = 1000 ) {
2016-05-03 19:04:46 -03:00
_D . last_1000ms_frame = now ;
2020-02-10 18:14:00 -04:00
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
2016-05-03 19:04:46 -03:00
send_uint16 ( DATA_ID_GPS_COURS_BP , ( uint16_t ) ( ( _ahrs . yaw_sensor / 100 ) % 360 ) ) ; // send heading in degree based on AHRS and not GPS
2015-01-27 07:35:46 -04:00
calc_gps_position ( ) ;
2017-12-01 21:01:44 -04:00
if ( AP : : gps ( ) . status ( ) > = 3 ) {
2019-09-18 18:19:24 -03:00
send_uint16 ( DATA_ID_GPS_LAT_BP , _SPort_data . latdddmm ) ; // send gps lattitude degree and minute integer part
send_uint16 ( DATA_ID_GPS_LAT_AP , _SPort_data . latmmmm ) ; // send gps lattitude minutes decimal part
send_uint16 ( DATA_ID_GPS_LAT_NS , _SPort_data . lat_ns ) ; // send gps North / South information
send_uint16 ( DATA_ID_GPS_LONG_BP , _SPort_data . londddmm ) ; // send gps longitude degree and minute integer part
send_uint16 ( DATA_ID_GPS_LONG_AP , _SPort_data . lonmmmm ) ; // send gps longitude minutes decimal part
send_uint16 ( DATA_ID_GPS_LONG_EW , _SPort_data . lon_ew ) ; // send gps East / West information
send_uint16 ( DATA_ID_GPS_SPEED_BP , _SPort_data . speed_in_meter ) ; // send gps speed integer part
send_uint16 ( DATA_ID_GPS_SPEED_AP , _SPort_data . speed_in_centimeter ) ; // send gps speed decimal part
send_uint16 ( DATA_ID_GPS_ALT_BP , _SPort_data . alt_gps_meters ) ; // send gps altitude integer part
send_uint16 ( DATA_ID_GPS_ALT_AP , _SPort_data . alt_gps_cm ) ; // send gps altitude decimal part
2015-01-27 07:35:46 -04:00
}
}
}
/*
2019-09-04 19:12:37 -03:00
thread to loop handling bytes
2016-05-03 14:43:16 -03:00
*/
2019-09-04 19:12:37 -03:00
void AP_Frsky_Telem : : loop ( void )
2015-01-27 07:35:46 -04:00
{
2019-09-04 19:12:37 -03:00
// initialise uart (this must be called from within tick b/c the UART begin must be called from the same thread as it is used from)
if ( _protocol = = AP_SerialManager : : SerialProtocol_FrSky_D ) { // FrSky D protocol (D-receivers)
_port - > begin ( AP_SERIALMANAGER_FRSKY_D_BAUD , AP_SERIALMANAGER_FRSKY_BUFSIZE_RX , AP_SERIALMANAGER_FRSKY_BUFSIZE_TX ) ;
} else { // FrSky SPort and SPort Passthrough (OpenTX) protocols (X-receivers)
_port - > begin ( AP_SERIALMANAGER_FRSKY_SPORT_BAUD , AP_SERIALMANAGER_FRSKY_BUFSIZE_RX , AP_SERIALMANAGER_FRSKY_BUFSIZE_TX ) ;
2015-01-27 07:35:46 -04:00
}
2019-09-04 19:12:37 -03:00
_port - > set_unbuffered_writes ( true ) ;
while ( true ) {
hal . scheduler - > delay ( 1 ) ;
if ( _protocol = = AP_SerialManager : : SerialProtocol_FrSky_D ) { // FrSky D protocol (D-receivers)
send_D ( ) ;
} else if ( _protocol = = AP_SerialManager : : SerialProtocol_FrSky_SPort ) { // FrSky SPort protocol (X-receivers)
send_SPort ( ) ;
} else if ( _protocol = = AP_SerialManager : : SerialProtocol_FrSky_SPort_Passthrough ) { // FrSky SPort Passthrough (OpenTX) protocol (X-receivers)
send_SPort_Passthrough ( ) ;
}
2015-01-27 07:35:46 -04:00
}
}
2015-01-20 15:30:25 -04:00
/*
2016-05-03 14:43:16 -03:00
send 1 byte and do byte stuffing
2015-01-20 15:30:25 -04:00
*/
2016-05-03 19:03:49 -03:00
void AP_Frsky_Telem : : send_byte ( uint8_t byte )
2016-05-03 14:43:16 -03:00
{
2020-05-09 19:15:49 -03:00
if ( byte = = START_STOP_D ) {
_port - > write ( 0x5D ) ;
_port - > write ( 0x3E ) ;
} else if ( byte = = BYTESTUFF_D ) {
_port - > write ( 0x5D ) ;
_port - > write ( 0x3D ) ;
} else {
_port - > write ( byte ) ;
2014-07-28 19:21:07 -03:00
}
}
2015-01-20 15:30:25 -04:00
/*
2020-05-09 19:15:49 -03:00
* send an 8 bytes SPort frame of FrSky data - for FrSky SPort protocol ( X - receivers )
2014-07-28 19:21:07 -03:00
*/
2020-05-09 19:15:49 -03:00
void AP_Frsky_Telem : : send_sport_frame ( uint8_t frame , uint16_t appid , uint32_t data )
2016-05-03 14:43:16 -03:00
{
2019-12-02 23:08:12 -04:00
if ( use_external_data ) {
external_data . frame = frame ;
2020-05-09 19:15:49 -03:00
external_data . appid = appid ;
2019-12-02 23:08:12 -04:00
external_data . data = data ;
external_data . pending = true ;
return ;
}
2020-05-09 19:15:49 -03:00
uint8_t buf [ 8 ] ;
buf [ 0 ] = frame ;
buf [ 1 ] = appid & 0xFF ;
buf [ 2 ] = appid > > 8 ;
memcpy ( & buf [ 3 ] , & data , 4 ) ;
uint16_t sum = 0 ;
for ( uint8_t i = 0 ; i < sizeof ( buf ) - 1 ; i + + ) {
sum + = buf [ i ] ;
sum + = sum > > 8 ;
sum & = 0xFF ;
}
sum = 0xff - ( ( sum & 0xff ) + ( sum > > 8 ) ) ;
buf [ 7 ] = ( uint8_t ) sum ;
// perform byte stuffing per SPort spec
uint8_t len = 0 ;
uint8_t buf2 [ sizeof ( buf ) * 2 + 1 ] ;
for ( uint8_t i = 0 ; i < sizeof ( buf ) ; i + + ) {
uint8_t c = buf [ i ] ;
if ( c = = FRAME_DLE | | buf [ i ] = = FRAME_HEAD ) {
buf2 [ len + + ] = FRAME_DLE ;
buf2 [ len + + ] = c ^ FRAME_XOR ;
} else {
buf2 [ len + + ] = c ;
}
}
2020-05-10 05:29:19 -03:00
# ifndef HAL_BOARD_SITL
2020-05-09 19:15:49 -03:00
/*
check that we haven ' t been too slow in responding to the new
UART data . If we respond too late then we will overwrite the next
polling frame .
SPort poll - to - pool period is 11.65 ms , a frame takes 1.38 ms
this leaves us with up to 10 ms to respond but to play it safe we
allow no more than 7500u s
*/
uint64_t tend = _port - > receive_time_constraint_us ( 1 ) ;
uint64_t now = AP_HAL : : micros64 ( ) ;
uint64_t tdelay = now - tend ;
if ( tdelay > 7500 ) {
// we've been too slow in responding
return ;
}
2020-05-10 05:29:19 -03:00
# endif
2020-05-09 19:15:49 -03:00
_port - > write ( buf2 , len ) ;
2016-05-03 19:04:46 -03:00
}
/*
* send one uint16 frame of FrSky data - for FrSky D protocol ( D - receivers )
*/
void AP_Frsky_Telem : : send_uint16 ( uint16_t id , uint16_t data )
{
_port - > write ( START_STOP_D ) ; // send a 0x5E start byte
uint8_t * bytes = ( uint8_t * ) & id ;
send_byte ( bytes [ 0 ] ) ;
bytes = ( uint8_t * ) & data ;
send_byte ( bytes [ 0 ] ) ; // LSB
send_byte ( bytes [ 1 ] ) ; // MSB
}
/*
2016-09-26 16:06:11 -03:00
* grabs one " chunk " ( 4 bytes ) of the queued message to be transmitted
2016-05-03 19:04:46 -03:00
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
2016-09-26 16:06:11 -03:00
bool AP_Frsky_Telem : : get_next_msg_chunk ( void )
2016-05-03 19:04:46 -03:00
{
2020-01-10 03:00:43 -04:00
if ( ! _statustext . available ) {
WITH_SEMAPHORE ( _statustext . sem ) ;
if ( ! _statustext . queue . pop ( _statustext . next ) ) {
return false ;
}
_statustext . available = true ;
2016-09-26 17:12:42 -03:00
}
2017-03-14 13:21:08 -03:00
if ( _msg_chunk . repeats = = 0 ) { // if it's the first time get_next_msg_chunk is called for a given chunk
2017-03-21 14:26:14 -03:00
uint8_t character = 0 ;
2017-03-14 13:21:08 -03:00
_msg_chunk . chunk = 0 ; // clear the 4 bytes of the chunk buffer
2017-03-21 14:26:14 -03:00
2020-01-10 03:00:43 -04:00
for ( int i = 3 ; i > - 1 & & _msg_chunk . char_index < sizeof ( _statustext . next . text ) ; i - - ) {
character = _statustext . next . text [ _msg_chunk . char_index + + ] ;
2017-03-21 14:26:14 -03:00
2017-03-14 13:21:08 -03:00
if ( ! character ) {
break ;
2016-05-03 19:04:46 -03:00
}
2017-03-21 14:26:14 -03:00
2017-03-14 13:21:08 -03:00
_msg_chunk . chunk | = character < < i * 8 ;
2017-03-21 14:26:14 -03:00
}
2020-01-10 03:00:43 -04:00
if ( ! character | | ( _msg_chunk . char_index = = sizeof ( _statustext . next . text ) ) ) { // we've reached the end of the message (string terminated by '\0' or last character of the string has been processed)
2017-03-14 13:21:08 -03:00
_msg_chunk . char_index = 0 ; // reset index to get ready to process the next message
2016-09-26 17:12:42 -03:00
// add severity which is sent as the MSB of the last three bytes of the last chunk (bits 24, 16, and 8) since a character is on 7 bits
2020-01-10 03:00:43 -04:00
_msg_chunk . chunk | = ( _statustext . next . severity & 0x4 ) < < 21 ;
_msg_chunk . chunk | = ( _statustext . next . severity & 0x2 ) < < 14 ;
_msg_chunk . chunk | = ( _statustext . next . severity & 0x1 ) < < 7 ;
2016-09-26 17:12:42 -03:00
}
}
2017-03-21 14:26:14 -03:00
2019-07-12 07:06:12 -03:00
// repeat each message chunk 3 times to ensure transmission
// on slow links reduce the number of duplicate chunks
uint8_t extra_chunks = 2 ;
2020-04-04 13:25:50 -03:00
if ( _scheduler . avg_packet_rate < 20 ) {
2019-07-12 07:06:12 -03:00
// with 3 or more extra frsky sensors on the bus
// send messages only once
extra_chunks = 0 ;
2020-04-04 13:25:50 -03:00
} else if ( _scheduler . avg_packet_rate < 30 ) {
2019-07-12 07:06:12 -03:00
// with 1 or 2 extra frsky sensors on the bus
// send messages twice
extra_chunks = 1 ;
}
if ( _msg_chunk . repeats + + > extra_chunks ) {
2016-09-26 17:12:42 -03:00
_msg_chunk . repeats = 0 ;
2020-01-10 03:00:43 -04:00
if ( _msg_chunk . char_index = = 0 ) {
// we're ready for the next message
_statustext . available = false ;
2016-08-23 21:15:13 -03:00
}
2016-05-03 19:04:46 -03:00
}
2016-09-26 16:06:11 -03:00
return true ;
2016-05-03 19:04:46 -03:00
}
/*
* prepare parameter data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_param ( void )
{
2019-02-12 02:53:59 -04:00
const AP_BattMonitor & _battery = AP : : battery ( ) ;
2016-05-03 19:04:46 -03:00
uint32_t param = 0 ;
// cycle through paramIDs
2017-10-10 10:41:05 -03:00
if ( _paramID > = 5 ) {
2016-05-03 19:04:46 -03:00
_paramID = 0 ;
}
_paramID + + ;
switch ( _paramID ) {
case 1 :
2019-02-12 07:55:07 -04:00
param = gcs ( ) . frame_type ( ) ; // see MAV_TYPE in Mavlink definition file common.h
2016-05-03 19:04:46 -03:00
break ;
2018-01-11 19:39:39 -04:00
case 2 : // was used to send the battery failsafe voltage
case 3 : // was used to send the battery failsafe capacity in mAh
2016-05-03 19:04:46 -03:00
break ;
case 4 :
2017-10-10 10:41:05 -03:00
param = ( uint32_t ) roundf ( _battery . pack_capacity_mah ( 0 ) ) ; // battery pack capacity in mAh
break ;
case 5 :
param = ( uint32_t ) roundf ( _battery . pack_capacity_mah ( 1 ) ) ; // battery pack capacity in mAh
2016-05-03 19:04:46 -03:00
break ;
}
//Reserve first 8 bits for param ID, use other 24 bits to store parameter value
2017-10-10 10:41:05 -03:00
param = ( _paramID < < PARAM_ID_OFFSET ) | ( param & PARAM_VALUE_LIMIT ) ;
2016-05-03 19:04:46 -03:00
return param ;
}
/*
* prepare gps latitude / longitude data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_gps_latlng ( bool * send_latitude )
{
uint32_t latlng ;
2017-12-01 21:01:44 -04:00
const Location & loc = AP : : gps ( ) . location ( 0 ) ; // use the first gps instance (same as in send_mavlink_gps_raw)
2016-05-03 19:04:46 -03:00
// alternate between latitude and longitude
2016-11-01 18:42:15 -03:00
if ( ( * send_latitude ) = = true ) {
2016-05-03 19:04:46 -03:00
if ( loc . lat < 0 ) {
2018-02-02 16:35:15 -04:00
latlng = ( ( labs ( loc . lat ) / 100 ) * 6 ) | 0x40000000 ;
2016-05-03 19:04:46 -03:00
} else {
2018-02-02 16:35:15 -04:00
latlng = ( ( labs ( loc . lat ) / 100 ) * 6 ) ;
2016-05-03 19:04:46 -03:00
}
2016-11-01 18:42:15 -03:00
( * send_latitude ) = false ;
2016-05-03 19:04:46 -03:00
} else {
if ( loc . lng < 0 ) {
2018-02-02 16:35:15 -04:00
latlng = ( ( labs ( loc . lng ) / 100 ) * 6 ) | 0xC0000000 ;
2016-05-03 19:04:46 -03:00
} else {
2018-02-02 16:35:15 -04:00
latlng = ( ( labs ( loc . lng ) / 100 ) * 6 ) | 0x80000000 ;
2016-05-03 19:04:46 -03:00
}
2016-11-01 18:42:15 -03:00
( * send_latitude ) = true ;
2016-05-03 19:04:46 -03:00
}
return latlng ;
}
/*
* prepare gps status data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_gps_status ( void )
{
2017-12-01 21:01:44 -04:00
const AP_GPS & gps = AP : : gps ( ) ;
2016-05-03 19:04:46 -03:00
uint32_t gps_status ;
// number of GPS satellites visible (limit to 15 (0xF) since the value is stored on 4 bits)
2017-12-01 21:01:44 -04:00
gps_status = ( gps . num_sats ( ) < GPS_SATS_LIMIT ) ? gps . num_sats ( ) : GPS_SATS_LIMIT ;
2017-04-18 19:38:45 -03:00
// GPS receiver status (limit to 0-3 (0x3) since the value is stored on 2 bits: NO_GPS = 0, NO_FIX = 1, GPS_OK_FIX_2D = 2, GPS_OK_FIX_3D or GPS_OK_FIX_3D_DGPS or GPS_OK_FIX_3D_RTK_FLOAT or GPS_OK_FIX_3D_RTK_FIXED = 3)
2017-12-01 21:01:44 -04:00
gps_status | = ( ( gps . status ( ) < GPS_STATUS_LIMIT ) ? gps . status ( ) : GPS_STATUS_LIMIT ) < < GPS_STATUS_OFFSET ;
2016-05-03 19:04:46 -03:00
// GPS horizontal dilution of precision in dm
2017-12-01 21:01:44 -04:00
gps_status | = prep_number ( roundf ( gps . get_hdop ( ) * 0.1f ) , 2 , 1 ) < < GPS_HDOP_OFFSET ;
2017-04-18 19:38:45 -03:00
// GPS receiver advanced status (0: no advanced fix, 1: GPS_OK_FIX_3D_DGPS, 2: GPS_OK_FIX_3D_RTK_FLOAT, 3: GPS_OK_FIX_3D_RTK_FIXED)
2017-12-01 21:01:44 -04:00
gps_status | = ( ( gps . status ( ) > GPS_STATUS_LIMIT ) ? gps . status ( ) - GPS_STATUS_LIMIT : 0 ) < < GPS_ADVSTATUS_OFFSET ;
2016-05-03 19:04:46 -03:00
// Altitude MSL in dm
2017-12-01 21:01:44 -04:00
const Location & loc = gps . location ( ) ;
2016-05-03 19:04:46 -03:00
gps_status | = prep_number ( roundf ( loc . alt * 0.1f ) , 2 , 2 ) < < GPS_ALTMSL_OFFSET ;
return gps_status ;
}
/*
* prepare battery data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
2017-10-10 10:42:47 -03:00
uint32_t AP_Frsky_Telem : : calc_batt ( uint8_t instance )
2016-05-03 19:04:46 -03:00
{
2019-02-12 02:53:59 -04:00
const AP_BattMonitor & _battery = AP : : battery ( ) ;
2016-05-03 19:04:46 -03:00
uint32_t batt ;
2019-07-07 11:37:28 -03:00
float current , consumed_mah ;
if ( ! _battery . current_amps ( current , instance ) ) {
current = 0 ;
}
if ( ! _battery . consumed_mah ( consumed_mah , instance ) ) {
consumed_mah = 0 ;
}
2016-05-03 19:04:46 -03:00
// battery voltage in decivolts, can have up to a 12S battery (4.25Vx12S = 51.0V)
2017-10-10 10:42:47 -03:00
batt = ( ( ( uint16_t ) roundf ( _battery . voltage ( instance ) * 10.0f ) ) & BATT_VOLTAGE_LIMIT ) ;
2016-05-03 19:04:46 -03:00
// battery current draw in deciamps
2019-07-07 11:37:28 -03:00
batt | = prep_number ( roundf ( current * 10.0f ) , 2 , 1 ) < < BATT_CURRENT_OFFSET ;
2016-05-03 19:04:46 -03:00
// battery current drawn since power on in mAh (limit to 32767 (0x7FFF) since value is stored on 15 bits)
2019-07-07 11:37:28 -03:00
batt | = ( ( consumed_mah < BATT_TOTALMAH_LIMIT ) ? ( ( uint16_t ) roundf ( consumed_mah ) & BATT_TOTALMAH_LIMIT ) : BATT_TOTALMAH_LIMIT ) < < BATT_TOTALMAH_OFFSET ;
2016-05-03 19:04:46 -03:00
return batt ;
}
/*
* prepare various autopilot status data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_ap_status ( void )
{
uint32_t ap_status ;
2018-09-21 03:22:04 -03:00
// IMU temperature: offset -19, 0 means temp =< 19°, 63 means temp => 82°
uint8_t imu_temp = ( uint8_t ) roundf ( constrain_float ( AP : : ins ( ) . get_temperature ( 0 ) , AP_IMU_TEMP_MIN , AP_IMU_TEMP_MAX ) - AP_IMU_TEMP_MIN ) ;
2016-05-03 19:04:46 -03:00
// control/flight mode number (limit to 31 (0x1F) since the value is stored on 5 bits)
2019-02-12 07:55:07 -04:00
ap_status = ( uint8_t ) ( ( gcs ( ) . custom_mode ( ) + 1 ) & AP_CONTROL_MODE_LIMIT ) ;
2016-09-26 14:35:47 -03:00
// simple/super simple modes flags
2019-03-01 19:27:11 -04:00
ap_status | = ( uint8_t ) ( gcs ( ) . simple_input_active ( ) ) < < AP_SIMPLE_OFFSET ;
ap_status | = ( uint8_t ) ( gcs ( ) . supersimple_input_active ( ) ) < < AP_SSIMPLE_OFFSET ;
2016-11-01 18:42:15 -03:00
// is_flying flag
2019-03-01 02:26:08 -04:00
ap_status | = ( uint8_t ) ( AP_Notify : : flags . flying ) < < AP_FLYING_OFFSET ;
2016-05-03 19:04:46 -03:00
// armed flag
ap_status | = ( uint8_t ) ( AP_Notify : : flags . armed ) < < AP_ARMED_OFFSET ;
// battery failsafe flag
ap_status | = ( uint8_t ) ( AP_Notify : : flags . failsafe_battery ) < < AP_BATT_FS_OFFSET ;
// bad ekf flag
ap_status | = ( uint8_t ) ( AP_Notify : : flags . ekf_bad ) < < AP_EKF_FS_OFFSET ;
2018-09-21 03:22:04 -03:00
// IMU temperature
ap_status | = imu_temp < < AP_IMU_TEMP_OFFSET ;
2019-07-12 07:06:12 -03:00
//hal.console->printf("flying=%d\n",AP_Notify::flags.flying);
//hal.console->printf("ap_status=%08X\n",ap_status);
2016-05-03 19:04:46 -03:00
return ap_status ;
}
/*
* prepare home position related data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_home ( void )
{
2016-09-01 14:38:32 -03:00
uint32_t home = 0 ;
2016-05-03 19:04:46 -03:00
Location loc ;
2020-02-10 18:14:00 -04:00
Location home_loc ;
bool get_position ;
2016-11-04 14:45:13 -03:00
float _relative_home_altitude = 0 ;
2020-02-10 18:14:00 -04:00
{
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
WITH_SEMAPHORE ( _ahrs . get_semaphore ( ) ) ;
get_position = _ahrs . get_position ( loc ) ;
home_loc = _ahrs . get_home ( ) ;
}
if ( get_position ) {
2016-09-01 14:38:32 -03:00
// check home_loc is valid
if ( home_loc . lat ! = 0 | | home_loc . lng ! = 0 ) {
// distance between vehicle and home_loc in meters
2019-02-24 20:16:20 -04:00
home = prep_number ( roundf ( home_loc . get_distance ( loc ) ) , 3 , 2 ) ;
2016-09-01 14:38:32 -03:00
// angle from front of vehicle to the direction of home_loc in 3 degree increments (just in case, limit to 127 (0x7F) since the value is stored on 7 bits)
2019-04-05 10:02:42 -03:00
home | = ( ( ( uint8_t ) roundf ( loc . get_bearing_to ( home_loc ) * 0.00333f ) ) & HOME_BEARING_LIMIT ) < < HOME_BEARING_OFFSET ;
2016-09-01 14:38:32 -03:00
}
// altitude between vehicle and home_loc
2016-05-03 19:04:46 -03:00
_relative_home_altitude = loc . alt ;
2019-01-01 20:00:30 -04:00
if ( ! loc . relative_alt ) {
2016-05-03 19:04:46 -03:00
// loc.alt has home altitude added, remove it
2020-02-10 18:14:00 -04:00
_relative_home_altitude - = home_loc . alt ;
2016-05-03 19:04:46 -03:00
}
}
2016-11-04 14:45:13 -03:00
// altitude above home in decimeters
2016-05-03 19:04:46 -03:00
home | = prep_number ( roundf ( _relative_home_altitude * 0.1f ) , 3 , 2 ) < < HOME_ALT_OFFSET ;
return home ;
}
/*
* prepare velocity and yaw data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_velandyaw ( void )
{
2020-02-10 18:14:00 -04:00
float vspd = get_vspeed_ms ( ) ;
2016-05-03 19:04:46 -03:00
// vertical velocity in dm/s
2020-02-10 18:14:00 -04:00
uint32_t velandyaw = prep_number ( roundf ( vspd * 10 ) , 2 , 1 ) ;
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
WITH_SEMAPHORE ( _ahrs . get_semaphore ( ) ) ;
2016-10-26 16:22:40 -03:00
// horizontal velocity in dm/s (use airspeed if available and enabled - even if not used - otherwise use groundspeed)
const AP_Airspeed * aspeed = _ahrs . get_airspeed ( ) ;
if ( aspeed & & aspeed - > enabled ( ) ) {
velandyaw | = prep_number ( roundf ( aspeed - > get_airspeed ( ) * 10 ) , 2 , 1 ) < < VELANDYAW_XYVEL_OFFSET ;
2016-10-25 22:50:02 -03:00
} else { // otherwise send groundspeed estimate from ahrs
velandyaw | = prep_number ( roundf ( _ahrs . groundspeed ( ) * 10 ) , 2 , 1 ) < < VELANDYAW_XYVEL_OFFSET ;
2016-09-01 18:27:48 -03:00
}
2016-05-03 19:04:46 -03:00
// yaw from [0;36000] centidegrees to .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
velandyaw | = ( ( uint16_t ) roundf ( _ahrs . yaw_sensor * 0.05f ) & VELANDYAW_YAW_LIMIT ) < < VELANDYAW_YAW_OFFSET ;
return velandyaw ;
}
/*
* prepare attitude ( roll , pitch ) and range data
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint32_t AP_Frsky_Telem : : calc_attiandrng ( void )
{
2019-02-12 03:39:45 -04:00
const RangeFinder * _rng = RangeFinder : : get_singleton ( ) ;
2019-02-12 02:51:17 -04:00
2016-05-03 19:04:46 -03:00
uint32_t attiandrng ;
2020-02-10 18:14:00 -04:00
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
2016-05-03 19:04:46 -03:00
// roll from [-18000;18000] centidegrees to unsigned .2 degree increments [0;1800] (just in case, limit to 2047 (0x7FF) since the value is stored on 11 bits)
attiandrng = ( ( uint16_t ) roundf ( ( _ahrs . roll_sensor + 18000 ) * 0.05f ) & ATTIANDRNG_ROLL_LIMIT ) ;
// pitch from [-9000;9000] centidegrees to unsigned .2 degree increments [0;900] (just in case, limit to 1023 (0x3FF) since the value is stored on 10 bits)
attiandrng | = ( ( uint16_t ) roundf ( ( _ahrs . pitch_sensor + 9000 ) * 0.05f ) & ATTIANDRNG_PITCH_LIMIT ) < < ATTIANDRNG_PITCH_OFFSET ;
// rangefinder measurement in cm
2019-02-12 03:39:45 -04:00
attiandrng | = prep_number ( _rng ? _rng - > distance_cm_orient ( ROTATION_PITCH_270 ) : 0 , 3 , 1 ) < < ATTIANDRNG_RNGFND_OFFSET ;
2016-05-03 19:04:46 -03:00
return attiandrng ;
}
/*
* prepare value for transmission through FrSky link
* for FrSky SPort Passthrough ( OpenTX ) protocol ( X - receivers )
*/
uint16_t AP_Frsky_Telem : : prep_number ( int32_t number , uint8_t digits , uint8_t power )
{
uint16_t res = 0 ;
uint32_t abs_number = abs ( number ) ;
if ( ( digits = = 2 ) & & ( power = = 1 ) ) { // number encoded on 8 bits: 7 bits for digits + 1 for 10^power
if ( abs_number < 100 ) {
res = abs_number < < 1 ;
} else if ( abs_number < 1270 ) {
res = ( ( uint8_t ) roundf ( abs_number * 0.1f ) < < 1 ) | 0x1 ;
} else { // transmit max possible value (0x7F x 10^1 = 1270)
res = 0xFF ;
}
if ( number < 0 ) { // if number is negative, add sign bit in front
res | = 0x1 < < 8 ;
}
} else if ( ( digits = = 2 ) & & ( power = = 2 ) ) { // number encoded on 9 bits: 7 bits for digits + 2 for 10^power
if ( abs_number < 100 ) {
res = abs_number < < 2 ;
} else if ( abs_number < 1000 ) {
res = ( ( uint8_t ) roundf ( abs_number * 0.1f ) < < 2 ) | 0x1 ;
} else if ( abs_number < 10000 ) {
res = ( ( uint8_t ) roundf ( abs_number * 0.01f ) < < 2 ) | 0x2 ;
} else if ( abs_number < 127000 ) {
res = ( ( uint8_t ) roundf ( abs_number * 0.001f ) < < 2 ) | 0x3 ;
} else { // transmit max possible value (0x7F x 10^3 = 127000)
res = 0x1FF ;
}
if ( number < 0 ) { // if number is negative, add sign bit in front
res | = 0x1 < < 9 ;
}
} else if ( ( digits = = 3 ) & & ( power = = 1 ) ) { // number encoded on 11 bits: 10 bits for digits + 1 for 10^power
if ( abs_number < 1000 ) {
res = abs_number < < 1 ;
} else if ( abs_number < 10240 ) {
res = ( ( uint16_t ) roundf ( abs_number * 0.1f ) < < 1 ) | 0x1 ;
} else { // transmit max possible value (0x3FF x 10^1 = 10240)
res = 0x7FF ;
}
if ( number < 0 ) { // if number is negative, add sign bit in front
res | = 0x1 < < 11 ;
}
} else if ( ( digits = = 3 ) & & ( power = = 2 ) ) { // number encoded on 12 bits: 10 bits for digits + 2 for 10^power
if ( abs_number < 1000 ) {
res = abs_number < < 2 ;
} else if ( abs_number < 10000 ) {
res = ( ( uint16_t ) roundf ( abs_number * 0.1f ) < < 2 ) | 0x1 ;
} else if ( abs_number < 100000 ) {
res = ( ( uint16_t ) roundf ( abs_number * 0.01f ) < < 2 ) | 0x2 ;
} else if ( abs_number < 1024000 ) {
res = ( ( uint16_t ) roundf ( abs_number * 0.001f ) < < 2 ) | 0x3 ;
} else { // transmit max possible value (0x3FF x 10^3 = 127000)
res = 0xFFF ;
}
if ( number < 0 ) { // if number is negative, add sign bit in front
res | = 0x1 < < 12 ;
}
}
return res ;
2014-07-28 19:21:07 -03:00
}
2019-09-18 18:19:24 -03:00
/*
* get vertical speed from ahrs , if not available fall back to baro climbrate , units is m / s
* for FrSky D and SPort protocols
*/
float AP_Frsky_Telem : : get_vspeed_ms ( void )
{
{ // release semaphore as soon as possible
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
Vector3f v ;
WITH_SEMAPHORE ( _ahrs . get_semaphore ( ) ) ;
if ( _ahrs . get_velocity_NED ( v ) ) {
return - v . z ;
}
}
auto & _baro = AP : : baro ( ) ;
WITH_SEMAPHORE ( _baro . get_semaphore ( ) ) ;
return _baro . get_climb_rate ( ) ;
}
2015-01-20 15:30:25 -04:00
/*
2016-05-03 14:43:16 -03:00
* prepare altitude between vehicle and home location data
* for FrSky D and SPort protocols
2014-07-28 19:21:07 -03:00
*/
2016-05-03 14:43:16 -03:00
void AP_Frsky_Telem : : calc_nav_alt ( void )
2015-01-22 01:43:49 -04:00
{
2019-09-18 18:19:24 -03:00
_SPort_data . vario_vspd = ( int32_t ) ( get_vspeed_ms ( ) * 100 ) ; //convert to cm/s
2016-05-03 19:04:46 -03:00
Location loc ;
2016-11-04 14:45:13 -03:00
float current_height = 0 ; // in centimeters above home
2019-09-18 18:19:24 -03:00
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
WITH_SEMAPHORE ( _ahrs . get_semaphore ( ) ) ;
2016-05-03 19:04:46 -03:00
if ( _ahrs . get_position ( loc ) ) {
current_height = loc . alt * 0.01f ;
2019-01-01 20:00:30 -04:00
if ( ! loc . relative_alt ) {
2016-05-03 19:04:46 -03:00
// loc.alt has home altitude added, remove it
current_height - = _ahrs . get_home ( ) . alt * 0.01f ;
2015-01-22 01:43:49 -04:00
}
2014-07-28 19:21:07 -03:00
}
2019-09-18 18:19:24 -03:00
_SPort_data . alt_nav_meters = ( int16_t ) current_height ;
_SPort_data . alt_nav_cm = ( current_height - _SPort_data . alt_nav_meters ) * 100 ;
2016-05-03 14:43:16 -03:00
}
2014-07-28 19:21:07 -03:00
2016-05-03 14:43:16 -03:00
/*
* format the decimal latitude / longitude to the required degrees / minutes
* for FrSky D and SPort protocols
2014-07-28 19:21:07 -03:00
*/
2016-05-03 14:43:16 -03:00
float AP_Frsky_Telem : : format_gps ( float dec )
2014-07-28 19:21:07 -03:00
{
uint8_t dm_deg = ( uint8_t ) dec ;
return ( dm_deg * 100.0f ) + ( dec - dm_deg ) * 60 ;
}
2015-01-20 15:30:25 -04:00
/*
2016-05-03 14:43:16 -03:00
* prepare gps data
* for FrSky D and SPort protocols
2014-07-28 19:21:07 -03:00
*/
2016-05-03 14:43:16 -03:00
void AP_Frsky_Telem : : calc_gps_position ( void )
2015-01-22 01:43:49 -04:00
{
2015-01-20 15:30:25 -04:00
float lat ;
2016-05-03 14:43:16 -03:00
float lon ;
float alt ;
2015-01-20 15:30:25 -04:00
float speed ;
2017-12-01 21:01:44 -04:00
if ( AP : : gps ( ) . status ( ) > = 3 ) {
const Location & loc = AP : : gps ( ) . location ( ) ; //get gps instance 0
2016-05-03 14:43:16 -03:00
lat = format_gps ( fabsf ( loc . lat / 10000000.0f ) ) ;
2019-09-18 18:19:24 -03:00
_SPort_data . latdddmm = lat ;
_SPort_data . latmmmm = ( lat - _SPort_data . latdddmm ) * 10000 ;
_SPort_data . lat_ns = ( loc . lat < 0 ) ? ' S ' : ' N ' ;
2015-01-20 15:30:25 -04:00
2016-05-03 14:43:16 -03:00
lon = format_gps ( fabsf ( loc . lng / 10000000.0f ) ) ;
2019-09-18 18:19:24 -03:00
_SPort_data . londddmm = lon ;
_SPort_data . lonmmmm = ( lon - _SPort_data . londddmm ) * 10000 ;
_SPort_data . lon_ew = ( loc . lng < 0 ) ? ' W ' : ' E ' ;
2015-01-20 15:30:25 -04:00
2016-05-03 14:43:16 -03:00
alt = loc . alt * 0.01f ;
2019-09-18 18:19:24 -03:00
_SPort_data . alt_gps_meters = ( int16_t ) alt ;
_SPort_data . alt_gps_cm = ( alt - _SPort_data . alt_gps_meters ) * 100 ;
2015-01-20 15:30:25 -04:00
2017-12-01 21:01:44 -04:00
speed = AP : : gps ( ) . ground_speed ( ) ;
2019-09-18 18:19:24 -03:00
_SPort_data . speed_in_meter = speed ;
_SPort_data . speed_in_centimeter = ( speed - _SPort_data . speed_in_meter ) * 100 ;
2016-05-03 14:43:16 -03:00
} else {
2019-09-18 18:19:24 -03:00
_SPort_data . latdddmm = 0 ;
_SPort_data . latmmmm = 0 ;
_SPort_data . lat_ns = 0 ;
_SPort_data . londddmm = 0 ;
_SPort_data . lonmmmm = 0 ;
_SPort_data . alt_gps_meters = 0 ;
_SPort_data . alt_gps_cm = 0 ;
_SPort_data . speed_in_meter = 0 ;
_SPort_data . speed_in_centimeter = 0 ;
2016-05-03 14:43:16 -03:00
}
2019-09-18 18:19:24 -03:00
AP_AHRS & _ahrs = AP : : ahrs ( ) ;
_SPort_data . yaw = ( uint16_t ) ( ( _ahrs . yaw_sensor / 100 ) % 360 ) ; // heading in degree based on AHRS and not GPS
2015-01-20 15:30:25 -04:00
}
2019-02-12 07:55:07 -04:00
2019-12-02 23:08:12 -04:00
/*
fetch Sport data for an external transport , such as FPort
*/
2020-01-01 02:32:04 -04:00
bool AP_Frsky_Telem : : _get_telem_data ( uint8_t & frame , uint16_t & appid , uint32_t & data )
2019-12-02 23:08:12 -04:00
{
2020-04-04 13:25:50 -03:00
run_wfq_scheduler ( ) ;
2019-12-02 23:08:12 -04:00
if ( ! external_data . pending ) {
return false ;
}
frame = external_data . frame ;
appid = external_data . appid ;
data = external_data . data ;
external_data . pending = false ;
return true ;
}
2020-01-01 02:32:04 -04:00
/*
fetch Sport data for an external transport , such as FPort
*/
bool AP_Frsky_Telem : : get_telem_data ( uint8_t & frame , uint16_t & appid , uint32_t & data )
{
if ( ! singleton & & ! hal . util - > get_soft_armed ( ) ) {
// if telem data is requested when we are disarmed and don't
// yet have a AP_Frsky_Telem object then try to allocate one
new AP_Frsky_Telem ( true ) ;
2020-01-10 03:06:15 -04:00
// initialize the passthrough scheduler
if ( singleton ) {
2020-04-04 13:25:50 -03:00
singleton - > init ( ) ;
2020-01-10 03:06:15 -04:00
}
2020-01-01 02:32:04 -04:00
}
if ( ! singleton ) {
return false ;
}
return singleton - > _get_telem_data ( frame , appid , data ) ;
}
2019-12-02 23:08:12 -04:00
namespace AP {
AP_Frsky_Telem * frsky_telem ( ) {
return AP_Frsky_Telem : : get_singleton ( ) ;
}
} ;