// @Description: This controls the time constant in seconds from demanded to achieved steering angle. A value of 0.75 is a good default and will work with nearly all rovers. Ground steering in aircraft needs a bit smaller time constant, and a value of 0.5 is recommended for best ground handling in fixed wing aircraft. A value of 0.75 means that the controller will try to correct any deviation between the desired and actual steering angle in 0.75 seconds. Advanced users may want to reduce this time to obtain a faster response but there is no point setting a time less than the vehicle can achieve.
// @Description: The proportional gain for steering. This should be approximately equal to the diameter of the turning circle of the vehicle at low speed and maximum steering angle
// @Range: 0.1 10.0
// @Increment: 0.1
// @User: User
AP_GROUPINFO("P",1,AP_SteerController,_K_P,1.8f),
// @Param: I
// @DisplayName: Integrator Gain
// @Description: This is the gain from the integral of steering angle. Increasing this gain causes the controller to trim out steady offsets due to an out of trim vehicle.
// @Range: 0 1.0
// @Increment: 0.05
// @User: User
AP_GROUPINFO("I",3,AP_SteerController,_K_I,0.2f),
// @Param: D
// @DisplayName: Damping Gain
// @Description: This adjusts the damping of the steering control loop. This gain helps to reduce steering jitter with vibration. It should be increased in 0.01 increments as too high a value can lead to a high frequency steering oscillation that could overstress the vehicle.
// @Description: This limits the number of degrees of steering in centi-degrees over which the integrator will operate. At the default setting of 1500 centi-degrees, the integrator will be limited to +- 15 degrees of servo travel. The maximum servo deflection is +- 45 centi-degrees, so the default value represents a 1/3rd of the total control throw which is adequate unless the vehicle is severely out of trim.
// @Description: This is the minimum assumed ground speed in meters/second for steering. Having a minimum speed prevents oscillations when the vehicle first starts moving. The vehicle can still drive slower than this limit, but the steering calculations will be done based on this minimum speed.
// @Description: The feed forward gain for steering this is the ratio of the achieved turn rate to applied steering. A value of 1 means that the vehicle would yaw at a rate of 45 degrees per second with full steering deflection at 1m/s ground speed.
// @Description: Speed after that the maximum degree of steering will start to derate. Set this speed to a maximum speed that a plane can do controlled turn at maximum angle of steering wheel without rolling to wing. If 0 then no derating is used.
// @Description: Degrees of steering wheel to derate at each additional m/s of speed above "Derating speed". Should be set so that at higher speeds the plane does not roll to the wing in turns.
// @Description: The angle that limits smallest angle of steering wheel at maximum speed. Even if it should derate below, it will stop derating at this angle.